Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Topology/Connected/Basic.lean

Statistics

MetricCount
DefinitionsConnectedSpace, IsPreconnected, PreconnectedSpace, connectedComponent, connectedComponentIn
5
TheoremstoNonempty, toPreconnectedSpace, image_connectedComponentIn_subset, image_connectedComponent_subset, mapsTo_connectedComponent, mapsTo_connectedComponentIn, preconnectedSpace, connectedSpace, connectedSpace, biUnion_of_chain, biUnion_of_reflTransGen, closure, iUnion_of_chain, iUnion_of_reflTransGen, image, isPreconnected, nonempty, preimage_of_isClosedMap, preimage_of_isOpenMap, prod, subset_closure, subset_connectedComponent, union, isConnected, biUnion_of_chain, biUnion_of_reflTransGen, closure, connectedComponentIn, gt_of_ne, iUnion_of_chain, iUnion_of_reflTransGen, image, lt_of_ne, mapsTo_Ioi_or_Iio, preimage_of_isClosedMap, preimage_of_isOpenMap, prod, sUnion_directed, subset_closure, subset_connectedComponent, subset_connectedComponentIn, subset_left_of_subset_union, subset_of_closure_inter_subset, subset_or_subset, subset_right_of_subset_union, union, union', isPreconnected, connectedComponent_eq_univ, isPreconnected_univ, preconnectedSpace, instConnectedSpace, isPreconnected, connectedSpace, preconnectedSpace, isPreconnected_image, connectedComponentIn_eq, connectedComponentIn_eq_empty, connectedComponentIn_eq_image, connectedComponentIn_mono, connectedComponentIn_nonempty_iff, connectedComponentIn_subset, connectedComponentIn_univ, connectedComponent_disjoint, connectedComponent_eq, connectedComponent_eq_iff_mem, connectedComponent_nonempty, connectedSpace_iff_connectedComponent, connectedSpace_iff_univ, instConnectedSpaceForall, instConnectedSpaceProd, instPreconnectedSpaceForall, instPreconnectedSpaceProd, irreducibleComponent_subset_connectedComponent, isClosed_connectedComponent, isConnected_connectedComponent, isConnected_connectedComponentIn_iff, isConnected_iff_connectedSpace, isConnected_range, isConnected_singleton, isConnected_univ, isConnected_univ_pi, isPreconnected_closed_iff, isPreconnected_connectedComponent, isPreconnected_connectedComponentIn, isPreconnected_empty, isPreconnected_iUnion, isPreconnected_iff_preconnectedSpace, isPreconnected_of_forall, isPreconnected_of_forall_pair, isPreconnected_range, isPreconnected_sUnion, isPreconnected_singleton, isPreconnected_univ_pi, mem_connectedComponent, mem_connectedComponentIn, preconnectedSpace_iff_connectedComponent, preconnectedSpace_iff_univ
98
Total103

ConnectedSpace

Theorems

NameKindAssumesProvesValidatesDepends On
toNonempty πŸ“–β€”β€”β€”β€”β€”
toPreconnectedSpace πŸ“–mathematicalβ€”PreconnectedSpaceβ€”β€”

Continuous

Theorems

NameKindAssumesProvesValidatesDepends On
image_connectedComponentIn_subset πŸ“–mathematicalContinuous
Set
Set.instMembership
Set.instHasSubset
Set.image
connectedComponentIn
β€”IsPreconnected.subset_connectedComponentIn
IsPreconnected.image
isPreconnected_connectedComponentIn
continuousOn
Set.mem_image_of_mem
mem_connectedComponentIn
Set.image_mono
connectedComponentIn_subset
image_connectedComponent_subset πŸ“–mathematicalContinuousSet
Set.instHasSubset
Set.image
connectedComponent
β€”IsConnected.subset_connectedComponent
IsConnected.image
isConnected_connectedComponent
continuousOn
Set.mem_image
mem_connectedComponent
mapsTo_connectedComponent πŸ“–mathematicalContinuousSet.MapsTo
connectedComponent
β€”Set.mapsTo_iff_image_subset
image_connectedComponent_subset
mapsTo_connectedComponentIn πŸ“–mathematicalContinuous
Set
Set.instMembership
Set.MapsTo
connectedComponentIn
Set.image
β€”Set.mapsTo_iff_image_subset
image_connectedComponentIn_subset

