Documentation Verification Report

Lindelof

πŸ“ Source: Mathlib/Topology/Compactness/Lindelof.lean

Statistics

MetricCount
DefinitionscoLindelof, coclosedLindelof, HereditarilyLindelofSpace, IsHereditarilyLindelof, IsLindelof, LindelofSpace, NonLindelofSpace
7
TheoremsLindelofSpace, coLindelof_eq_bot, coLindelof_neBot_iff, comap_coLindelof_le, isLindelof_biUnion, to_Lindelof, isHereditarilyLindelof_univ, isLindelof, of_forall_isOpen, HereditarilyLindelof_LindelofSets, isLindelof, isLindelof, isLindelof, isLindelof_subset, adherence_nhdset, compl_mem_coLindelof, compl_mem_sets, compl_mem_sets_of_nhdsWithin, countable, countable_of_discrete, countable_of_isDiscrete, diff, disjoint_nhdsSet_left, disjoint_nhdsSet_right, elim_countable_subcover, elim_countable_subcover_image, elim_countable_subfamily_closed, elim_nhds_subcover, elim_nhds_subcover', image, image_of_continuousOn, indexed_countable_subcover, induction_on, insert, inter_iInter_nonempty, inter_left, inter_right, ne_univ, of_coe, of_isClosed_subset, union, compl_mem_coclosedLindelof_of_isClosed, isLindelof, elim_nhds_subcover, isLindelof_univ, of_continuous_surjective, nonLindelof_univ, LindelofSpace, lindelofSpace, LindelofSpace, lindelofSpace, toHereditarilyLindelof, isLindelof, isLindelof_biUnion, isLindelof_sUnion, isLindelof, isLindelof_biUnion, isLindelof_sUnion, isLindelof, lindelofSpace, isLindelof_iff, isLindelof_insert_range_of_coLindelof, LindelofSpace, isLindelof_preimage, nonLindelofSpace, tendsto_coLindelof, isLindelof_iff, isLindelof_iff, isLindelof_preimage, cluster_point_of_Lindelof, coLindelof_le_coclosedLindelof, coLindelof_le_cofinite, countable_cover_nhds, countable_cover_nhds_interior, countable_of_Lindelof_of_discrete, eq_closed_inter_countable, eq_closed_inter_nat, eq_open_union_countable, eq_open_union_nat, hasBasis_coLindelof, hasBasis_coclosedLindelof, instHereditarilyLindelofSpaceSubtype, instLindelofSpaceOfCompactSpace, instLindelofSpaceOfSigmaCompactSpace, instLindelofSpaceSigmaOfCountable, instLindelofSpaceSum, instNeBotCoLindelofOfNonLindelofSpace, instNeBotCoclosedLindelofOfNonLindelofSpace, isLindelof_accumulate, isLindelof_diagonal, isLindelof_empty, isLindelof_iUnion, isLindelof_iff_LindelofSpace, isLindelof_iff_countable, isLindelof_iff_countable_subcover, isLindelof_iff_countable_subfamily_closed, isLindelof_iff_isLindelof_univ, isLindelof_iff_lindelofSpace, isLindelof_of_countable_subcover, isLindelof_of_countable_subfamily_closed, isLindelof_open_iff_eq_countable_iUnion_of_isTopologicalBasis, isLindelof_range, isLindelof_singleton, isLindelof_univ, isLindelof_univ_iff, lindelofSpace_of_countable_subfamily_closed, mem_coLindelof, mem_coLindelof', mem_coclosedLindelof, mem_coclosed_Lindelof', nonLindelofSpace_of_neBot, nonLindelof_univ, not_LindelofSpace_iff
113
Total120

Countable

Theorems

NameKindAssumesProvesValidatesDepends On
LindelofSpace πŸ“–mathematicalβ€”LindelofSpaceβ€”Set.Countable.isLindelof
Set.countable_univ

Filter

Definitions

NameCategoryTheorems
coLindelof πŸ“–CompOp
11 mathmath: mem_coLindelof', coLindelof_neBot_iff, IsLindelof.compl_mem_coLindelof, hasBasis_coLindelof, coLindelof_le_cofinite, coLindelof_eq_bot, comap_coLindelof_le, mem_coLindelof, coLindelof_le_coclosedLindelof, instNeBotCoLindelofOfNonLindelofSpace, Topology.IsClosedEmbedding.tendsto_coLindelof
coclosedLindelof πŸ“–CompOp
6 mathmath: instNeBotCoclosedLindelofOfNonLindelofSpace, hasBasis_coclosedLindelof, mem_coclosedLindelof, coLindelof_le_coclosedLindelof, IsLindeof.compl_mem_coclosedLindelof_of_isClosed, mem_coclosed_Lindelof'

