Documentation Verification Report

SigmaCompact

πŸ“ Source: Mathlib/Topology/Compactness/SigmaCompact.lean

Statistics

MetricCount
DefinitionsCompactExhaustion, choice, find, instFunLikeNatSet, instInhabitedOfSigmaCompactSpaceOfWeaklyLocallyCompactSpace, shiftr, toFun, IsSigmaCompact, encodable, SigmaCompactSpace, compactCovering
11
Theoremsexists_mem, exists_mem_nhds, exists_superset_of_isCompact, find_shiftr, iUnion_eq, iUnion_eq', instRelHomClassNatSetLeSubset, isCompact, isCompact', mem_diff_shiftr_find, mem_find, mem_iff_find_le, subset, subset_interior, subset_interior_succ, subset_interior_succ', subset_succ, toFun_eq_coe, sigmaCompact, sigmaCompactSpace, isSigmaCompact, image, image_of_continuousOn, of_isClosed_subset, countable_univ, exists_compact_covering, isSigmaCompact_univ, of_countable, SigmaCompactSpace_iff_exists_compact_covering, isSigmaCompact_iff, sigmaCompactSpace, isSigmaCompact_iff, isSigmaCompact_iff, compactCovering_subset, countable_cover_nhdsWithin_of_sigmaCompact, countable_cover_nhds_of_sigmaCompact, exists_mem_compactCovering, iUnion_closure_compactCovering, iUnion_compactCovering, instSigmaCompactSpaceForallOfFinite, instSigmaCompactSpaceProd, instSigmaCompactSpaceSigmaOfCountable, instSigmaCompactSpaceSum, instSigmaCompactSpaceULift, isCompact_compactCovering, isSigmaCompact_biUnion, isSigmaCompact_empty, isSigmaCompact_iUnion, isSigmaCompact_iUnion_of_isCompact, isSigmaCompact_iff_isSigmaCompact_univ, isSigmaCompact_iff_sigmaCompactSpace, isSigmaCompact_range, isSigmaCompact_sUnion, isSigmaCompact_sUnion_of_isCompact, isSigmaCompact_univ, isSigmaCompact_univ_iff, sigmaCompactSpace_of_locallyCompact_secondCountable
57
Total68

CompactExhaustion

Definitions

NameCategoryTheorems
choice πŸ“–CompOpβ€”
find πŸ“–CompOp
4 mathmath: find_shiftr, mem_find, mem_diff_shiftr_find, mem_iff_find_le
instFunLikeNatSet πŸ“–CompOp
15 mathmath: isClosed, exists_mem, mem_find, instRelHomClassNatSetLeSubset, subset, exists_mem_nhds, iUnion_eq, isCompact, subset_interior, subset_succ, subset_interior_succ, exists_superset_of_isCompact, mem_diff_shiftr_find, toFun_eq_coe, mem_iff_find_le
instInhabitedOfSigmaCompactSpaceOfWeaklyLocallyCompactSpace πŸ“–CompOpβ€”
shiftr πŸ“–CompOp
2 mathmath: find_shiftr, mem_diff_shiftr_find
toFun πŸ“–CompOp
4 mathmath: subset_interior_succ', isCompact', iUnion_eq', toFun_eq_coe