DenseRange

Theorems

NameKindAssumesProvesValidatesDepends On
preconnectedSpace πŸ“–mathematicalDenseRange
Continuous
PreconnectedSpaceβ€”IsPreconnected.closure
isPreconnected_range
Dense.closure_eq

Function.Surjective

Theorems

NameKindAssumesProvesValidatesDepends On
connectedSpace πŸ“–mathematicalContinuousConnectedSpaceβ€”connectedSpace_iff_univ
range_eq
isConnected_range

IrreducibleSpace

Theorems

NameKindAssumesProvesValidatesDepends On
connectedSpace πŸ“–mathematicalβ€”ConnectedSpaceβ€”PreirreducibleSpace.preconnectedSpace
toPreirreducibleSpace
toNonempty

IsConnected

Theorems

NameKindAssumesProvesValidatesDepends On
biUnion_of_chain πŸ“–mathematicalSet.Nonempty
IsConnected
Set
Set.instInter
Order.succ
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.iUnion
Set.instMembership
β€”Set.nonempty_biUnion
Set.Nonempty.some_mem
nonempty
IsPreconnected.biUnion_of_chain
isPreconnected
biUnion_of_reflTransGen πŸ“–mathematicalSet.Nonempty
IsConnected
Relation.ReflTransGen
Set
Set.instInter
Set.instMembership
Set.iUnionβ€”Set.nonempty_biUnion
Set.Nonempty.some_mem
nonempty
IsPreconnected.biUnion_of_reflTransGen
isPreconnected
closure πŸ“–mathematicalIsConnectedclosureβ€”subset_closure
subset_closure
Set.Subset.rfl
iUnion_of_chain πŸ“–mathematicalIsConnected
Set.Nonempty
Set
Set.instInter
Order.succ
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.iUnionβ€”iUnion_of_reflTransGen
reflTransGen_of_succ
iUnion_of_reflTransGen πŸ“–mathematicalIsConnected
Relation.ReflTransGen
Set.Nonempty
Set
Set.instInter
Set.iUnionβ€”Set.nonempty_iUnion
nonempty
IsPreconnected.iUnion_of_reflTransGen
isPreconnected
image πŸ“–mathematicalIsConnected
ContinuousOn
Set.imageβ€”Set.image_nonempty
nonempty
IsPreconnected.image
isPreconnected
isPreconnected πŸ“–mathematicalIsConnectedIsPreconnectedβ€”β€”
nonempty πŸ“–mathematicalIsConnectedSet.Nonemptyβ€”β€”
preimage_of_isClosedMap πŸ“–mathematicalIsConnected
IsClosedMap
Set
Set.instHasSubset
Set.range
Set.preimageβ€”Set.Nonempty.preimage'
nonempty
IsPreconnected.preimage_of_isClosedMap
isPreconnected
preimage_of_isOpenMap πŸ“–mathematicalIsConnected
IsOpenMap
Set
Set.instHasSubset
Set.range
Set.preimageβ€”Set.Nonempty.preimage'
nonempty
IsPreconnected.preimage_of_isOpenMap
isPreconnected
prod πŸ“–mathematicalIsConnectedinstTopologicalSpaceProd
SProd.sprod
Set
Set.instSProd
β€”Set.Nonempty.prod
IsPreconnected.prod
subset_closure πŸ“–β€”IsConnected
Set
Set.instHasSubset
closure
β€”β€”Set.Nonempty.mono
IsPreconnected.subset_closure
subset_connectedComponent πŸ“–mathematicalIsConnected
Set
Set.instMembership
Set.instHasSubset
connectedComponent
β€”IsPreconnected.subset_connectedComponent
union πŸ“–mathematicalSet.Nonempty
Set
Set.instInter
IsConnected
Set.instUnionβ€”Set.mem_union_left
Set.mem_of_mem_inter_left
IsPreconnected.union
Set.mem_of_mem_inter_right
isPreconnected

IsIrreducible

Theorems

NameKindAssumesProvesValidatesDepends On
isConnected πŸ“–mathematicalIsIrreducibleIsConnectedβ€”nonempty
IsPreirreducible.isPreconnected
isPreirreducible