Theorems

NameKindAssumesProvesValidatesDepends On
coLindelof_eq_bot πŸ“–mathematicalβ€”coLindelof
Bot.bot
Filter
instBot
β€”HasBasis.eq_bot_iff
hasBasis_coLindelof
isLindelof_univ
Set.compl_univ
coLindelof_neBot_iff πŸ“–mathematicalβ€”NeBot
coLindelof
NonLindelofSpace
β€”nonLindelofSpace_of_neBot
instNeBotCoLindelofOfNonLindelofSpace
comap_coLindelof_le πŸ“–mathematicalContinuousFilter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
comap
coLindelof
β€”HasBasis.le_basis_iff
HasBasis.comap
hasBasis_coLindelof
IsLindelof.image
Set.subset_preimage_image

Finset

Theorems

NameKindAssumesProvesValidatesDepends On
isLindelof_biUnion πŸ“–mathematicalIsLindelofSet.iUnion
Finset
instMembership
β€”Set.Finite.isLindelof_biUnion
finite_toSet

HereditarilyLindelof

Theorems

NameKindAssumesProvesValidatesDepends On
to_Lindelof πŸ“–mathematicalβ€”LindelofSpaceβ€”IsHereditarilyLindelof.isLindelof
HereditarilyLindelofSpace.isHereditarilyLindelof_univ

HereditarilyLindelofSpace

Theorems

NameKindAssumesProvesValidatesDepends On
isHereditarilyLindelof_univ πŸ“–mathematicalβ€”IsHereditarilyLindelof
Set.univ
β€”β€”
isLindelof πŸ“–mathematicalβ€”IsLindelofβ€”isHereditarilyLindelof_univ
Set.subset_univ
of_forall_isOpen πŸ“–mathematicalIsLindelofHereditarilyLindelofSpaceβ€”isLindelof_of_countable_subcover
IsLindelof.elim_countable_subcover
isOpen_iUnion
subset_rfl
Set.instReflSubset
HasSubset.Subset.trans
Set.instIsTransSubset

IsClosed

Theorems

NameKindAssumesProvesValidatesDepends On
isLindelof πŸ“–mathematicalβ€”IsLindelofβ€”IsLindelof.of_isClosed_subset
isLindelof_univ
Set.subset_univ

IsCompact

Theorems

NameKindAssumesProvesValidatesDepends On
isLindelof πŸ“–mathematicalIsCompactIsLindelofβ€”β€”

IsHereditarilyLindelof

Theorems

NameKindAssumesProvesValidatesDepends On
isLindelof πŸ“–mathematicalIsHereditarilyLindelofIsLindelofβ€”isLindelof_subset
Set.Subset.rfl
isLindelof_subset πŸ“–mathematicalIsHereditarilyLindelof
Set
Set.instHasSubset
IsLindelofβ€”β€”