Theorems

NameKindAssumesProvesValidatesDepends On
exists_mem πŸ“–mathematicalβ€”Set
Set.instMembership
DFunLike.coe
CompactExhaustion
instFunLikeNatSet
β€”Set.iUnion_eq_univ_iff
iUnion_eq
exists_mem_nhds πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
nhds
DFunLike.coe
CompactExhaustion
instFunLikeNatSet
β€”exists_mem
mem_interior_iff_mem_nhds
subset_interior_succ
exists_superset_of_isCompact πŸ“–mathematicalIsCompactSet
Set.instHasSubset
DFunLike.coe
CompactExhaustion
instFunLikeNatSet
β€”IsCompact.elim_directed_cover
isOpen_interior
exists_mem
Set.mem_iUnion
subset_interior_succ
Monotone.directed_le
SemilatticeSup.instIsDirectedOrder
interior_mono
subset
Set.Subset.trans
interior_subset
find_shiftr πŸ“–mathematicalβ€”find
shiftr
β€”Nat.find_comp_succ
exists_mem
Set.notMem_empty
iUnion_eq πŸ“–mathematicalβ€”Set.iUnion
DFunLike.coe
CompactExhaustion
Set
instFunLikeNatSet
Set.univ
β€”iUnion_eq'
iUnion_eq' πŸ“–mathematicalβ€”Set.iUnion
toFun
Set.univ
β€”β€”
instRelHomClassNatSetLeSubset πŸ“–mathematicalβ€”RelHomClass
CompactExhaustion
Set
Set.instHasSubset
instFunLikeNatSet
β€”monotone_nat_of_le_succ
HasSubset.Subset.trans
Set.instIsTransSubset
subset_interior_succ'
interior_subset
isCompact πŸ“–mathematicalβ€”IsCompact
DFunLike.coe
CompactExhaustion
Set
instFunLikeNatSet
β€”isCompact'
isCompact' πŸ“–mathematicalβ€”IsCompact
toFun
β€”β€”
mem_diff_shiftr_find πŸ“–mathematicalβ€”Set
Set.instMembership
Set.instSDiff
DFunLike.coe
CompactExhaustion
instFunLikeNatSet
shiftr
find
β€”mem_find
mem_iff_find_le
find_shiftr
mem_find πŸ“–mathematicalβ€”Set
Set.instMembership
DFunLike.coe
CompactExhaustion
instFunLikeNatSet
find
β€”Nat.find_spec
exists_mem
mem_iff_find_le πŸ“–mathematicalβ€”Set
Set.instMembership
DFunLike.coe
CompactExhaustion
instFunLikeNatSet
find
β€”Nat.find_min'
exists_mem
subset
mem_find
subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
DFunLike.coe
CompactExhaustion
instFunLikeNatSet
β€”OrderHomClass.mono
instRelHomClassNatSetLeSubset
subset_interior πŸ“–mathematicalβ€”Set
Set.instHasSubset
DFunLike.coe
CompactExhaustion
instFunLikeNatSet
interior
β€”Set.Subset.trans
subset_interior_succ
interior_mono
subset
subset_interior_succ πŸ“–mathematicalβ€”Set
Set.instHasSubset
DFunLike.coe
CompactExhaustion
instFunLikeNatSet
interior
β€”subset_interior_succ'
subset_interior_succ' πŸ“–mathematicalβ€”Set
Set.instHasSubset
toFun
interior
β€”β€”
subset_succ πŸ“–mathematicalβ€”Set
Set.instHasSubset
DFunLike.coe
CompactExhaustion
instFunLikeNatSet
β€”subset
toFun_eq_coe πŸ“–mathematicalβ€”toFun
DFunLike.coe
CompactExhaustion
Set
instFunLikeNatSet
β€”β€”

CompactSpace

Theorems

NameKindAssumesProvesValidatesDepends On
sigmaCompact πŸ“–mathematicalβ€”SigmaCompactSpaceβ€”isCompact_univ
Set.iUnion_const

IsClosed

Theorems

NameKindAssumesProvesValidatesDepends On
sigmaCompactSpace πŸ“–mathematicalβ€”SigmaCompactSpace
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
β€”Topology.IsClosedEmbedding.sigmaCompactSpace
isClosedEmbedding_subtypeVal

IsCompact

Theorems

NameKindAssumesProvesValidatesDepends On
isSigmaCompact πŸ“–mathematicalIsCompactIsSigmaCompactβ€”Set.iUnion_const

IsSigmaCompact

Theorems

NameKindAssumesProvesValidatesDepends On
image πŸ“–mathematicalContinuous
IsSigmaCompact
Set.imageβ€”image_of_continuousOn
Continuous.continuousOn
image_of_continuousOn πŸ“–mathematicalIsSigmaCompact
ContinuousOn
Set.imageβ€”IsCompact.image_of_continuousOn
ContinuousOn.mono
Set.subset_iUnion
Set.image_iUnion
of_isClosed_subset πŸ“–β€”IsSigmaCompact
Set
Set.instHasSubset
β€”β€”IsCompact.inter_left
Set.inter_iUnion
Set.inter_eq_left