IsPreconnected

Theorems

NameKindAssumesProvesValidatesDepends On
biUnion_of_chain πŸ“–mathematicalIsPreconnected
Set.Nonempty
Set
Set.instInter
Order.succ
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.iUnion
Set.instMembership
β€”Set.OrdConnected.out
Set.Ico_subset_Icc_self
LE.le.trans
Order.le_succ
Order.succ_le_of_lt
biUnion_of_reflTransGen
reflTransGen_of_succ
Set.inter_comm
biUnion_of_reflTransGen πŸ“–mathematicalIsPreconnected
Relation.ReflTransGen
Set.Nonempty
Set
Set.instInter
Set.instMembership
Set.iUnionβ€”Set.singleton_subset_iff
Set.mem_singleton
Set.biUnion_singleton
Set.insert_subset_iff
Set.mem_insert_of_mem
Set.mem_insert
Set.biUnion_insert
union'
Set.Nonempty.mono
Set.inter_comm
Set.inter_subset_inter_right
Set.subset_biUnion_of_mem
isPreconnected_of_forall_pair
Set.mem_iUnionβ‚‚
Set.biUnion_subset_biUnion_left
Set.mem_biUnion
closure πŸ“–mathematicalIsPreconnectedclosureβ€”subset_closure
subset_closure
Set.Subset.rfl
connectedComponentIn πŸ“–mathematicalIsPreconnected
Set
Set.instMembership
connectedComponentInβ€”HasSubset.Subset.antisymm
Set.instAntisymmSubset
connectedComponentIn_subset
subset_connectedComponentIn
subset_rfl
Set.instReflSubset
gt_of_ne πŸ“–β€”IsPreconnected
ContinuousOn
Set
Set.instMembership
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”β€”mapsTo_Ioi_or_Iio
not_forallβ‚‚_of_existsβ‚‚_not
iUnion_of_chain πŸ“–mathematicalIsPreconnected
Set.Nonempty
Set
Set.instInter
Order.succ
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.iUnionβ€”iUnion_of_reflTransGen
reflTransGen_of_succ
iUnion_of_reflTransGen πŸ“–mathematicalIsPreconnected
Relation.ReflTransGen
Set.Nonempty
Set
Set.instInter
Set.iUnionβ€”Set.biUnion_univ
biUnion_of_reflTransGen
image πŸ“–mathematicalIsPreconnected
ContinuousOn
Set.imageβ€”continuousOn_iff'
Set.subset_inter
Set.preimage_union
Set.image_subset_iff
Set.Subset.rfl
Set.subset_inter_iff
Set.union_inter_distrib_right
Set.inter_comm
Set.inter_assoc
Set.inter_left_comm
Set.inter_self
lt_of_ne πŸ“–β€”IsPreconnected
ContinuousOn
Set
Set.instMembership
Preorder.toLT
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
β€”β€”mapsTo_Ioi_or_Iio
not_forallβ‚‚_of_existsβ‚‚_not
mapsTo_Ioi_or_Iio πŸ“–mathematicalIsPreconnected
ContinuousOn
Set.MapsTo
Set.Ioi
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set.Iio
β€”subset_or_subset
isOpen_Ioi
instClosedIicTopology
isOpen_Iio
instClosedIciTopology
image
preimage_of_isClosedMap πŸ“–mathematicalIsPreconnected
IsClosedMap
Set
Set.instHasSubset
Set.range
Set.preimageβ€”isPreconnected_closed_iff
Set.image_preimage_eq_of_subset
Set.image_union
Set.image_mono
Set.image_preimage_inter