IsLindelof

Theorems

NameKindAssumesProvesValidatesDepends On
adherence_nhdset πŸ“–mathematicalIsLindelof
Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.principal
IsOpen
Set
Set.instMembership
Filter.instMembershipβ€”Filter.eq_or_neBot
Filter.mem_of_eq_bot
countableInterFilter_inf
countableInterFilter_principal
inf_le_of_left_le
ClusterPt.of_inf_left
inter_mem_nhdsWithin
IsOpen.mem_nhds
Filter.empty_mem_iff_bot
Set.compl_inter_self
Filter.NeBot.ne
ClusterPt.of_inf_right
compl_mem_coLindelof πŸ“–mathematicalIsLindelofSet
Filter
Filter.instMembership
Filter.coLindelof
Compl.compl
Set.instCompl
β€”Filter.HasBasis.mem_of_mem
hasBasis_coLindelof
compl_mem_sets πŸ“–β€”IsLindelof
Set
Filter
Filter.instMembership
Filter.instInf
nhds
Compl.compl
Set.instCompl
β€”β€”Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_forall_eq
compl_compl
inf_assoc
countableInterFilter_inf
countableInterFilter_principal
inf_le_right
compl_mem_sets_of_nhdsWithin πŸ“–β€”IsLindelof
Set
Filter
Filter.instMembership
nhdsWithin
Compl.compl
Set.instCompl
β€”β€”compl_mem_sets
Filter.disjoint_principal_right
disjoint_right_comm
Filter.HasBasis.disjoint_iff_left
Filter.basis_sets
countable πŸ“–mathematicalIsLindelofSet.Countableβ€”Set.countable_coe_iff
countable_of_Lindelof_of_discrete
isLindelof_iff_lindelofSpace
countable_of_discrete πŸ“–mathematicalIsLindelofSet.Countableβ€”nhds_discrete
elim_nhds_subcover
Set.Countable.mono
Set.biUnion_of_singleton
countable_of_isDiscrete πŸ“–mathematicalIsLindelof
IsDiscrete
Set.Countableβ€”countable
IsDiscrete.to_subtype
diff πŸ“–mathematicalIsLindelof
IsOpen
Set
Set.instSDiff
β€”inter_right
isClosed_compl_iff
disjoint_nhdsSet_left πŸ“–mathematicalIsLindelofDisjoint
Filter
Filter.instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
Filter.instCompleteLatticeFilter
nhdsSet
nhds
β€”Disjoint.mono_left
nhds_le_nhdsSet
elim_nhds_subcover
IsOpen.mem_nhds
Filter.HasBasis.disjoint_iff_left
hasBasis_nhdsSet
isOpen_biUnion
Set.compl_iUnionβ‚‚
countable_bInter_mem
nhds_basis_opens
Function.sometimes_spec
disjoint_nhdsSet_right πŸ“–mathematicalIsLindelofDisjoint
Filter
Filter.instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
Filter.instCompleteLatticeFilter
nhdsSet
nhds
β€”disjoint_nhdsSet_left
elim_countable_subcover πŸ“–mathematicalIsLindelof
IsOpen
Set
Set.instHasSubset
Set.iUnion
Set.Countable
Set.instMembership
β€”Set.Subset.trans
Set.Countable.biUnion_iff
Set.sUnion_subset
Set.iUnion_congr_Prop
Set.iUnion_exists
Set.biUnion_and'
Set.mem_biUnion
Function.sometimes_spec
Set.mem_iUnion
mem_nhdsWithin_of_mem_nhds
IsOpen.mem_nhds
Set.iUnion_iUnion_eq_left
Set.Subset.refl
induction_on
elim_countable_subcover_image πŸ“–mathematicalIsLindelof
IsOpen
Set
Set.instHasSubset
Set.iUnion
Set.instMembership
Set.Countableβ€”elim_countable_subcover
Set.biUnion_eq_iUnion
Subtype.coe_preimage_self
Set.Countable.image
Set.biUnion_image
elim_countable_subfamily_closed πŸ“–mathematicalIsLindelof
IsClosed
Set
Set.instInter
Set.iInter
Set.instEmptyCollection
Set.Countable
Set.instMembership
β€”Set.compl_iInter
Set.disjoint_compl_left_iff_subset
Set.compl_iUnion
compl_compl
Disjoint.symm
Set.disjoint_iff_inter_eq_empty
elim_countable_subcover
Set.iUnion_congr_Prop
Set.iInter_congr_Prop
elim_nhds_subcover πŸ“–mathematicalIsLindelof
Set
Filter
Filter.instMembership
nhds
Set.Countable
Set.instMembership
Set.instHasSubset
Set.iUnion
β€”elim_nhds_subcover'
Set.Countable.image
Set.biUnion_image
elim_nhds_subcover' πŸ“–mathematicalIsLindelof
Set
Filter
Filter.instMembership
nhds
Set.Countable
Set.Elem
Set.instHasSubset
Set.iUnion
Set.instMembership
β€”elim_countable_subcover
isOpen_interior
Set.mem_iUnion
mem_interior_iff_mem_nhds
Set.Subset.trans
Set.iUnionβ‚‚_subset
interior_subset
Set.subset_iUnion_of_subset
Set.Subset.refl
image πŸ“–mathematicalIsLindelof
Continuous
Set.imageβ€”image_of_continuousOn
Continuous.continuousOn
image_of_continuousOn πŸ“–mathematicalIsLindelof
ContinuousOn
Set.imageβ€”Filter.comap_inf_principal_neBot_of_image_mem
Filter.le_principal_iff
countableInterFilter_inf
instCountableInterFilterComap
countableInterFilter_principal
inf_le_right
Set.mem_image_of_mem
nhdsWithin.eq_1
instAssociativeMin_mathlib
instCommutativeMin_mathlib
instIdempotentOpMin_mathlib
Filter.Tendsto.inf
Filter.tendsto_comap
Filter.Tendsto.neBot
ClusterPt.neBot
indexed_countable_subcover πŸ“–β€”IsLindelof
IsOpen
Set
Set.instHasSubset
Set.iUnion
β€”β€”elim_countable_subcover
Set.eq_empty_or_nonempty
Set.subset_eq_empty
Set.iUnion_congr_Prop
Set.iUnion_of_empty
instIsEmptyFalse
Set.iUnion_empty
Set.countable_iff_exists_surjective
HasSubset.Subset.trans
Set.instIsTransSubset
Set.iUnionβ‚‚_subset_iff
Set.subset_iUnion_of_subset
subset_of_eq
Set.instReflSubset
induction_on πŸ“–β€”IsLindelof
Set.sUnion
Set
Filter
Filter.instMembership
nhdsWithin
β€”β€”compl_mem_sets_of_nhdsWithin
Filter.countableInter_ofCountableUnion
compl_compl
insert πŸ“–mathematicalIsLindelofSet
Set.instInsert
β€”union
isLindelof_singleton
inter_iInter_nonempty πŸ“–β€”IsLindelof
IsClosed
Set.Countable
Set.Nonempty
Set
Set.instInter
Set.iInter
Set.instMembership
β€”β€”Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_forall_eq
Mathlib.Tactic.Push.not_and_eq
elim_countable_subfamily_closed
inter_left πŸ“–mathematicalIsLindelofSet
Set.instInter
β€”inter_right
Set.inter_comm
inter_right πŸ“–mathematicalIsLindelofSet
Set.instInter
β€”le_inf_iff
Filter.inf_principal
IsClosed.mem_of_nhdsWithin_neBot
ClusterPt.mono
ne_univ πŸ“–β€”IsLindelofβ€”β€”nonLindelof_univ
of_coe πŸ“–mathematicalβ€”IsLindelofβ€”isLindelof_iff_lindelofSpace
of_isClosed_subset πŸ“–β€”IsLindelof
Set
Set.instHasSubset
β€”β€”inter_right
Set.inter_eq_self_of_subset_right
union πŸ“–mathematicalIsLindelofSet
Set.instUnion
β€”Set.union_eq_iUnion
isLindelof_iUnion
Bool.countable