LocallyFinite

Definitions

NameCategoryTheorems
encodable πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
countable_univ πŸ“–mathematicalLocallyFinite
Set.Nonempty
Set.Countable
Set.univ
β€”finite_nonempty_inter_compact
isCompact_compactCovering
Set.Countable.mono
Set.iUnion_eq_univ_iff
iUnion_compactCovering
Set.mem_iUnion
Set.countable_iUnion
instCountableNat
Set.Finite.countable

SigmaCompactSpace

Theorems

NameKindAssumesProvesValidatesDepends On
exists_compact_covering πŸ“–mathematicalβ€”IsCompact
Set.iUnion
Set.univ
β€”SigmaCompactSpace_iff_exists_compact_covering
isSigmaCompact_univ πŸ“–mathematicalβ€”IsSigmaCompact
Set.univ
β€”β€”
of_countable πŸ“–mathematicalIsCompact
Set.sUnion
Set.univ
SigmaCompactSpaceβ€”Set.exists_seq_cover_iff_countable
isCompact_empty

Subtype

Theorems

NameKindAssumesProvesValidatesDepends On
isSigmaCompact_iff πŸ“–mathematicalβ€”IsSigmaCompact
instTopologicalSpaceSubtype
Set.image
β€”Topology.IsEmbedding.isSigmaCompact_iff
Topology.IsEmbedding.subtypeVal

Topology.IsClosedEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
sigmaCompactSpace πŸ“–mathematicalTopology.IsClosedEmbeddingSigmaCompactSpaceβ€”isCompact_preimage
isCompact_compactCovering
Set.preimage_iUnion
iUnion_compactCovering
Set.preimage_univ

Topology.IsEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
isSigmaCompact_iff πŸ“–mathematicalTopology.IsEmbeddingIsSigmaCompact
Set.image
β€”Topology.IsInducing.isSigmaCompact_iff
isInducing

Topology.IsInducing

Theorems

NameKindAssumesProvesValidatesDepends On
isSigmaCompact_iff πŸ“–mathematicalTopology.IsInducingIsSigmaCompact
Set.image
β€”IsSigmaCompact.image
continuous
Set.image_preimage_inter
Set.inter_eq_left
HasSubset.Subset.trans
Set.instIsTransSubset
Set.subset_iUnion
Eq.le
isCompact_iff
Set.preimage_iUnion
Set.iUnion_inter
Set.inter_eq_right
Set.subset_preimage_image

(root)

Definitions

NameCategoryTheorems
CompactExhaustion πŸ“–CompData
15 mathmath: CompactExhaustion.isClosed, CompactExhaustion.exists_mem, CompactExhaustion.mem_find, CompactExhaustion.instRelHomClassNatSetLeSubset, CompactExhaustion.subset, CompactExhaustion.exists_mem_nhds, CompactExhaustion.iUnion_eq, CompactExhaustion.isCompact, CompactExhaustion.subset_interior, CompactExhaustion.subset_succ, CompactExhaustion.subset_interior_succ, CompactExhaustion.exists_superset_of_isCompact, CompactExhaustion.mem_diff_shiftr_find, CompactExhaustion.toFun_eq_coe, CompactExhaustion.mem_iff_find_le
IsSigmaCompact πŸ“–MathDef
15 mathmath: isSigmaCompact_univ, Topology.IsInducing.isSigmaCompact_iff, isSigmaCompact_iff_isSigmaCompact_univ, SigmaCompactSpace.isSigmaCompact_univ, Topology.IsEmbedding.isSigmaCompact_iff, IsCompact.isSigmaCompact, isSigmaCompact_iUnion_of_isCompact, isSigmaCompact_sUnion_of_isCompact, Homeomorph.isSigmaCompact_image, isSigmaCompact_iff_sigmaCompactSpace, isSigmaCompact_range, Subtype.isSigmaCompact_iff, isSigmaCompact_empty, Homeomorph.isSigmaCompact_preimage, isSigmaCompact_univ_iff
SigmaCompactSpace πŸ“–CompData
13 mathmath: sigmaCompactSpace_of_locallyCompact_secondCountable, SeparableWeaklyLocallyCompactGroup.sigmaCompactSpace, SigmaCompactSpace_iff_exists_compact_covering, instSigmaCompactSpaceProd, instSigmaCompactSpaceSum, IsClosed.sigmaCompactSpace, instSigmaCompactSpaceULift, CompactSpace.sigmaCompact, isSigmaCompact_iff_sigmaCompactSpace, SeparableWeaklyLocallyCompactAddGroup.sigmaCompactSpace, Topology.IsClosedEmbedding.sigmaCompactSpace, isSigmaCompact_univ_iff, SigmaCompactSpace.of_countable
compactCovering πŸ“–CompOp
5 mathmath: iUnion_closure_compactCovering, iUnion_compactCovering, isCompact_compactCovering, exists_mem_compactCovering, compactCovering_subset