Set.Nonempty.image
Function.Injective.mem_set_image
preimage_of_isOpenMap πŸ“–mathematicalIsPreconnected
IsOpenMap
Set
Set.instHasSubset
Set.range
Set.preimageβ€”Set.image_preimage_eq_of_subset
Set.image_union
Set.image_mono
Set.image_preimage_inter
Set.Nonempty.image
Function.Injective.mem_set_image
prod πŸ“–mathematicalIsPreconnectedinstTopologicalSpaceProd
SProd.sprod
Set
Set.instSProd
β€”isPreconnected_of_forall_pair
union
image
ContinuousOn.prodMk
continuousOn_const
continuousOn_id'
Continuous.continuousOn
Continuous.prodMk_left
sUnion_directed πŸ“–mathematicalDirectedOn
Set
Set.instHasSubset
IsPreconnected
Set.sUnionβ€”HasSubset.Subset.trans
Set.instIsTransSubset
Set.subset_sUnion_of_mem
Set.inter_subset_inter_left
Set.Nonempty.mono
subset_closure πŸ“–β€”IsPreconnected
Set
Set.instHasSubset
closure
β€”β€”mem_closure_iff
Set.Subset.trans
subset_connectedComponent πŸ“–mathematicalIsPreconnected
Set
Set.instMembership
Set.instHasSubset
connectedComponent
β€”Set.mem_sUnion_of_mem
subset_connectedComponentIn πŸ“–mathematicalIsPreconnected
Set
Set.instMembership
Set.instHasSubset
connectedComponentInβ€”Topology.IsInducing.isPreconnected_image
Topology.IsInducing.subtypeVal
Subtype.image_preimage_coe
Set.inter_eq_right
Set.mem_preimage
subset_connectedComponent
connectedComponentIn_eq_image
Set.Subset.trans
subset_refl
Set.instReflSubset
Set.image_mono
subset_left_of_subset_union πŸ“–β€”IsOpen
Disjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.instHasSubset
Set.instUnion
Set.Nonempty
Set.instInter
IsPreconnected
β€”β€”Disjoint.subset_left_of_subset_union
Set.not_disjoint_iff_nonempty_inter
Set.disjoint_iff
subset_of_closure_inter_subset πŸ“–β€”IsPreconnected
IsOpen
Set.Nonempty
Set
Set.instInter
Set.instHasSubset
closure
β€”β€”Set.mem_inter
subset_left_of_subset_union
IsClosed.isOpen_compl
isClosed_closure
Disjoint.mono_right
Set.compl_subset_compl
subset_closure
disjoint_compl_right
subset_or_subset πŸ“–β€”IsOpen
Disjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.instHasSubset
Set.instUnion
IsPreconnected
β€”β€”Set.eq_empty_or_nonempty
Disjoint.subset_right_of_subset_union
Set.disjoint_iff_inter_eq_empty
Disjoint.subset_left_of_subset_union
Set.disjoint_empty
subset_right_of_subset_union πŸ“–β€”IsOpen
Disjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.instHasSubset
Set.instUnion
Set.Nonempty
Set.instInter
IsPreconnected
β€”β€”subset_left_of_subset_union
Disjoint.symm
Set.union_comm
union πŸ“–mathematicalSet
Set.instMembership
IsPreconnected
Set.instUnionβ€”isPreconnected_sUnion
Set.sUnion_pair
union' πŸ“–mathematicalSet.Nonempty
Set
Set.instInter
IsPreconnected
Set.instUnionβ€”union

