Documentation Verification Report

LocPathConnected

📁 Source: Mathlib/Topology/Connected/LocPathConnected.lean

Statistics

MetricCount
DefinitionsLocPathConnectedSpace
1
TheoremslocPathConnectedSpace, pathComponent, pathComponent, isConnected_iff_isPathConnected, locPathConnectedSpace, pathComponent, pathComponentIn, coinduced, of_bases, path_connected_basis, of_locPathConnectedSpace, locPathConnectedSpace, locPathConnectedSpace, locPathConnectedSpace, locPathConnectedSpace, locPathConnectedSpace, locPathConnectedSpace, instDiscreteTopologyZerothHomotopy, instFiniteZerothHomotopyOfCompactSpace, instLocallyConnectedSpace, isOpen_isPathConnected_basis, locPathConnectedSpace_iff_isOpen_pathComponentIn, locPathConnectedSpace_iff_pathComponentIn_mem_nhds, pathComponentIn_mem_nhds, pathComponent_eq_connectedComponent, pathConnectedSpace_iff_connectedSpace, pathConnected_subset_basis
27
Total28

AlexandrovDiscrete

Theorems

NameKindAssumesProvesValidatesDepends On
locPathConnectedSpace 📖mathematicalLocPathConnectedSpaceLocPathConnectedSpace.of_bases
nhds_basis_nhdsKer_singleton
specializes_rfl
JoinedIn.symm
Specializes.joinedIn
mem_nhdsKer_singleton
specializes_refl

IsClopen

Theorems

NameKindAssumesProvesValidatesDepends On
pathComponent 📖mathematicalIsClopen
pathComponent
IsClosed.pathComponent
IsOpen.pathComponent

IsClosed

Theorems

NameKindAssumesProvesValidatesDepends On
pathComponent 📖mathematicalIsClosed
pathComponent
isOpen_compl_iff
isOpen_iff_mem_nhds
Filter.HasBasis.ex_mem
LocPathConnectedSpace.path_connected_basis
Filter.mp_mem
Filter.univ_mem'
Joined.trans
JoinedIn.joined
IsPathConnected.joinedIn
mem_of_mem_nhds

IsOpen

Theorems

NameKindAssumesProvesValidatesDepends On
isConnected_iff_isPathConnected 📖mathematicalIsOpenIsConnected
IsPathConnected
isConnected_iff_connectedSpace
isPathConnected_iff_pathConnectedSpace
pathConnectedSpace_iff_connectedSpace
locPathConnectedSpace
locPathConnectedSpace 📖mathematicalIsOpenLocPathConnectedSpace
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
Topology.IsOpenEmbedding.locPathConnectedSpace
isOpenEmbedding_subtypeVal
pathComponent 📖mathematicalIsOpen
pathComponent
pathComponentIn_univ
pathComponentIn
isOpen_univ
pathComponentIn 📖mathematicalIsOpenpathComponentInisOpen_iff_mem_nhds
Filter.HasBasis.mem_iff
LocPathConnectedSpace.path_connected_basis
mem_nhds
pathComponentIn_subset
Filter.mem_of_superset
IsPathConnected.subset_pathComponentIn
mem_of_mem_nhds
pathComponentIn_congr

LocPathConnectedSpace

Theorems

NameKindAssumesProvesValidatesDepends On
coinduced 📖mathematicalLocPathConnectedSpace
TopologicalSpace.coinduced
continuous_coinduced_rng
locPathConnectedSpace_iff_isOpen_pathComponentIn
isOpen_coinduced
isOpen_iff_mem_nhds
Set.preimage_mono
pathComponentIn_subset
mem_nhds_iff
Set.image_subset_iff
pathComponentIn_congr
IsPathConnected.subset_pathComponentIn
IsPathConnected.image
isPathConnected_pathComponentIn
mem_pathComponentIn_self
HasSubset.Subset.trans
Set.instIsTransSubset
Set.image_mono
Set.image_preimage_subset
IsOpen.pathComponentIn
IsOpen.preimage
of_bases 📖mathematicalFilter.HasBasis
nhds
IsPathConnected
LocPathConnectedSpaceFilter.hasBasis_self
Filter.HasBasis.mem_iff
Filter.HasBasis.mem_of_mem
path_connected_basis 📖mathematicalFilter.HasBasis
Set
nhds
Filter
Filter.instMembership
IsPathConnected

PathConnectedSpace

Theorems

NameKindAssumesProvesValidatesDepends On
of_locPathConnectedSpace 📖mathematicalPathConnectedSpaceConnectedSpace.toNonempty
IsClopen.eq_univ
IsClopen.pathComponent
ConnectedSpace.toPreconnectedSpace

Quot

Theorems

NameKindAssumesProvesValidatesDepends On
locPathConnectedSpace 📖mathematicalLocPathConnectedSpace
instTopologicalSpaceQuot
Topology.IsQuotientMap.locPathConnectedSpace

Quotient

Theorems

NameKindAssumesProvesValidatesDepends On
locPathConnectedSpace 📖mathematicalLocPathConnectedSpace
instTopologicalSpaceQuotient
Topology.IsQuotientMap.locPathConnectedSpace
isQuotientMap_quotient_mk'

Sigma

Theorems

NameKindAssumesProvesValidatesDepends On
locPathConnectedSpace 📖mathematicalLocPathConnectedSpaceinstTopologicalSpaceSigmalocPathConnectedSpace_iff_pathComponentIn_mem_nhds
mem_nhds_iff
IsPathConnected.subset_pathComponentIn
IsPathConnected.image
isPathConnected_pathComponentIn
continuous_sigmaMk
mem_pathComponentIn_self
HasSubset.Subset.trans
Set.instIsTransSubset
Set.image_mono
pathComponentIn_subset
Set.image_preimage_subset
isOpenMap_sigmaMk
IsOpen.pathComponentIn
IsOpen.preimage

