Documentation Verification Report

LocallyCompact

πŸ“ Source: Mathlib/Topology/Compactness/LocallyCompact.lean

Statistics

MetricCount
Definitions0
TheoremslocallyCompactSpace, locallyCompactSpace_of_finite, locallyCompactSpace, weaklyLocallyCompactSpace, nhdsSet_basis_isCompact, locallyCompactSpace, locallyCompactSpace, locallyCompactSpace, weaklyLocallyCompactSpace, of_hasBasis, locallyCompactSpace, locallyCompactSpace_of_finite, locallyCompactSpace, locallyCompactSpace, weaklyLocallyCompactSpace, locallyCompactSpace, locallyCompactSpace, compact_basis_nhds, disjoint_nhds_cocompact, exists_compact_between, exists_compact_subset, exists_compact_superset, exists_mem_nhdsSet_isCompact_mapsTo, instLocallyCompactPairOfLocallyCompactSpace, instWeaklyLocallyCompactSpaceForallOfFinite, instWeaklyLocallyCompactSpaceOfCompactSpace, instWeaklyLocallyCompactSpaceOfLocallyCompactSpace, instWeaklyLocallyCompactSpaceProd, local_compact_nhds
29
Total29

Function

Theorems

NameKindAssumesProvesValidatesDepends On
locallyCompactSpace πŸ“–mathematicalβ€”LocallyCompactSpace
Pi.topologicalSpace
β€”Pi.locallyCompactSpace
locallyCompactSpace_of_finite πŸ“–mathematicalβ€”LocallyCompactSpace
Pi.topologicalSpace
β€”Pi.locallyCompactSpace_of_finite

IsClosed

Theorems

NameKindAssumesProvesValidatesDepends On
locallyCompactSpace πŸ“–mathematicalβ€”LocallyCompactSpace
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
β€”IsLocallyClosed.locallyCompactSpace
isLocallyClosed
weaklyLocallyCompactSpace πŸ“–mathematicalβ€”WeaklyLocallyCompactSpace
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
β€”Topology.IsClosedEmbedding.weaklyLocallyCompactSpace
isClosedEmbedding_subtypeVal

IsCompact

Theorems

NameKindAssumesProvesValidatesDepends On
nhdsSet_basis_isCompact πŸ“–mathematicalIsCompactFilter.HasBasis
Set
nhdsSet
Filter
Filter.instMembership
β€”Filter.hasBasis_self
Filter.HasBasis.forall_iff
hasBasis_nhdsSet
exists_compact_between
subset_interior_iff_mem_nhdsSet

IsLocallyClosed

Theorems

NameKindAssumesProvesValidatesDepends On
locallyCompactSpace πŸ“–mathematicalIsLocallyClosedLocallyCompactSpace
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
β€”Topology.IsInducing.locallyCompactSpace
Topology.IsEmbedding.toIsInducing
Topology.IsEmbedding.subtypeVal
Subtype.range_val

IsOpen

Theorems

NameKindAssumesProvesValidatesDepends On
locallyCompactSpace πŸ“–mathematicalIsOpenLocallyCompactSpace
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
β€”IsLocallyClosed.locallyCompactSpace
isLocallyClosed

IsOpenQuotientMap

Theorems

NameKindAssumesProvesValidatesDepends On
locallyCompactSpace πŸ“–mathematicalIsOpenQuotientMapLocallyCompactSpaceβ€”Function.Surjective.forall
surjective
local_compact_nhds
Continuous.continuousAt
continuous
IsOpenMap.image_mem_nhds
isOpenMap
Set.image_subset_iff
IsCompact.image
weaklyLocallyCompactSpace πŸ“–mathematicalIsOpenQuotientMapWeaklyLocallyCompactSpaceβ€”Function.Surjective.forall
surjective
WeaklyLocallyCompactSpace.exists_compact_mem_nhds
IsCompact.image
continuous
IsOpenMap.image_mem_nhds
isOpenMap

LocallyCompactSpace

Theorems

NameKindAssumesProvesValidatesDepends On
of_hasBasis πŸ“–mathematicalFilter.HasBasis
nhds
IsCompact
LocallyCompactSpaceβ€”Filter.HasBasis.mem_iff
Filter.HasBasis.mem_of_mem

Pi

Theorems

NameKindAssumesProvesValidatesDepends On
locallyCompactSpace πŸ“–mathematicalLocallyCompactSpace
CompactSpace
topologicalSpaceβ€”Filter.mem_pi
nhds_pi
set_pi_mem_nhds_iff
subset_trans
Set.instIsTransSubset
forallβ‚‚_imp
Set.univ_pi_ite
isCompact_univ_pi
CompactSpace.isCompact_univ
LocallyCompactSpace.local_compact_nhds
locallyCompactSpace_of_finite πŸ“–mathematicalLocallyCompactSpacetopologicalSpaceβ€”Filter.mem_pi
nhds_pi
set_pi_mem_nhds_iff
Set.finite_univ
subset_trans
Set.instIsTransSubset
isCompact_univ_pi
LocallyCompactSpace.local_compact_nhds

Prod

Theorems

NameKindAssumesProvesValidatesDepends On
locallyCompactSpace πŸ“–mathematicalβ€”LocallyCompactSpace
instTopologicalSpaceProd
β€”Filter.HasBasis.prod_nhds'
compact_basis_nhds
LocallyCompactSpace.of_hasBasis
IsCompact.prod