IsPreirreducible

Theorems

NameKindAssumesProvesValidatesDepends On
isPreconnected πŸ“–mathematicalIsPreirreducibleIsPreconnectedβ€”β€”

PreconnectedSpace

Theorems

NameKindAssumesProvesValidatesDepends On
connectedComponent_eq_univ πŸ“–mathematicalβ€”connectedComponent
Set.univ
β€”preconnectedSpace_iff_connectedComponent
isPreconnected_univ πŸ“–mathematicalβ€”IsPreconnected
Set.univ
β€”β€”

PreirreducibleSpace

Theorems

NameKindAssumesProvesValidatesDepends On
preconnectedSpace πŸ“–mathematicalβ€”PreconnectedSpaceβ€”IsPreirreducible.isPreconnected
isPreirreducible_univ

Quotient

Theorems

NameKindAssumesProvesValidatesDepends On
instConnectedSpace πŸ“–mathematicalβ€”ConnectedSpace
instTopologicalSpaceQuotient
β€”Function.Surjective.connectedSpace
mk'_surjective
continuous_coinduced_rng

Set.Subsingleton

Theorems

NameKindAssumesProvesValidatesDepends On
isPreconnected πŸ“–mathematicalSet.SubsingletonIsPreconnectedβ€”induction_on
isPreconnected_empty
isPreconnected_singleton

Subtype

Theorems

NameKindAssumesProvesValidatesDepends On
connectedSpace πŸ“–mathematicalIsConnectedConnectedSpace
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
β€”preconnectedSpace
IsConnected.isPreconnected
Set.Nonempty.to_subtype
IsConnected.nonempty
preconnectedSpace πŸ“–mathematicalIsPreconnectedPreconnectedSpace
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
β€”Topology.IsInducing.isPreconnected_image
Topology.IsInducing.subtypeVal
Set.image_univ
range_val

