Documentation Verification Report

Clopen

📁 Source: Mathlib/Topology/Connected/Clopen.lean

Statistics

MetricCount
DefinitionsinstCoeTC, instInhabited, instTopologicalSpace, mk, connectedComponentSetoid
5
Theoremscoe_eq_coe, coe_eq_coe', coe_ne_coe, continuous_coe, isQuotientMap_coe, range_coe, surjective_coe, exists_lift_sigma, biUnion_connectedComponentIn, biUnion_connectedComponent_eq, connectedComponent_subset, eq_univ, induction₂, induction₂', subset_isClopen, induction₂, induction₂', isConnected_iff, isPreconnected_iff, isConnected_iff, isPreconnected_iff, image_connectedComponent, preimage_connectedComponent, connectedComponent_subset_iInter_isClopen, connectedComponents_preimage_image, connectedComponents_preimage_singleton, connectedSpace_iff_clopen, disjoint_or_subset_of_isClopen, frontier_eq_empty_iff, instCompactSpaceConnectedComponents, isClopen_iff, isClopen_preimage_val, isConnected_iff_sUnion_disjoint_open, isPreconnected_iff_subset_of_disjoint, isPreconnected_iff_subset_of_disjoint_closed, isPreconnected_iff_subset_of_fully_disjoint_closed, isPreconnected_of_forall_constant, nonempty_frontier_iff, nonempty_inter, preconnectedSpace_iff_clopen, preconnectedSpace_of_forall_constant, preimage_connectedComponent_connected, subsingleton_of_disjoint_isClopen, subsingleton_of_disjoint_isClosed_iUnion_eq_univ, subsingleton_of_disjoint_isOpen_iUnion_eq_univ
45
Total50

ConnectedComponents

Definitions

NameCategoryTheorems
instCoeTC 📖CompOp
instInhabited 📖CompOp
instTopologicalSpace 📖CompOp
8 mathmath: instCompactSpaceConnectedComponents, continuous_coe, Continuous.connectedComponentsMap_continuous, t2, isQuotientMap_coe, Continuous.connectedComponentsLift_continuous, instDiscreteTopologyConnectedComponentsOfLocallyConnectedSpace, totallyDisconnectedSpace
mk 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
coe_eq_coe 📖mathematicalconnectedComponentQuotient.eq''
coe_eq_coe' 📖mathematicalSet
Set.instMembership
connectedComponent
coe_eq_coe
connectedComponent_eq_iff_mem
coe_ne_coe 📖Iff.not
coe_eq_coe
continuous_coe 📖mathematicalContinuous
ConnectedComponents
instTopologicalSpace
Topology.IsQuotientMap.continuous
isQuotientMap_coe
isQuotientMap_coe 📖mathematicalTopology.IsQuotientMap
ConnectedComponents
instTopologicalSpace
range_coe 📖mathematicalSet.range
ConnectedComponents
Set.univ
Function.Surjective.range_eq
surjective_coe
surjective_coe 📖mathematicalConnectedComponentsQuot.mk_surjective

Continuous

Theorems

NameKindAssumesProvesValidatesDepends On
exists_lift_sigma 📖Continuous
instTopologicalSpaceSigma
Sigma.isConnected_iff
isConnected_range
Eq.trans_subset
Set.image_subset_range
Set.range_subset_range_iff_exists_comp
Topology.IsEmbedding.continuous_iff
Topology.IsEmbedding.sigmaMk

IsClopen

Theorems

NameKindAssumesProvesValidatesDepends On
biUnion_connectedComponentIn 📖mathematicalIsClopen
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
Set.preimage
Set.instHasSubset
Set.iUnion
connectedComponentIn
biUnion_connectedComponent_eq
Subtype.image_preimage_coe
Set.inter_eq_right
Set.iUnion_congr_Prop
Set.iUnion_coe_set
Set.image_val_iUnion
le_antisymm
Set.iUnion_subset
le_rfl
Set.subset_iUnion₂_of_subset
biUnion_connectedComponent_eq 📖mathematicalIsClopenSet.iUnion
Set
Set.instMembership
connectedComponent
Set.Subset.antisymm
Set.iUnion₂_subset
connectedComponent_subset
Set.mem_iUnion₂_of_mem
mem_connectedComponent
connectedComponent_subset 📖mathematicalIsClopen
Set
Set.instMembership
Set.instHasSubset
connectedComponent
IsPreconnected.subset_isClopen
isPreconnected_connectedComponent
mem_connectedComponent
eq_univ 📖mathematicalIsClopen
Set.Nonempty
Set.univisClopen_iff
Set.Nonempty.ne_empty