IsLindeof

Theorems

NameKindAssumesProvesValidatesDepends On
compl_mem_coclosedLindelof_of_isClosed πŸ“–mathematicalIsLindelofSet
Filter
Filter.instMembership
Filter.coclosedLindelof
Compl.compl
Set.instCompl
β€”Filter.HasBasis.mem_of_mem
hasBasis_coclosedLindelof

IsSigmaCompact

Theorems

NameKindAssumesProvesValidatesDepends On
isLindelof πŸ“–mathematicalIsSigmaCompactIsLindelofβ€”eq_1
IsCompact.isLindelof
isLindelof_iUnion
instCountableNat

LindelofSpace

Theorems

NameKindAssumesProvesValidatesDepends On
elim_nhds_subcover πŸ“–mathematicalSet
Filter
Filter.instMembership
nhds
Set.Countable
Set.iUnion
Set.instMembership
Set.univ
β€”IsLindelof.elim_nhds_subcover
isLindelof_univ
top_unique
isLindelof_univ πŸ“–mathematicalβ€”IsLindelof
Set.univ
β€”β€”
of_continuous_surjective πŸ“–mathematicalContinuousLindelofSpaceβ€”Set.image_univ_of_surjective
IsLindelof.image
isLindelof_univ_iff

NonLindelofSpace

Theorems

NameKindAssumesProvesValidatesDepends On
nonLindelof_univ πŸ“–mathematicalβ€”IsLindelof
Set.univ
β€”β€”

Quot

Theorems

NameKindAssumesProvesValidatesDepends On
LindelofSpace πŸ“–mathematicalβ€”LindelofSpace
instTopologicalSpaceQuot
β€”lindelofSpace
lindelofSpace πŸ“–mathematicalβ€”LindelofSpace
instTopologicalSpaceQuot
β€”isLindelof_range

Quotient

Theorems

NameKindAssumesProvesValidatesDepends On
LindelofSpace πŸ“–mathematicalβ€”LindelofSpace
instTopologicalSpaceQuotient
β€”lindelofSpace
lindelofSpace πŸ“–mathematicalβ€”LindelofSpace
instTopologicalSpaceQuotient
β€”Quot.lindelofSpace

SecondCountableTopology

Theorems

NameKindAssumesProvesValidatesDepends On
toHereditarilyLindelof πŸ“–mathematicalβ€”HereditarilyLindelofSpaceβ€”isLindelof_iff_countable_subcover
TopologicalSpace.isOpen_iUnion_countable
subset_of_subset_of_eq

Set.Countable

Theorems

NameKindAssumesProvesValidatesDepends On
isLindelof πŸ“–mathematicalβ€”IsLindelofβ€”isLindelof_biUnion
isLindelof_singleton
Set.biUnion_of_singleton
isLindelof_biUnion πŸ“–mathematicalIsLindelofSet.iUnion
Set
Set.instMembership
β€”isLindelof_of_countable_subcover
subset_trans
Set.instIsTransSubset
Set.subset_biUnion_of_mem
IsLindelof.elim_countable_subcover
biUnion_iff
Set.iUnionβ‚‚_subset
Set.iUnion_congr_Prop
Set.iUnion_exists
Set.biUnion_and'
Set.mem_biUnion
Function.sometimes_spec
isLindelof_sUnion πŸ“–mathematicalIsLindelofSet.sUnionβ€”Set.sUnion_eq_biUnion
isLindelof_biUnion