Topology.IsInducing

Theorems

NameKindAssumesProvesValidatesDepends On
isPreconnected_image πŸ“–mathematicalTopology.IsInducingIsPreconnected
Set.image
β€”isOpen_iff
Set.image_subset_iff
Set.mem_image_of_mem
IsPreconnected.image
Continuous.continuousOn
continuous

(root)

Definitions

NameCategoryTheorems
ConnectedSpace πŸ“–CompData
14 mathmath: OnePoint.instConnectedSpaceOfPreconnectedSpaceOfNoncompactSpace, IrreducibleSpace.connectedSpace, PathConnectedSpace.connectedSpace, connectedSpace_iff_connectedComponent, connectedSpace_iff_clopen, Subtype.connectedSpace, Quotient.instConnectedSpace, AddTorsor.connectedSpace, Function.Surjective.connectedSpace, instConnectedSpaceProd, pathConnectedSpace_iff_connectedSpace, connectedSpace_iff_univ, isConnected_iff_connectedSpace, unitInterval.instConnectedSpaceElemReal
IsPreconnected πŸ“–MathDef
54 mathmath: Metric.isPreconnected_ball, Sigma.isPreconnected_iff, Topology.IsInducing.isPreconnected_image, isPreconnected_uIoo, isPreconnected_iff_ordConnected, isPreconnected_Ici, isPreconnected_iff_preconnectedSpace, Homeomorph.isPreconnected_preimage, QuasiconvexOn.isPreconnected_preimage_subtype, isPreconnected_range, isPreconnected_Iic, locallyConnectedSpace_iff_connected_subsets, Metric.isPreconnected_closedEBall, isPreconnected_connectedComponentIn, isPreconnected_iff_subset_of_disjoint_closed, Set.OrdConnected.isPreconnected, isPreconnected_sphere, isPreconnected_of_forall_constant, isPreconnected_Icc, AffineSubspace.isPreconnected_setOf_wOppSide, QuasilinearOn.isPreconnected_preimage_subtype, setOf_isPreconnected_eq_of_ordered, isPreconnected_Ioi, Metric.isPreconnected_eball, isPreconnected_Ico, locallyConnectedSpace_iff_isTopologicalBasis_isOpen_isPreconnected, isPreconnected_connectedComponent, setOf_isPreconnected_subset_of_ordered, Real.convex_iff_isPreconnected, isPreconnected_singleton, isPreconnected_Ioc, isPreconnected_uIcc, isPreconnected_Ioo, TopologicalSpace.IsTopologicalBasis.isOpen_isPreconnected, AffineSubspace.isPreconnected_setOf_wSameSide, Homeomorph.isPreconnected_image, IsConnected.isPreconnected, QuasiconcaveOn.isPreconnected_preimage_subtype, locallyConnectedSpace_iff_connected_basis, isPreconnected_Iio, AffineSubspace.isPreconnected_setOf_sOppSide, IsPreirreducible.isPreconnected, isPreconnected_uIoc, isPreconnected_empty, Sum.isPreconnected_iff, preconnectedSpace_iff_univ, isPreconnected_iff_subset_of_fully_disjoint_closed, PreconnectedSpace.isPreconnected_univ, Metric.isPreconnected_closedBall, Set.Subsingleton.isPreconnected, isPreconnected_closed_iff, isPreconnected_iff_subset_of_disjoint, Convex.isPreconnected, AffineSubspace.isPreconnected_setOf_sSameSide
PreconnectedSpace πŸ“–CompData
12 mathmath: isPreconnected_iff_preconnectedSpace, ConnectedSpace.toPreconnectedSpace, DenseRange.preconnectedSpace, instPreconnectedSpaceProd, preconnectedSpace_of_forall_constant, IsDenseInducing.preconnectedSpace, preconnectedSpace_iff_connectedComponent, Subtype.preconnectedSpace, preconnectedSpace_iff_univ, ordered_connected_space, preconnectedSpace_iff_clopen, PreirreducibleSpace.preconnectedSpace
connectedComponent πŸ“–CompOp
37 mathmath: totallyDisconnectedSpace_iff_connectedComponent_singleton, Topology.IsQuotientMap.preimage_connectedComponent, ConnectedComponents.coe_eq_coe', connectedComponent_eq_singleton, isConnected_connectedComponent, preimage_connectedComponent_connected, mem_connectedComponent, connectedSpace_iff_connectedComponent, connectedComponent_eq_iff_mem, Continuous.image_connectedComponent_subset, Continuous.mapsTo_connectedComponent, connectedComponents_preimage_singleton, connectedComponents_preimage_image, IsClopen.connectedComponent_subset, IsClopen.biUnion_connectedComponent_eq, connectedComponentIn_eq_image, isPreconnected_connectedComponent, connectedComponent_disjoint, isOpen_connectedComponent, isClopen_connectedComponent, pathComponent_subset_component, ConnectedComponents.coe_eq_coe, Topology.IsQuotientMap.image_connectedComponent, connectedComponent_nonempty, preconnectedSpace_iff_connectedComponent, Continuous.image_connectedComponent_eq_singleton, PreconnectedSpace.connectedComponent_eq_univ, DiscreteQuotient.proj_bot_eq, connectedComponent_eq_iInter_isClopen, isClosed_connectedComponent, irreducibleComponent_subset_connectedComponent, totallyDisconnectedSpace_iff_connectedComponent_subsingleton, connectedComponentIn_univ, connectedComponent_subset_iInter_isClopen, pathComponent_eq_connectedComponent, IsConnected.subset_connectedComponent, IsPreconnected.subset_connectedComponent
connectedComponentIn πŸ“–CompOp
21 mathmath: Subalgebra.spectrum_sUnion_connectedComponentIn, Continuous.image_connectedComponentIn_subset, connectedComponentIn_subset, mem_connectedComponentIn, isPreconnected_connectedComponentIn, connectedComponentIn_eq_image, connectedComponentIn_mono, IsPreconnected.connectedComponentIn, Subalgebra.spectrum_isBounded_connectedComponentIn, locallyConnectedSpace_iff_connectedComponentIn_open, connectedComponentIn_mem_nhds, connectedComponentIn_eq_empty, isConnected_connectedComponentIn_iff, connectedComponentIn_nonempty_iff, IsClopen.biUnion_connectedComponentIn, IsPreconnected.subset_connectedComponentIn, Continuous.mapsTo_connectedComponentIn, connectedComponentIn_univ, Homeomorph.image_connectedComponentIn, IsOpen.connectedComponentIn, Submodule.connectedComponentIn_eq_self_of_one_lt_codim