IsPreconnected

Theorems

NameKindAssumesProvesValidatesDepends On
induction₂ 📖IsPreconnected
Filter.Eventually
nhdsWithin
Set
Set.instMembership
induction₂'
Filter.mp_mem
self_mem_nhdsWithin
Filter.univ_mem'
induction₂' 📖IsPreconnected
Filter.Eventually
nhdsWithin
Set
Set.instMembership
Subtype.preconnectedSpace
PreconnectedSpace.induction₂'
nhdsWithin_eq_map_subtype_coe
subset_isClopen 📖mathematicalIsPreconnected
IsClopen
Set.Nonempty
Set
Set.instInter
Set.instHasSubsetsubset_left_of_subset_union
IsClopen.isOpen
IsClopen.compl
disjoint_compl_right
Set.union_compl_self

PreconnectedSpace

Theorems

NameKindAssumesProvesValidatesDepends On
induction₂ 📖Filter.Eventually
nhds
Transitive
Symmetric
induction₂'
Filter.mp_mem
Filter.univ_mem'
induction₂' 📖Filter.Eventually
nhds
Transitive
isClosed_iff_nhds
isOpen_iff_mem_nhds
Filter.mp_mem
Filter.univ_mem'
mem_of_mem_nhds
IsClopen.eq_univ

Sigma

Theorems

NameKindAssumesProvesValidatesDepends On
isConnected_iff 📖mathematicalIsConnected
instTopologicalSpaceSigma
Set.image
IsConnected.nonempty
IsPreconnected.subset_isClopen
IsConnected.isPreconnected
isClopen_range_sigmaMk
IsConnected.preimage_of_isOpenMap
sigma_mk_injective
isOpenMap_sigmaMk
Set.image_preimage_eq_of_subset
IsConnected.image
Continuous.continuousOn
continuous_sigmaMk
isPreconnected_iff 📖mathematicalIsPreconnected
instTopologicalSpaceSigma
Set.image
Set.eq_empty_or_nonempty
isPreconnected_empty
Set.image_empty
isConnected_iff
IsConnected.isPreconnected
IsPreconnected.image
Continuous.continuousOn
continuous_sigmaMk

Sum

Theorems

NameKindAssumesProvesValidatesDepends On
isConnected_iff 📖mathematicalIsConnected
instTopologicalSpaceSum
Set.image
IsConnected.nonempty
IsPreconnected.subset_isClopen
IsConnected.isPreconnected
isClopen_range_inl
IsConnected.preimage_of_isOpenMap
inl_injective
isOpenMap_inl
Set.image_preimage_eq_of_subset
isClopen_range_inr
inr_injective
isOpenMap_inr
IsConnected.image
Continuous.continuousOn
continuous_inl
continuous_inr
isPreconnected_iff 📖mathematicalIsPreconnected
instTopologicalSpaceSum
Set.image
Set.eq_empty_or_nonempty
isPreconnected_empty
Set.image_empty
isConnected_iff
IsConnected.isPreconnected
IsPreconnected.image
Continuous.continuousOn
continuous_inl
continuous_inr