Theorems

NameKindAssumesProvesValidatesDepends On
SigmaCompactSpace_iff_exists_compact_covering πŸ“–mathematicalβ€”SigmaCompactSpace
IsCompact
Set.iUnion
Set.univ
β€”isSigmaCompact_univ_iff
IsSigmaCompact.eq_1
compactCovering_subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
compactCovering
β€”Set.monotone_accumulate
SigmaCompactSpace.exists_compact_covering
countable_cover_nhdsWithin_of_sigmaCompact πŸ“–mathematicalSet
Filter
Filter.instMembership
nhdsWithin
Set.instHasSubset
Set.Countable
Set.iUnion
Set.instMembership
β€”Set.iUnion_subset
Set.countable_iUnion
instCountableNat
Finset.countable_toSet
Set.mem_iUnionβ‚‚
exists_mem_compactCovering
Set.mem_iUnion
IsCompact.elim_nhds_subcover
IsCompact.inter_right
isCompact_compactCovering
countable_cover_nhds_of_sigmaCompact πŸ“–mathematicalSet
Filter
Filter.instMembership
nhds
Set.Countable
Set.iUnion
Set.instMembership
Set.univ
β€”countable_cover_nhdsWithin_of_sigmaCompact
isClosed_univ
Set.univ_subset_iff
exists_mem_compactCovering πŸ“–mathematicalβ€”Set
Set.instMembership
compactCovering
β€”Set.iUnion_eq_univ_iff
iUnion_compactCovering
iUnion_closure_compactCovering πŸ“–mathematicalβ€”Set.iUnion
closure
compactCovering
Set.univ
β€”eq_top_mono
Set.iUnion_mono
subset_closure
iUnion_compactCovering
iUnion_compactCovering πŸ“–mathematicalβ€”Set.iUnion
compactCovering
Set.univ
β€”SigmaCompactSpace.exists_compact_covering
compactCovering.eq_1
Set.iUnion_accumulate
instSigmaCompactSpaceForallOfFinite πŸ“–mathematicalSigmaCompactSpacePi.topologicalSpaceβ€”isCompact_univ_pi
isCompact_compactCovering
Set.iUnion_univ_pi_of_monotone
compactCovering_subset
iUnion_compactCovering
Set.pi_univ
instSigmaCompactSpaceProd πŸ“–mathematicalβ€”SigmaCompactSpace
instTopologicalSpaceProd
β€”IsCompact.prod
isCompact_compactCovering
Set.iUnion_prod_of_monotone
compactCovering_subset
iUnion_compactCovering
Set.univ_prod_univ
instSigmaCompactSpaceSigmaOfCountable πŸ“–mathematicalSigmaCompactSpaceinstTopologicalSpaceSigmaβ€”isEmpty_or_nonempty
CompactSpace.sigmaCompact
Finite.compactSpace
Finite.of_subsingleton
IsEmpty.instSubsingleton
Sigma.isEmpty_left
exists_surjective_nat
Set.Finite.isCompact_biUnion
Set.finite_le_nat
IsCompact.image
isCompact_compactCovering
continuous_sigmaMk
Function.Surjective.forall
exists_mem_compactCovering
le_max_left
Set.mem_image_of_mem
compactCovering_subset
le_max_right
instSigmaCompactSpaceSum πŸ“–mathematicalβ€”SigmaCompactSpace
instTopologicalSpaceSum
β€”IsCompact.union
IsCompact.image
isCompact_compactCovering