Set.Finite

Theorems

NameKindAssumesProvesValidatesDepends On
isLindelof πŸ“–mathematicalβ€”IsLindelofβ€”isLindelof_biUnion
isLindelof_singleton
Set.biUnion_of_singleton
isLindelof_biUnion πŸ“–mathematicalIsLindelofSet.iUnion
Set
Set.instMembership
β€”Set.Countable.isLindelof_biUnion
countable
isLindelof_sUnion πŸ“–mathematicalIsLindelofSet.sUnionβ€”Set.sUnion_eq_biUnion
isLindelof_biUnion

Set.Subsingleton

Theorems

NameKindAssumesProvesValidatesDepends On
isLindelof πŸ“–mathematicalSet.SubsingletonIsLindelofβ€”induction_on
isLindelof_empty
isLindelof_singleton

Subsingleton

Theorems

NameKindAssumesProvesValidatesDepends On
lindelofSpace πŸ“–mathematicalβ€”LindelofSpaceβ€”Set.Subsingleton.isLindelof
Set.subsingleton_univ

Subtype

Theorems

NameKindAssumesProvesValidatesDepends On
isLindelof_iff πŸ“–mathematicalβ€”IsLindelof
instTopologicalSpaceSubtype
Set.image
β€”Topology.IsEmbedding.isLindelof_iff
Topology.IsEmbedding.subtypeVal

Tendsto

Theorems

NameKindAssumesProvesValidatesDepends On
isLindelof_insert_range_of_coLindelof πŸ“–mathematicalFilter.Tendsto
Filter.coLindelof
nhds
Continuous
IsLindelof
Set
Set.instInsert
Set.range
β€”mem_coLindelof
Filter.mp_mem
Filter.le_principal_iff
Filter.univ_mem'
Disjoint.le_bot
mem_of_mem_nhds
Set.mem_image_of_mem
IsLindelof.image
Set.image_subset_range

Topology.IsClosedEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
LindelofSpace πŸ“–mathematicalTopology.IsClosedEmbeddingLindelofSpaceβ€”Topology.IsInducing.isLindelof_iff
isInducing
Set.image_univ
IsClosed.isLindelof
isClosed_range
isLindelof_preimage πŸ“–mathematicalTopology.IsClosedEmbedding
IsLindelof
Set.preimageβ€”Topology.IsInducing.isLindelof_preimage
isInducing
isClosed_range
nonLindelofSpace πŸ“–mathematicalTopology.IsClosedEmbeddingNonLindelofSpaceβ€”nonLindelofSpace_of_neBot
Filter.Tendsto.neBot
tendsto_coLindelof
instNeBotCoLindelofOfNonLindelofSpace
tendsto_coLindelof πŸ“–mathematicalTopology.IsClosedEmbeddingFilter.Tendsto
Filter.coLindelof
β€”Filter.HasBasis.tendsto_right_iff
hasBasis_coLindelof
IsLindelof.compl_mem_coLindelof
isLindelof_preimage

Topology.IsEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
isLindelof_iff πŸ“–mathematicalTopology.IsEmbeddingIsLindelof
Set.image
β€”Topology.IsInducing.isLindelof_iff
isInducing

Topology.IsInducing

Theorems

NameKindAssumesProvesValidatesDepends On
isLindelof_iff πŸ“–mathematicalTopology.IsInducingIsLindelof
Set.image
β€”IsLindelof.image
continuous
Filter.map_neBot
instCountableInterFilterMap
LE.le.trans_eq
Filter.map_mono
Filter.map_principal
mapClusterPt_iff
isLindelof_preimage πŸ“–mathematicalTopology.IsInducing
IsLindelof
Set.preimageβ€”IsLindelof.inter_right
isLindelof_iff
Set.image_preimage_eq_inter_range

(root)