Theorems

NameKindAssumesProvesValidatesDepends On
connectedComponentIn_eq πŸ“–β€”Set
Set.instMembership
connectedComponentIn
β€”β€”connectedComponentIn_nonempty_iff
connectedComponentIn_eq_image
connectedComponent_eq
connectedComponentIn_eq_empty πŸ“–mathematicalSet
Set.instMembership
connectedComponentIn
Set.instEmptyCollection
β€”β€”
connectedComponentIn_eq_image πŸ“–mathematicalSet
Set.instMembership
connectedComponentIn
Set.image
connectedComponent
instTopologicalSpaceSubtype
β€”β€”
connectedComponentIn_mono πŸ“–mathematicalSet
Set.instHasSubset
connectedComponentInβ€”connectedComponentIn_eq_image
Set.image_comp
Set.image_mono
Continuous.image_connectedComponent_subset
continuous_inclusion
connectedComponentIn_eq_empty
Set.empty_subset
connectedComponentIn_nonempty_iff πŸ“–mathematicalβ€”Set.Nonempty
connectedComponentIn
Set
Set.instMembership
β€”connectedComponentIn.eq_1
connectedComponentIn_subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
connectedComponentIn
β€”connectedComponentIn.eq_1
Subtype.coe_preimage_self
connectedComponentIn_univ πŸ“–mathematicalβ€”connectedComponentIn
Set.univ
connectedComponent
β€”subset_antisymm
Set.instAntisymmSubset
IsPreconnected.subset_connectedComponent
isPreconnected_connectedComponentIn
mem_connectedComponentIn
IsPreconnected.subset_connectedComponentIn
isPreconnected_connectedComponent
mem_connectedComponent
Set.subset_univ
connectedComponent_disjoint πŸ“–mathematicalβ€”Disjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
connectedComponent
β€”Set.disjoint_left
connectedComponent_eq
connectedComponent_eq πŸ“–β€”Set
Set.instMembership
connectedComponent
β€”β€”Set.eq_of_subset_of_subset
IsConnected.subset_connectedComponent
isConnected_connectedComponent
Set.mem_of_mem_of_subset
mem_connectedComponent
connectedComponent_eq_iff_mem πŸ“–mathematicalβ€”connectedComponent
Set
Set.instMembership
β€”mem_connectedComponent
connectedComponent_eq
connectedComponent_nonempty πŸ“–mathematicalβ€”Set.Nonempty
connectedComponent
β€”mem_connectedComponent
connectedSpace_iff_connectedComponent πŸ“–mathematicalβ€”ConnectedSpace
connectedComponent
Set.univ
β€”Set.eq_univ_of_univ_subset
IsPreconnected.subset_connectedComponent
PreconnectedSpace.isPreconnected_univ
Set.mem_univ
isPreconnected_connectedComponent
connectedSpace_iff_univ πŸ“–mathematicalβ€”ConnectedSpace
IsConnected
Set.univ
β€”Set.univ_nonempty
ConnectedSpace.toNonempty
PreconnectedSpace.isPreconnected_univ
ConnectedSpace.toPreconnectedSpace
instConnectedSpaceForall πŸ“–mathematicalConnectedSpacePi.topologicalSpaceβ€”instPreconnectedSpaceForall
ConnectedSpace.toPreconnectedSpace
ConnectedSpace.toNonempty
instConnectedSpaceProd πŸ“–mathematicalβ€”ConnectedSpace
instTopologicalSpaceProd
β€”instPreconnectedSpaceProd
ConnectedSpace.toPreconnectedSpace
ConnectedSpace.toNonempty
instPreconnectedSpaceForall πŸ“–mathematicalPreconnectedSpacePi.topologicalSpaceβ€”Set.pi_univ
isPreconnected_univ_pi
PreconnectedSpace.isPreconnected_univ
instPreconnectedSpaceProd πŸ“–mathematicalβ€”PreconnectedSpace
instTopologicalSpaceProd
β€”Set.univ_prod_univ
IsPreconnected.prod
PreconnectedSpace.isPreconnected_univ
irreducibleComponent_subset_connectedComponent πŸ“–mathematicalβ€”Set
Set.instHasSubset
irreducibleComponent
connectedComponent
β€”IsConnected.subset_connectedComponent
IsIrreducible.isConnected
isIrreducible_irreducibleComponent
mem_irreducibleComponent
isClosed_connectedComponent πŸ“–mathematicalβ€”IsClosed
connectedComponent
β€”closure_subset_iff_isClosed
IsConnected.subset_connectedComponent
IsConnected.closure
isConnected_connectedComponent
subset_closure
mem_connectedComponent
isConnected_connectedComponent πŸ“–mathematicalβ€”IsConnected
connectedComponent
β€”mem_connectedComponent
isPreconnected_connectedComponent
isConnected_connectedComponentIn_iff πŸ“–mathematicalβ€”IsConnected
connectedComponentIn
Set
Set.instMembership
β€”β€”
isConnected_iff_connectedSpace πŸ“–mathematicalβ€”IsConnected
ConnectedSpace
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
β€”Subtype.connectedSpace
nonempty_subtype
