SigmaCompact
π Source: Mathlib/Topology/Compactness/SigmaCompact.lean
Statistics
CompactExhaustion
Definitions
| Name | Category | Theorems |
|---|---|---|
choice π | CompOp | β |
find π | CompOp | |
instFunLikeNatSet π | CompOp | |
instInhabitedOfSigmaCompactSpaceOfWeaklyLocallyCompactSpace π | CompOp | β |
shiftr π | CompOp | |
toFun π | CompOp |
Theorems
CompactSpace
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
sigmaCompact π | mathematical | β | SigmaCompactSpace | β | isCompact_univSet.iUnion_const |
IsClosed
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
sigmaCompactSpace π | mathematical | β | SigmaCompactSpaceSet.EleminstTopologicalSpaceSubtypeSetSet.instMembership | β | Topology.IsClosedEmbedding.sigmaCompactSpaceisClosedEmbedding_subtypeVal |
IsCompact
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
isSigmaCompact π | mathematical | IsCompact | IsSigmaCompact | β | Set.iUnion_const |
IsSigmaCompact
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
image π | mathematical | ContinuousIsSigmaCompact | Set.image | β | image_of_continuousOnContinuous.continuousOn |
image_of_continuousOn π | mathematical | IsSigmaCompactContinuousOn | Set.image | β | IsCompact.image_of_continuousOnContinuousOn.monoSet.subset_iUnionSet.image_iUnion |
of_isClosed_subset π | β | IsSigmaCompactSetSet.instHasSubset | β | β | IsCompact.inter_leftSet.inter_iUnionSet.inter_eq_left |
LocallyFinite
Definitions
| Name | Category | Theorems |
|---|---|---|
encodable π | CompOp | β |
Theorems
SigmaCompactSpace
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
exists_compact_covering π | mathematical | β | IsCompactSet.iUnionSet.univ | β | SigmaCompactSpace_iff_exists_compact_covering |
isSigmaCompact_univ π | mathematical | β | IsSigmaCompactSet.univ | β | β |
of_countable π | mathematical | IsCompactSet.sUnionSet.univ | SigmaCompactSpace | β | Set.exists_seq_cover_iff_countableisCompact_empty |
Subtype
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
isSigmaCompact_iff π | mathematical | β | IsSigmaCompactinstTopologicalSpaceSubtypeSet.image | β | Topology.IsEmbedding.isSigmaCompact_iffTopology.IsEmbedding.subtypeVal |
Topology.IsClosedEmbedding
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
sigmaCompactSpace π | mathematical | Topology.IsClosedEmbedding | SigmaCompactSpace | β | isCompact_preimageisCompact_compactCoveringSet.preimage_iUnioniUnion_compactCoveringSet.preimage_univ |
Topology.IsEmbedding
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
isSigmaCompact_iff π | mathematical | Topology.IsEmbedding | IsSigmaCompactSet.image | β | Topology.IsInducing.isSigmaCompact_iffisInducing |
Topology.IsInducing
Theorems
(root)
Definitions
Theorems
---