Topology.IsClosedEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
locallyCompactSpace πŸ“–mathematicalTopology.IsClosedEmbeddingLocallyCompactSpaceβ€”Topology.IsInducing.locallyCompactSpace
isInducing
IsClosed.isLocallyClosed
isClosed_range
weaklyLocallyCompactSpace πŸ“–mathematicalTopology.IsClosedEmbeddingWeaklyLocallyCompactSpaceβ€”WeaklyLocallyCompactSpace.exists_compact_mem_nhds
isCompact_preimage
Continuous.continuousAt
continuous

Topology.IsInducing

Theorems

NameKindAssumesProvesValidatesDepends On
locallyCompactSpace πŸ“–mathematicalTopology.IsInducing
IsLocallyClosed
Set.range
LocallyCompactSpaceβ€”IsOpen.mem_nhds
Eq.subset
Set.instReflSubset
Set.mem_range_self
nhds_eq_comap
comap_nhdsWithin_range
nhdsWithin_inter_of_mem
nhdsWithin_le_nhds
Filter.HasBasis.comap
nhdsWithin_hasBasis
Filter.HasBasis.restrict_subset
compact_basis_nhds
LocallyCompactSpace.of_hasBasis
isCompact_preimage_iff
Set.inter_subset_inter
subset_refl
IsCompact.inter_right

Topology.IsOpenEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
locallyCompactSpace πŸ“–mathematicalTopology.IsOpenEmbeddingLocallyCompactSpaceβ€”Topology.IsInducing.locallyCompactSpace
isInducing
IsOpen.isLocallyClosed
isOpen_range

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
compact_basis_nhds πŸ“–mathematicalβ€”Filter.HasBasis
Set
nhds
Filter
Filter.instMembership
IsCompact
β€”Filter.hasBasis_self
LocallyCompactSpace.local_compact_nhds
disjoint_nhds_cocompact πŸ“–mathematicalβ€”Disjoint
Filter
Filter.instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
Filter.instCompleteLatticeFilter
nhds
Filter.cocompact
β€”WeaklyLocallyCompactSpace.exists_compact_mem_nhds
Filter.disjoint_of_disjoint_of_mem
disjoint_compl_right
IsCompact.compl_mem_cocompact
exists_compact_between πŸ“–mathematicalIsCompact
IsOpen
Set
Set.instHasSubset
interiorβ€”exists_mem_nhdsSet_isCompact_mapsTo
instLocallyCompactPairOfLocallyCompactSpace
continuous_id
subset_interior_iff_mem_nhdsSet
exists_compact_subset πŸ“–mathematicalIsOpen
Set
Set.instMembership
IsCompact
interior
Set.instHasSubset
β€”LocallyCompactSpace.local_compact_nhds
IsOpen.mem_nhds
mem_interior_iff_mem_nhds
exists_compact_superset πŸ“–mathematicalIsCompactSet
Set.instHasSubset
interior
β€”IsCompact.elim_nhds_subcover
interior_mem_nhds
Finset.isCompact_biUnion
HasSubset.Subset.trans
Set.instIsTransSubset
Set.iUnionβ‚‚_subset
interior_mono
Set.subset_iUnionβ‚‚
WeaklyLocallyCompactSpace.exists_compact_mem_nhds
exists_mem_nhdsSet_isCompact_mapsTo πŸ“–mathematicalContinuous
IsCompact
IsOpen
Set.MapsTo
Set
Filter
Filter.instMembership
nhdsSet
β€”IsCompact.elim_nhds_subcover_nhdsSet
Finset.isCompact_biUnion
Set.mapsTo_iUnionβ‚‚
LocallyCompactPair.exists_mem_nhds_isCompact_mapsTo
IsOpen.mem_nhds
Function.sometimes_spec
instLocallyCompactPairOfLocallyCompactSpace πŸ“–mathematicalβ€”LocallyCompactPairβ€”local_compact_nhds
Continuous.continuousAt
instWeaklyLocallyCompactSpaceForallOfFinite πŸ“–mathematicalWeaklyLocallyCompactSpacePi.topologicalSpaceβ€”isCompact_univ_pi
set_pi_mem_nhds
Set.toFinite
Subtype.finite
WeaklyLocallyCompactSpace.exists_compact_mem_nhds
instWeaklyLocallyCompactSpaceOfCompactSpace πŸ“–mathematicalβ€”WeaklyLocallyCompactSpaceβ€”isCompact_univ
Filter.univ_mem
instWeaklyLocallyCompactSpaceOfLocallyCompactSpace πŸ“–mathematicalβ€”WeaklyLocallyCompactSpaceβ€”local_compact_nhds
Filter.univ_mem
instWeaklyLocallyCompactSpaceProd πŸ“–mathematicalβ€”WeaklyLocallyCompactSpace
instTopologicalSpaceProd
β€”WeaklyLocallyCompactSpace.exists_compact_mem_nhds
IsCompact.prod
prod_mem_nhds
local_compact_nhds πŸ“–mathematicalSet
Filter
Filter.instMembership
nhds
Set.instHasSubset
IsCompact
β€”LocallyCompactSpace.local_compact_nhds

---

← Back to Index