Definitions

NameCategoryTheorems
HereditarilyLindelofSpace πŸ“–CompData
3 mathmath: HereditarilyLindelofSpace.of_forall_isOpen, SecondCountableTopology.toHereditarilyLindelof, instHereditarilyLindelofSpaceSubtype
IsHereditarilyLindelof πŸ“–MathDef
1 mathmath: HereditarilyLindelofSpace.isHereditarilyLindelof_univ
IsLindelof πŸ“–MathDef
38 mathmath: mem_coLindelof', IsHereditarilyLindelof.isLindelof_subset, Tendsto.isLindelof_insert_range_of_coLindelof, isLindelof_iff_isLindelof_univ, isLindelof_iff_lindelofSpace, isLindelof_of_countable_subfamily_closed, hasBasis_coLindelof, isLindelof_singleton, isLindelof_iff_countable_subcover, Set.Subsingleton.isLindelof, isLindelof_iff_LindelofSpace, nonLindelof_univ, mem_coLindelof, isLindelof_of_countable_subcover, hasBasis_coclosedLindelof, HereditarilyLindelof_LindelofSets, isLindelof_empty, mem_coclosedLindelof, IsClosed.isLindelof, Subtype.isLindelof_iff, isLindelof_range, Set.Finite.isLindelof, Topology.IsEmbedding.isLindelof_iff, LindelofSpace.isLindelof_univ, IsLindelof.of_coe, HereditarilyLindelofSpace.isLindelof, isLindelof_univ, NonLindelofSpace.nonLindelof_univ, isLindelof_iff_countable_subfamily_closed, isLindelof_iff_countable, IsCompact.isLindelof, Topology.IsInducing.isLindelof_iff, isLindelof_univ_iff, mem_coclosed_Lindelof', Set.Countable.isLindelof, isLindelof_diagonal, IsHereditarilyLindelof.isLindelof, IsSigmaCompact.isLindelof
LindelofSpace πŸ“–CompData
17 mathmath: LindelofSpace.of_continuous_surjective, isLindelof_iff_lindelofSpace, Topology.IsClosedEmbedding.LindelofSpace, not_LindelofSpace_iff, HereditarilyLindelof.to_Lindelof, Countable.LindelofSpace, isLindelof_iff_LindelofSpace, Subsingleton.lindelofSpace, instLindelofSpaceOfCompactSpace, instLindelofSpaceOfSigmaCompactSpace, Quot.LindelofSpace, Quotient.lindelofSpace, Quot.lindelofSpace, lindelofSpace_of_countable_subfamily_closed, Quotient.LindelofSpace, instLindelofSpaceSum, isLindelof_univ_iff
NonLindelofSpace πŸ“–CompData
4 mathmath: Filter.coLindelof_neBot_iff, not_LindelofSpace_iff, nonLindelofSpace_of_neBot, Topology.IsClosedEmbedding.nonLindelofSpace