Topology.IsQuotientMap

Theorems

NameKindAssumesProvesValidatesDepends On
image_connectedComponent 📖mathematicalTopology.IsQuotientMap
IsConnected
Set.preimage
Set
Set.instSingletonSet
Set.image
connectedComponent
preimage_connectedComponent
Set.image_preimage_eq
surjective
preimage_connectedComponent 📖mathematicalTopology.IsQuotientMap
IsConnected
Set.preimage
Set
Set.instSingletonSet
connectedComponentHasSubset.Subset.antisymm
Set.instAntisymmSubset
IsConnected.subset_connectedComponent
preimage_connectedComponent_connected
isClosed_preimage
mem_connectedComponent
Continuous.mapsTo_connectedComponent
continuous

(root)

Definitions

NameCategoryTheorems
connectedComponentSetoid 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
connectedComponent_subset_iInter_isClopen 📖mathematicalSet
Set.instHasSubset
connectedComponent
Set.iInter
IsClopen
Set.instMembership
Set.subset_iInter
IsClopen.connectedComponent_subset
connectedComponents_preimage_image 📖mathematicalSet.preimage
ConnectedComponents
Set.image
Set.iUnion
Set
Set.instMembership
connectedComponent
Set.image_eq_iUnion
Set.preimage_iUnion₂
Set.iUnion_congr_Prop
connectedComponents_preimage_singleton
connectedComponents_preimage_singleton 📖mathematicalSet.preimage
ConnectedComponents
Set
Set.instSingletonSet
connectedComponent
Set.ext
Set.mem_preimage
Set.mem_singleton_iff
ConnectedComponents.coe_eq_coe'
connectedSpace_iff_clopen 📖mathematicalConnectedSpace
Set
Set.instEmptyCollection
Set.univ
connectedSpace_iff_univ
IsConnected.eq_1
preconnectedSpace_iff_univ
preconnectedSpace_iff_clopen
Set.nonempty_iff_univ_nonempty
disjoint_or_subset_of_isClopen 📖mathematicalIsPreconnected
IsClopen
Disjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Set.instHasSubset
IsPreconnected.subset_isClopen
Set.disjoint_or_nonempty_inter
frontier_eq_empty_iff 📖mathematicalfrontier
Set
Set.instEmptyCollection
Set.univ
isClopen_iff_frontier_eq_empty
isClopen_iff
instCompactSpaceConnectedComponents 📖mathematicalCompactSpace
ConnectedComponents
ConnectedComponents.instTopologicalSpace
Quotient.compactSpace
isClopen_iff 📖mathematicalIsClopen
Set
Set.instEmptyCollection
Set.univ
by_contradiction
nonempty_inter
IsClosed.isOpen_compl
Set.union_compl_self
isClopen_empty
isClopen_univ
isClopen_preimage_val 📖mathematicalIsOpen
Disjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
frontier
IsClopen
Set.Elem
instTopologicalSpaceSubtype
Set.instMembership
Set.preimage
isClosed_induced_iff
isClosed_closure
Set.image_val_injective
Subtype.image_preimage_coe
closure_eq_self_union_frontier
Set.inter_union_distrib_left
Set.inter_comm
Disjoint.inter_eq
Set.union_empty
isOpen_induced
isConnected_iff_sUnion_disjoint_open 📖mathematicalIsConnected
Set
Finset
Finset.instMembership
Set.instHasSubset
IsConnected.eq_1
isPreconnected_iff_subset_of_disjoint
Finset.induction_on
Finset.coe_empty
Set.sUnion_empty
Set.Nonempty.not_subset_empty
isOpen_sUnion
Finset.coe_insert
Set.sUnion_insert
Set.subset_empty_iff
instIsEmptyFalse
Set.not_nonempty_iff_eq_empty
Set.inter_self
Set.inter_comm
Finset.coe_singleton
Set.sUnion_singleton
isPreconnected_iff_subset_of_disjoint 📖mathematicalIsPreconnected
Set
Set.instHasSubset
Mathlib.Tactic.Contrapose.contrapose₁
Set.not_nonempty_iff_eq_empty
