Lindelof
π Source: Mathlib/Topology/Compactness/Lindelof.lean
Statistics
Countable
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
LindelofSpace π | mathematical | β | LindelofSpace | β | Set.Countable.isLindelofSet.countable_univ |
Filter
Definitions
Theorems
Finset
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
isLindelof_biUnion π | mathematical | IsLindelof | Set.iUnionFinsetinstMembership | β | Set.Finite.isLindelof_biUnionfinite_toSet |
HereditarilyLindelof
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
to_Lindelof π | mathematical | β | LindelofSpace | β | IsHereditarilyLindelof.isLindelofHereditarilyLindelofSpace.isHereditarilyLindelof_univ |
HereditarilyLindelofSpace
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
isHereditarilyLindelof_univ π | mathematical | β | IsHereditarilyLindelofSet.univ | β | β |
isLindelof π | mathematical | β | IsLindelof | β | isHereditarilyLindelof_univSet.subset_univ |
of_forall_isOpen π | mathematical | IsLindelof | HereditarilyLindelofSpace | β | isLindelof_of_countable_subcoverIsLindelof.elim_countable_subcoverisOpen_iUnionsubset_rflSet.instReflSubsetHasSubset.Subset.transSet.instIsTransSubset |
IsClosed
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
isLindelof π | mathematical | β | IsLindelof | β | IsLindelof.of_isClosed_subsetisLindelof_univSet.subset_univ |
IsCompact
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
isLindelof π | mathematical | IsCompact | IsLindelof | β | β |
IsHereditarilyLindelof
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
isLindelof π | mathematical | IsHereditarilyLindelof | IsLindelof | β | isLindelof_subsetSet.Subset.rfl |
isLindelof_subset π | mathematical | IsHereditarilyLindelofSetSet.instHasSubset | IsLindelof | β | β |
IsLindelof
Theorems
IsLindeof
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
compl_mem_coclosedLindelof_of_isClosed π | mathematical | IsLindelof | SetFilterFilter.instMembershipFilter.coclosedLindelofCompl.complSet.instCompl | β | Filter.HasBasis.mem_of_memhasBasis_coclosedLindelof |
IsSigmaCompact
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
isLindelof π | mathematical | IsSigmaCompact | IsLindelof | β | eq_1IsCompact.isLindelofisLindelof_iUnioninstCountableNat |
LindelofSpace
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
elim_nhds_subcover π | mathematical | SetFilterFilter.instMembershipnhds | Set.CountableSet.iUnionSet.instMembershipSet.univ | β | IsLindelof.elim_nhds_subcoverisLindelof_univtop_unique |
isLindelof_univ π | mathematical | β | IsLindelofSet.univ | β | β |
of_continuous_surjective π | mathematical | Continuous | LindelofSpace | β | Set.image_univ_of_surjectiveIsLindelof.imageisLindelof_univ_iff |
NonLindelofSpace
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
nonLindelof_univ π | mathematical | β | IsLindelofSet.univ | β | β |
Quot
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
LindelofSpace π | mathematical | β | LindelofSpaceinstTopologicalSpaceQuot | β | lindelofSpace |
lindelofSpace π | mathematical | β | LindelofSpaceinstTopologicalSpaceQuot | β | isLindelof_range |
Quotient
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
LindelofSpace π | mathematical | β | LindelofSpaceinstTopologicalSpaceQuotient | β | lindelofSpace |
lindelofSpace π | mathematical | β | LindelofSpaceinstTopologicalSpaceQuotient | β | Quot.lindelofSpace |
SecondCountableTopology
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
toHereditarilyLindelof π | mathematical | β | HereditarilyLindelofSpace | β | isLindelof_iff_countable_subcoverTopologicalSpace.isOpen_iUnion_countablesubset_of_subset_of_eq |
Set.Countable
Theorems
Set.Finite
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
isLindelof π | mathematical | β | IsLindelof | β | isLindelof_biUnionisLindelof_singletonSet.biUnion_of_singleton |
isLindelof_biUnion π | mathematical | IsLindelof | Set.iUnionSetSet.instMembership | β | Set.Countable.isLindelof_biUnioncountable |
isLindelof_sUnion π | mathematical | IsLindelof | Set.sUnion | β | Set.sUnion_eq_biUnionisLindelof_biUnion |
Set.Subsingleton
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
isLindelof π | mathematical | Set.Subsingleton | IsLindelof | β | induction_onisLindelof_emptyisLindelof_singleton |
Subsingleton
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
lindelofSpace π | mathematical | β | LindelofSpace | β | Set.Subsingleton.isLindelofSet.subsingleton_univ |
Subtype
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
isLindelof_iff π | mathematical | β | IsLindelofinstTopologicalSpaceSubtypeSet.image | β | Topology.IsEmbedding.isLindelof_iffTopology.IsEmbedding.subtypeVal |
Tendsto
Theorems
Topology.IsClosedEmbedding
Theorems
Topology.IsEmbedding
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
isLindelof_iff π | mathematical | Topology.IsEmbedding | IsLindelofSet.image | β | Topology.IsInducing.isLindelof_iffisInducing |
Topology.IsInducing
Theorems
(root)
Definitions
Theorems
---