continuous_inl
continuous_inr
Set.iUnion_union_distrib
iUnion_compactCovering
Set.image_univ
Set.range_inl_union_range_inr
instSigmaCompactSpaceULift πŸ“–mathematicalβ€”SigmaCompactSpace
ULift.topologicalSpace
β€”Topology.IsClosedEmbedding.sigmaCompactSpace
Topology.IsClosedEmbedding.uliftDown
isCompact_compactCovering πŸ“–mathematicalβ€”IsCompact
compactCovering
β€”isCompact_accumulate
SigmaCompactSpace.exists_compact_covering
isSigmaCompact_biUnion πŸ“–mathematicalIsSigmaCompactSet.iUnion
Set
Set.instMembership
β€”Set.countable_coe_iff
Set.biUnion_eq_iUnion
isSigmaCompact_iUnion
isSigmaCompact_empty πŸ“–mathematicalβ€”IsSigmaCompact
Set
Set.instEmptyCollection
β€”IsCompact.isSigmaCompact
isCompact_empty
isSigmaCompact_iUnion πŸ“–mathematicalIsSigmaCompactSet.iUnionβ€”Function.uncurry_def
Set.iUnion_prod'
isSigmaCompact_iUnion_of_isCompact
instCountableProd
instCountableNat
isSigmaCompact_iUnion_of_isCompact πŸ“–mathematicalIsCompactIsSigmaCompact
Set.iUnion
β€”isEmpty_or_nonempty
Set.iUnion_of_empty
countable_iff_exists_surjective
Function.Surjective.iUnion_comp
isSigmaCompact_iff_isSigmaCompact_univ πŸ“–mathematicalβ€”IsSigmaCompact
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
Set.univ
β€”Subtype.isSigmaCompact_iff
Set.image_univ
Subtype.range_coe
isSigmaCompact_iff_sigmaCompactSpace πŸ“–mathematicalβ€”IsSigmaCompact
SigmaCompactSpace
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
β€”isSigmaCompact_iff_isSigmaCompact_univ
isSigmaCompact_univ_iff
isSigmaCompact_range πŸ“–mathematicalContinuousIsSigmaCompact
Set.range
β€”IsSigmaCompact.image
isSigmaCompact_univ
Set.image_univ
isSigmaCompact_sUnion πŸ“–mathematicalIsSigmaCompact
Set
Set.instMembership
Set.sUnionβ€”Set.countable_coe_iff
isSigmaCompact_iUnion
Set.sUnion_eq_iUnion
isSigmaCompact_sUnion_of_isCompact πŸ“–mathematicalIsCompactIsSigmaCompact
Set.sUnion
β€”Set.countable_coe_iff
Set.sUnion_eq_iUnion
isSigmaCompact_iUnion_of_isCompact
isSigmaCompact_univ πŸ“–mathematicalβ€”IsSigmaCompact
Set.univ
β€”isSigmaCompact_univ_iff
isSigmaCompact_univ_iff πŸ“–mathematicalβ€”IsSigmaCompact
Set.univ
SigmaCompactSpace
β€”SigmaCompactSpace.isSigmaCompact_univ
sigmaCompactSpace_of_locallyCompact_secondCountable πŸ“–mathematicalβ€”SigmaCompactSpaceβ€”TopologicalSpace.countable_cover_nhds
SigmaCompactSpace.of_countable
Set.Countable.image
Set.forall_mem_image
Set.sUnion_image
WeaklyLocallyCompactSpace.exists_compact_mem_nhds
instWeaklyLocallyCompactSpaceOfLocallyCompactSpace

---

← Back to Index