Theorems

NameKindAssumesProvesValidatesDepends On
HereditarilyLindelof_LindelofSets πŸ“–mathematicalβ€”IsLindelofβ€”HereditarilyLindelofSpace.isLindelof
cluster_point_of_Lindelof πŸ“–mathematicalβ€”ClusterPtβ€”isLindelof_univ
Filter.principal_univ
coLindelof_le_coclosedLindelof πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.coLindelof
Filter.coclosedLindelof
β€”iInf_mono
le_iInf
le_rfl
coLindelof_le_cofinite πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.coLindelof
Filter.cofinite
β€”IsLindelof.compl_mem_coLindelof
Set.Finite.isLindelof
compl_compl
countable_cover_nhds πŸ“–mathematicalSet
Filter
Filter.instMembership
nhds
Set.Countable
Set.iUnion
Set.instMembership
Set.univ
β€”countable_cover_nhds_interior
Set.univ_subset_iff
HasSubset.Subset.trans
Set.instIsTransSubset
Eq.subset
Set.instReflSubset
Set.iUnionβ‚‚_mono
interior_subset
countable_cover_nhds_interior πŸ“–mathematicalSet
Filter
Filter.instMembership
nhds
Set.Countable
Set.iUnion
Set.instMembership
interior
Set.univ
β€”IsLindelof.elim_countable_subcover
isLindelof_univ
isOpen_interior
Set.mem_iUnion
mem_interior_iff_mem_nhds
Set.univ_subset_iff
countable_of_Lindelof_of_discrete πŸ“–mathematicalβ€”Countableβ€”Set.countable_univ_iff
IsLindelof.countable_of_discrete
isLindelof_univ
eq_closed_inter_countable πŸ“–mathematicalIsClosedSet.Countable
Set.iInter
Set
Set.instMembership
β€”compl_inj_iff
Set.compl_iInter
eq_open_union_countable
IsClosed.isOpen_compl
eq_closed_inter_nat πŸ“–mathematicalIsClosedSet.iInterβ€”compl_inj_iff
Set.compl_iInter
eq_open_union_nat
IsClosed.isOpen_compl
eq_open_union_countable πŸ“–mathematicalIsOpenSet.Countable
Set.iUnion
Set
Set.instMembership
β€”HereditarilyLindelofSpace.isLindelof
IsLindelof.elim_countable_subcover
Eq.subset
Set.instReflSubset
Set.eq_of_subset_of_subset
Set.iUnionβ‚‚_subset_iUnion
eq_open_union_nat πŸ“–mathematicalIsOpenSet.iUnionβ€”eq_open_union_countable
Set.eq_empty_or_nonempty
Set.iUnion_empty
Set.iUnion_false
Set.iUnion_congr_Prop
Set.Countable.exists_eq_range
Set.biUnion_range
hasBasis_coLindelof πŸ“–mathematicalβ€”Filter.HasBasis
Set
Filter.coLindelof
IsLindelof
Compl.compl
Set.instCompl
β€”Filter.hasBasis_biInf_principal'
IsLindelof.union
Set.compl_subset_compl
Set.subset_union_left
Set.subset_union_right
isLindelof_empty
hasBasis_coclosedLindelof πŸ“–mathematicalβ€”Filter.HasBasis
Set
Filter.coclosedLindelof
IsClosed
IsLindelof
Compl.compl
Set.instCompl
β€”iInf_and'
Filter.hasBasis_biInf_principal'
IsClosed.union
IsLindelof.union
Set.compl_subset_compl
Set.subset_union_left
Set.subset_union_right
isClosed_empty
isLindelof_empty
instHereditarilyLindelofSpaceSubtype πŸ“–mathematicalβ€”HereditarilyLindelofSpace
instTopologicalSpaceSubtype
β€”HereditarilyLindelofSpace.of_forall_isOpen
Subtype.isLindelof_iff
HereditarilyLindelofSpace.isLindelof
instLindelofSpaceOfCompactSpace πŸ“–mathematicalβ€”LindelofSpaceβ€”IsCompact.isLindelof
isCompact_univ
instLindelofSpaceOfSigmaCompactSpace πŸ“–mathematicalβ€”LindelofSpaceβ€”IsSigmaCompact.isLindelof
isSigmaCompact_univ
instLindelofSpaceSigmaOfCountable πŸ“–mathematicalLindelofSpaceinstTopologicalSpaceSigmaβ€”Set.Sigma.univ
isLindelof_iUnion
isLindelof_range
continuous_sigmaMk
instLindelofSpaceSum πŸ“–mathematicalβ€”LindelofSpace
instTopologicalSpaceSum
β€”Set.range_inl_union_range_inr
IsLindelof.union
isLindelof_range
continuous_inl
continuous_inr
instNeBotCoLindelofOfNonLindelofSpace πŸ“–mathematicalβ€”Filter.NeBot
Filter.coLindelof
β€”Filter.HasBasis.neBot_iff
hasBasis_coLindelof
Mathlib.Tactic.Contrapose.contrapose₁
Set.compl_empty_iff
Set.not_nonempty_iff_eq_empty
nonLindelof_univ
instNeBotCoclosedLindelofOfNonLindelofSpace πŸ“–mathematicalβ€”Filter.NeBot
Filter.coclosedLindelof
β€”Filter.neBot_of_le
instNeBotCoLindelofOfNonLindelofSpace
coLindelof_le_coclosedLindelof
isLindelof_accumulate πŸ“–mathematicalIsLindelofSet.accumulateβ€”Set.Finite.isLindelof_biUnion
Set.finite_le_nat
isLindelof_diagonal πŸ“–mathematicalβ€”IsLindelof
instTopologicalSpaceProd
Set.diagonal
β€”isLindelof_range
Continuous.prodMk
continuous_id
Set.range_diag
isLindelof_empty πŸ“–mathematicalβ€”IsLindelof
Set
Set.instEmptyCollection
β€”Filter.NeBot.ne
Filter.empty_mem_iff_bot
Filter.le_principal_iff
