Documentation Verification Report

Paracompact

📁 Source: Mathlib/Topology/Compactness/Paracompact.lean

Statistics

MetricCount
DefinitionsParacompactSpace
1
TheoremsparacompactSpace_iff, locallyFinite_refinement, of_hasBasis, of_paracompactSpace_t2Space, paracompactSpace, instParacompactSpaceProdOfCompactSpace, instParacompactSpaceProdOfCompactSpace_1, paracompact_of_compact, paracompact_of_locallyCompact_sigmaCompact, precise_refinement, precise_refinement_set, refinement_of_locallyCompact_sigmaCompact_of_nhds_basis, refinement_of_locallyCompact_sigmaCompact_of_nhds_basis_set
13
Total14

Homeomorph

Theorems

NameKindAssumesProvesValidatesDepends On
paracompactSpace_iff 📖mathematicalParacompactSpaceTopology.IsClosedEmbedding.paracompactSpace
isClosedEmbedding

ParacompactSpace

Theorems

NameKindAssumesProvesValidatesDepends On
locallyFinite_refinement 📖mathematicalIsOpen
Set.iUnion
Set.univ
LocallyFinite
Set
Set.instHasSubset
of_hasBasis 📖mathematicalFilter.HasBasis
nhds
IsOpen
Set.iUnion
Set.univ
LocallyFinite
Set
Set.instHasSubset
ParacompactSpaceFilter.HasBasis.mem_iff
IsOpen.mem_nhds
Set.iUnion_eq_univ_iff
Set.mem_range_self
Set.forall_subtype_range_iff
Set.iUnion_subtype
Set.biUnion_range
LocallyFinite.on_range
HasSubset.Subset.trans
Set.instIsTransSubset

T4Space

Theorems

NameKindAssumesProvesValidatesDepends On
of_paracompactSpace_t2Space 📖mathematicalT4Spaceprecise_refinement_set
Set.mem_iUnion
isOpen_iUnion
IsClosed.isOpen_compl
isClosed_closure
LocallyFinite.closure_iUnion
Set.compl_iUnion
Set.subset_iInter_iff
closure_minimal
Disjoint.le_bot
isClosed_compl_iff
Disjoint.mono
le_rfl
compl_le_compl
subset_closure
disjoint_compl_right
SetCoe.forall'
T2Space.t1Space
t2_separation
Disjoint.ne_of_mem
Disjoint.symm
Set.singleton_subset_iff

Topology.IsClosedEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
paracompactSpace 📖mathematicalTopology.IsClosedEmbeddingParacompactSpaceprecise_refinement_set
isClosed_range
IsOpen.preimage
continuous
LocallyFinite.preimage_continuous
Set.preimage_mono
Topology.IsInducing.isOpen_iff
Topology.IsEmbedding.toIsInducing
toIsEmbedding

(root)

Definitions

NameCategoryTheorems
ParacompactSpace 📖CompData
8 mathmath: paracompact_of_compact, instParacompactSpaceProdOfCompactSpace, instParacompactSpaceProdOfCompactSpace_1, Topology.IsClosedEmbedding.paracompactSpace, Metric.instParacompactSpace, Homeomorph.paracompactSpace_iff, ParacompactSpace.of_hasBasis, paracompact_of_locallyCompact_sigmaCompact

Theorems

NameKindAssumesProvesValidatesDepends On
instParacompactSpaceProdOfCompactSpace 📖mathematicalParacompactSpace
instTopologicalSpaceProd
isOpen_prod_iff
Set.iUnion_eq_univ_iff
isOpen_biInter_finset
Set.mem_iInter₂
precise_refinement
IsOpen.prod
Set.iUnion₂_eq_univ_iff
prod_mem_nhds
Filter.univ_mem
Set.Finite.subset
Set.Finite.biUnion
Set.finite_range
Finite.of_fintype
Set.mem_iUnion₂
Set.mem_range_self
HasSubset.Subset.trans
Set.instIsTransSubset
Set.prod_mono
Set.Subset.rfl
Set.iInter₂_subset
CompactSpace.elim_nhds_subcover
IsOpen.mem_nhds
instParacompactSpaceProdOfCompactSpace_1 📖mathematicalParacompactSpace
instTopologicalSpaceProd
Homeomorph.paracompactSpace_iff
instParacompactSpaceProdOfCompactSpace
paracompact_of_compact 📖mathematicalParacompactSpaceIsCompact.elim_finite_subcover
isCompact_univ
Eq.ge
Set.iUnion_coe_set
Set.iUnion_congr_Prop
locallyFinite_of_finite
Finite.of_fintype
Set.Subset.rfl
paracompact_of_locallyCompact_sigmaCompact 📖mathematicalParacompactSpaceFilter.HasBasis.restrict_subset
nhds_basis_opens
IsOpen.mem_nhds
refinement_of_locallyCompact_sigmaCompact_of_nhds_basis
Set.iUnion_eq_univ_iff
precise_refinement 📖mathematicalIsOpen
Set.iUnion
Set.univ
LocallyFinite
Set
Set.instHasSubset
ParacompactSpace.locallyFinite_refinement
Set.mem_range_self
Set.forall_subtype_range_iff
Set.sUnion_range
Subtype.range_coe
isOpen_iUnion
Set.Finite.subset
Set.Finite.image
Set.mem_image_of_mem
precise_refinement_set 📖mathematicalIsOpen
Set
Set.instHasSubset
Set.iUnion
LocallyFiniteSet.Subset.antisymm
Set.subset_univ
Set.compl_union_self
Set.iUnion_option
Set.union_subset_union_right
precise_refinement
isOpen_compl_iff
Set.Subset.trans
Set.subset_compl_comm
LocallyFinite.comp_injective
Option.some_injective
refinement_of_locallyCompact_sigmaCompact_of_nhds_basis 📖mathematicalFilter.HasBasis
nhds
Set.iUnion
Set.univ
LocallyFinite
refinement_of_locallyCompact_sigmaCompact_of_nhds_basis_set
isClosed_univ
Set.univ_subset_iff
refinement_of_locallyCompact_sigmaCompact_of_nhds_basis_set 📖mathematicalFilter.HasBasis
nhds
Set
Set.instMembership
Set.instHasSubset
Set.iUnion
LocallyFinite
CompactExhaustion.find_shiftr
Set.diff_subset_diff_right
interior_subset
CompactExhaustion.mem_diff_shiftr_find
IsCompact.inter_right
IsCompact.diff
CompactExhaustion.isCompact
isOpen_interior
IsClosed.compl_mem_nhds
CompactExhaustion.isClosed
CompactExhaustion.subset_interior_succ
Filter.HasBasis.mem_of_mem
Set.mem_iUnion
Set.mem_iUnion₂
IsOpen.mem_nhds
Set.Finite.biUnion
Set.finite_le_nat
Set.finite_range
Finite.of_fintype
Set.Finite.subset
Set.mem_compl_iff
Mathlib.Tactic.Contrapose.contrapose₂
CompactExhaustion.subset
IsCompact.elim_nhds_subcover'
Filter.HasBasis.mem_iff

---

← Back to Index