isPreconnected_iff_subset_of_disjoint_closed 📖mathematicalIsPreconnected
Set
Set.instHasSubset
Mathlib.Tactic.Contrapose.contrapose₁
isPreconnected_closed_iff
Set.not_nonempty_iff_eq_empty
isPreconnected_iff_subset_of_fully_disjoint_closed 📖mathematicalIsPreconnected
Set
Set.instHasSubset
isPreconnected_iff_subset_of_disjoint_closed
Disjoint.inter_eq
Set.inter_empty
Set.subset_inter_iff
IsClosed.inter
Set.union_inter_distrib_right
Set.subset_inter
Set.Subset.rfl
Set.disjoint_iff_inter_eq_empty
Set.inter_inter_distrib_right
Set.inter_comm
isPreconnected_of_forall_constant 📖mathematicalIsPreconnectedMathlib.Tactic.Push.not_forall_eq
Set.eq_empty_iff_forall_notMem
continuousOn_boolIndicator_iff_isClopen
Set.preimage_subtype_coe_eq_compl
IsOpen.isClosed_compl
IsOpen.preimage
continuous_subtype_val
Set.mem_iff_boolIndicator
Set.notMem_iff_boolIndicator
nonempty_frontier_iff 📖mathematicalSet.Nonempty
frontier
nonempty_inter 📖mathematicalIsOpen
Set
Set.instUnion
Set.univ
Set.Nonempty
Set.instInterSet.univ_inter
PreconnectedSpace.isPreconnected_univ
preconnectedSpace_iff_clopen 📖mathematicalPreconnectedSpace
Set
Set.instEmptyCollection
Set.univ
isClopen_iff
preconnectedSpace_of_forall_constant
Set.preimage_compl
Bool.compl_singleton
IsClopen.preimage
isClopen_discrete
instDiscreteTopologyBool
Set.compl_empty
preconnectedSpace_of_forall_constant 📖mathematicalPreconnectedSpaceisPreconnected_of_forall_constant
continuousOn_univ
preimage_connectedComponent_connected 📖mathematicalIsConnected
Set.preimage
Set
Set.instSingletonSet
IsClosed
connectedComponentFunction.Surjective.of_comp
Set.Nonempty.preimage
connectedComponent_nonempty
isClosed_connectedComponent
isPreconnected_iff_subset_of_fully_disjoint_closed
isPreconnected_iff_subset_of_disjoint_closed
Set.Subset.trans
Set.preimage_mono
Set.singleton_subset_iff
Disjoint.inter_eq
Set.inter_empty
Set.eq_of_subset_of_subset
Set.biUnion_preimage_singleton
Set.iUnion₂_subset
Set.subset_inter
Function.Surjective.preimage_subset_preimage_iff
Set.mem_preimage
Disjoint.subset_compl_right
Disjoint.subset_compl_left
IsClosed.inter
Set.mem_union
Disjoint.of_preimage
Set.disjoint_iff_inter_eq_empty
Set.inter_inter_distrib_left
isPreconnected_connectedComponent
HasSubset.Subset.trans
Set.instIsTransSubset
Set.Subset.antisymm_iff
Set.inter_subset_right
subsingleton_of_disjoint_isClopen 📖Set.Nonempty
Pairwise
Function.onFun
Set
Disjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
IsClopen
not_nontrivial_iff_subsingleton
isClopen_iff
Set.Nonempty.ne_empty
Set.univ_inter
subsingleton_of_disjoint_isClosed_iUnion_eq_univ 📖Set.Nonempty
Pairwise
Function.onFun
Set
Disjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
IsClosed
Set.iUnion
Set.univ
subsingleton_of_disjoint_isClopen
isClosed_compl_iff
Set.compl_eq_univ_diff
Set.iUnion_diff
isClosed_iUnion_of_finite
eq_or_ne
sdiff_self
Disjoint.sdiff_eq_left
subsingleton_of_disjoint_isOpen_iUnion_eq_univ 📖Set.Nonempty
Pairwise
Function.onFun
Set
Disjoint
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
IsOpen
Set.iUnion
Set.univ
subsingleton_of_disjoint_isClopen
isOpen_compl_iff
Set.compl_eq_univ_diff
Set.iUnion_diff
isOpen_iUnion
eq_or_ne
sdiff_self
Disjoint.sdiff_eq_left

---

← Back to Index