isLindelof_iUnion πŸ“–mathematicalIsLindelofSet.iUnionβ€”Set.Countable.isLindelof_sUnion
Set.countable_range
Set.forall_mem_range
isLindelof_iff_LindelofSpace πŸ“–mathematicalβ€”IsLindelof
LindelofSpace
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
β€”isLindelof_iff_lindelofSpace
isLindelof_iff_countable πŸ“–mathematicalβ€”IsLindelof
Set.Countable
β€”IsLindelof.countable_of_discrete
Set.Countable.isLindelof
isLindelof_iff_countable_subcover πŸ“–mathematicalβ€”IsLindelof
Set.Countable
Set
Set.instHasSubset
Set.iUnion
Set.instMembership
β€”IsLindelof.elim_countable_subcover
isLindelof_of_countable_subcover
isLindelof_iff_countable_subfamily_closed πŸ“–mathematicalβ€”IsLindelof
Set.Countable
Set
Set.instInter
Set.iInter
Set.instMembership
Set.instEmptyCollection
β€”IsLindelof.elim_countable_subfamily_closed
isLindelof_of_countable_subfamily_closed
isLindelof_iff_isLindelof_univ πŸ“–mathematicalβ€”IsLindelof
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
Set.univ
β€”Subtype.isLindelof_iff
Set.image_univ
Subtype.range_coe
isLindelof_iff_lindelofSpace πŸ“–mathematicalβ€”IsLindelof
LindelofSpace
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
β€”isLindelof_iff_isLindelof_univ
isLindelof_univ_iff
isLindelof_of_countable_subcover πŸ“–mathematicalSet.Countable
Set
Set.instHasSubset
Set.iUnion
Set.instMembership
IsLindelofβ€”Mathlib.Tactic.Contrapose.contrapose₁
Mathlib.Tactic.Push.not_and_eq
Mathlib.Tactic.Push.not_forall_eq
Set.mem_iUnion
Filter.sets_of_superset
Filter.le_principal_iff
Filter.HasBasis.disjoint_iff_left
nhds_basis_opens
countable_bInter_mem
Filter.compl_notMem
Set.compl_iUnionβ‚‚
compl_compl
isLindelof_of_countable_subfamily_closed πŸ“–mathematicalSet.Countable
Set
Set.instInter
Set.iInter
Set.instMembership
Set.instEmptyCollection
IsLindelofβ€”isLindelof_of_countable_subcover
IsOpen.isClosed_compl
disjoint_iff
Set.compl_iUnion
Set.disjoint_compl_right_iff_subset
Set.compl_iUnionβ‚‚
isLindelof_open_iff_eq_countable_iUnion_of_isTopologicalBasis πŸ“–mathematicalTopologicalSpace.IsTopologicalBasis
Set.range
Set
IsLindelof
IsOpen
Set.Countable
Set.iUnion
Set.instMembership
β€”TopologicalSpace.IsTopologicalBasis.open_eq_iUnion
IsLindelof.elim_countable_subcover
TopologicalSpace.IsTopologicalBasis.isOpen
Set.mem_range_self
Set.Subset.rfl
Set.Countable.image
le_antisymm
Set.Subset.trans
Set.iUnion_subtype
Set.subset_iUnion
Set.mem_image_of_mem
Set.iUnionβ‚‚_subset
Set.mem_image
Set.Countable.isLindelof_biUnion
isOpen_biUnion
isLindelof_range πŸ“–mathematicalContinuousIsLindelof
Set.range
β€”Set.image_univ
IsLindelof.image
isLindelof_univ
isLindelof_singleton πŸ“–mathematicalβ€”IsLindelof
Set
Set.instSingletonSet
β€”ClusterPt.of_le_nhds'
LE.le.trans
Filter.principal_singleton
pure_le_nhds
isLindelof_univ πŸ“–mathematicalβ€”IsLindelof
Set.univ
β€”LindelofSpace.isLindelof_univ
isLindelof_univ_iff πŸ“–mathematicalβ€”IsLindelof
Set.univ
LindelofSpace
β€”LindelofSpace.isLindelof_univ
lindelofSpace_of_countable_subfamily_closed πŸ“–mathematicalSet.Countable
Set.iInter
Set
Set.instMembership
Set.instEmptyCollection
LindelofSpaceβ€”isLindelof_of_countable_subfamily_closed
Set.univ_inter
mem_coLindelof πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
Filter.coLindelof
IsLindelof
Set.instHasSubset
Compl.compl
Set.instCompl
β€”Filter.HasBasis.mem_iff
hasBasis_coLindelof
mem_coLindelof' πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
Filter.coLindelof
IsLindelof
Set.instHasSubset
Compl.compl
Set.instCompl
β€”mem_coLindelof
Set.compl_subset_comm
mem_coclosedLindelof πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
Filter.coclosedLindelof
IsClosed
IsLindelof
Set.instHasSubset
Compl.compl
Set.instCompl
β€”Filter.HasBasis.mem_iff
hasBasis_coclosedLindelof
mem_coclosed_Lindelof' πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
Filter.coclosedLindelof
IsClosed
IsLindelof
Set.instHasSubset
Compl.compl
Set.instCompl
β€”β€”
nonLindelofSpace_of_neBot πŸ“–mathematicalβ€”NonLindelofSpaceβ€”Set.Nonempty.ne_empty
Filter.nonempty_of_mem
IsLindelof.compl_mem_coLindelof
Set.compl_univ
nonLindelof_univ πŸ“–mathematicalβ€”IsLindelof
Set.univ
β€”NonLindelofSpace.nonLindelof_univ
not_LindelofSpace_iff πŸ“–mathematicalβ€”LindelofSpace
NonLindelofSpace
β€”β€”

---

← Back to Index