ConnectedSpace.toNonempty
isPreconnected_iff_preconnectedSpace
ConnectedSpace.toPreconnectedSpace
isConnected_range πŸ“–mathematicalContinuousIsConnected
Set.range
β€”Set.range_nonempty
ConnectedSpace.toNonempty
isPreconnected_range
ConnectedSpace.toPreconnectedSpace
isConnected_singleton πŸ“–mathematicalβ€”IsConnected
Set
Set.instSingletonSet
β€”IsIrreducible.isConnected
isIrreducible_singleton
isConnected_univ πŸ“–mathematicalβ€”IsConnected
Set.univ
β€”Set.univ_nonempty
ConnectedSpace.toNonempty
PreconnectedSpace.isPreconnected_univ
ConnectedSpace.toPreconnectedSpace
isConnected_univ_pi πŸ“–mathematicalβ€”IsConnected
Pi.topologicalSpace
Set.pi
Set.univ
β€”Set.eval_image_univ_pi
IsPreconnected.image
Continuous.continuousOn
continuous_apply
isPreconnected_univ_pi
isPreconnected_closed_iff πŸ“–mathematicalβ€”IsPreconnected
Set.Nonempty
Set
Set.instInter
β€”Set.not_disjoint_iff_nonempty_inter
Set.subset_compl_iff_disjoint_right
Set.compl_inter
IsClosed.isOpen_compl
Set.Nonempty.ne_empty
Set.compl_union
Disjoint.inter_eq
HasSubset.Subset.disjoint_compl_right
IsOpen.isClosed_compl
isPreconnected_connectedComponent πŸ“–mathematicalβ€”IsPreconnected
connectedComponent
β€”isPreconnected_sUnion
isPreconnected_connectedComponentIn πŸ“–mathematicalβ€”IsPreconnected
connectedComponentIn
β€”connectedComponentIn.eq_1
Topology.IsInducing.isPreconnected_image
Topology.IsInducing.subtypeVal
isPreconnected_connectedComponent
isPreconnected_empty
isPreconnected_empty πŸ“–mathematicalβ€”IsPreconnected
Set
Set.instEmptyCollection
β€”IsPreirreducible.isPreconnected
isPreirreducible_empty
isPreconnected_iUnion πŸ“–mathematicalSet.Nonempty
Set.iInter
IsPreconnected
Set.iUnionβ€”isPreconnected_sUnion
Set.forall_mem_range
isPreconnected_iff_preconnectedSpace πŸ“–mathematicalβ€”IsPreconnected
PreconnectedSpace
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
β€”Subtype.preconnectedSpace
Set.image_univ
Subtype.range_coe_subtype
IsPreconnected.image
PreconnectedSpace.isPreconnected_univ
Continuous.continuousOn
continuous_subtype_val
isPreconnected_of_forall πŸ“–β€”Set
Set.instHasSubset
Set.instMembership
IsPreconnected
β€”β€”HasSubset.Subset.trans
Set.instIsTransSubset
Set.union_comm
isPreconnected_of_forall_pair πŸ“–β€”Set
Set.instHasSubset
Set.instMembership
IsPreconnected
β€”β€”Set.eq_empty_or_nonempty
isPreconnected_empty
isPreconnected_of_forall
isPreconnected_range πŸ“–mathematicalContinuousIsPreconnected
Set.range
β€”IsPreconnected.image
PreconnectedSpace.isPreconnected_univ
Continuous.continuousOn
Set.image_univ
isPreconnected_sUnion πŸ“–mathematicalSet
Set.instMembership
IsPreconnected
Set.sUnionβ€”isPreconnected_of_forall
Set.subset_sUnion_of_mem
isPreconnected_singleton πŸ“–mathematicalβ€”IsPreconnected
Set
Set.instSingletonSet
β€”IsConnected.isPreconnected
isConnected_singleton
isPreconnected_univ_pi πŸ“–mathematicalIsPreconnectedPi.topologicalSpace
Set.pi
Set.univ
β€”exists_finset_piecewise_mem_of_mem_nhds
IsOpen.mem_nhds
Finset.induction_on
Finset.piecewise_empty
Finset.piecewise_mem_set_pi
Set.image_subset_iff
Set.update_preimage_univ_pi
IsPreconnected.image
Continuous.continuousOn
Continuous.update
continuous_const
continuous_id
Set.mem_image_of_mem
Finset.piecewise_insert
Function.update_eq_self
Set.Nonempty.mono
Set.inter_subset_inter_left
HasSubset.Subset.trans
Set.instIsTransSubset
mem_connectedComponent πŸ“–mathematicalβ€”Set
Set.instMembership
connectedComponent
β€”Set.mem_sUnion_of_mem
Set.mem_singleton
isPreconnected_singleton
mem_connectedComponentIn πŸ“–mathematicalSet
Set.instMembership
connectedComponentInβ€”connectedComponentIn_eq_image
preconnectedSpace_iff_connectedComponent πŸ“–mathematicalβ€”PreconnectedSpace
connectedComponent
Set.univ
β€”Set.eq_univ_of_univ_subset
IsPreconnected.subset_connectedComponent
PreconnectedSpace.isPreconnected_univ
Set.mem_univ
isEmpty_or_nonempty
Set.univ_eq_empty_iff
isPreconnected_empty
isPreconnected_connectedComponent
preconnectedSpace_iff_univ πŸ“–mathematicalβ€”PreconnectedSpace
IsPreconnected
Set.univ
β€”PreconnectedSpace.isPreconnected_univ

---

← Back to Index