Sum

Theorems

NameKindAssumesProvesValidatesDepends On
locPathConnectedSpace 📖mathematicalLocPathConnectedSpace
instTopologicalSpaceSum
locPathConnectedSpace_iff_pathComponentIn_mem_nhds
mem_nhds_iff
IsPathConnected.subset_pathComponentIn
IsPathConnected.image
isPathConnected_pathComponentIn
continuous_inl
mem_pathComponentIn_self
HasSubset.Subset.trans
Set.instIsTransSubset
Set.image_mono
pathComponentIn_subset
Set.image_preimage_subset
isOpenMap_inl
IsOpen.pathComponentIn
IsOpen.preimage
continuous_inr
isOpenMap_inr

Topology.IsOpenEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
locPathConnectedSpace 📖mathematicalTopology.IsOpenEmbeddingLocPathConnectedSpaceTopology.IsInducing.basis_nhds
Topology.IsEmbedding.toIsInducing
toIsEmbedding
pathConnected_subset_basis
isOpen_range
Set.mem_range_self
LocPathConnectedSpace.of_bases
Topology.IsInducing.isPathConnected_iff
Set.image_preimage_eq_of_subset

Topology.IsQuotientMap

Theorems

NameKindAssumesProvesValidatesDepends On
locPathConnectedSpace 📖mathematicalTopology.IsQuotientMapLocPathConnectedSpaceLocPathConnectedSpace.coinduced
eq_coinduced

(root)

Definitions

NameCategoryTheorems
LocPathConnectedSpace 📖CompData
20 mathmath: ChartedSpace.locPathConnectedSpace, LocPathConnectedSpace.coinduced, Quot.locPathConnectedSpace, UpperHalfPlane.instLocPathConnectedSpace, locPathConnectedSpace_iff_pathComponentIn_mem_nhds, Unitary.instLocPathConnectedSpace, Quotient.locPathConnectedSpace, LocallyConvexSpace.toLocPathConnectedSpace, AlexandrovDiscrete.locPathConnectedSpace, Topology.IsOpenEmbedding.locPathConnectedSpace, Convex.locPathConnectedSpace, instLocPathConnectedSpaceEuclideanHalfSpace, IsOpen.locPathConnectedSpace, instLocPathConnectedSpace, Sum.locPathConnectedSpace, LocPathConnectedSpace.of_bases, DeltaGeneratedSpace.instLocPathConnectedSpace, Topology.IsQuotientMap.locPathConnectedSpace, locPathConnectedSpace_iff_isOpen_pathComponentIn, instLocPathConnectedSpaceEuclideanQuadrant

Theorems

NameKindAssumesProvesValidatesDepends On
instDiscreteTopologyZerothHomotopy 📖mathematicalDiscreteTopology
ZerothHomotopy
instTopologicalSpaceZerothHomotopy
discreteTopology_iff_isOpen_singleton
Quotient.mk_surjective
Topology.IsQuotientMap.isOpen_preimage
isQuotientMap_quotient_mk'
instFiniteZerothHomotopyOfCompactSpace 📖mathematicalFinite
ZerothHomotopy
finite_of_compact_of_discrete
instCompactSpaceZerothHomotopy
instDiscreteTopologyZerothHomotopy
instLocallyConnectedSpace 📖mathematicalLocallyConnectedSpaceFilter.HasBasis.mem_iff'
IsPathConnected.isConnected
mem_nhds_iff
isOpen_isPathConnected_basis
isOpen_isPathConnected_basis 📖mathematicalFilter.HasBasis
Set
nhds
IsOpen
Set.instMembership
IsPathConnected
mem_nhds_iff
IsOpen.pathComponentIn
mem_pathComponentIn_self
isPathConnected_pathComponentIn
HasSubset.Subset.trans
Set.instIsTransSubset
pathComponentIn_subset
locPathConnectedSpace_iff_isOpen_pathComponentIn 📖mathematicalLocPathConnectedSpace
IsOpen
pathComponentIn
IsOpen.pathComponentIn
mem_nhds_iff
IsOpen.mem_nhds
mem_pathComponentIn_self
isPathConnected_pathComponentIn
HasSubset.Subset.trans
Set.instIsTransSubset
pathComponentIn_subset
Filter.mem_of_superset
locPathConnectedSpace_iff_pathComponentIn_mem_nhds 📖mathematicalLocPathConnectedSpace
Set
Filter
Filter.instMembership
nhds
pathComponentIn
locPathConnectedSpace_iff_isOpen_pathComponentIn
IsOpen.mem_nhds
mem_pathComponentIn_self
isOpen_iff_mem_nhds
pathComponentIn_congr
pathComponentIn_subset
pathComponentIn_mem_nhds 📖mathematicalSet
Filter
Filter.instMembership
nhds
pathComponentInmem_nhds_iff
pathComponentIn_mono
IsOpen.pathComponentIn
mem_pathComponentIn_self
pathComponent_eq_connectedComponent 📖mathematicalpathComponent
connectedComponent
HasSubset.Subset.antisymm
Set.instAntisymmSubset
pathComponent_subset_component
IsClopen.connectedComponent_subset
IsClopen.pathComponent
mem_pathComponent_self
pathConnectedSpace_iff_connectedSpace 📖mathematicalPathConnectedSpace
ConnectedSpace
PathConnectedSpace.connectedSpace
PathConnectedSpace.of_locPathConnectedSpace
pathConnected_subset_basis 📖mathematicalIsOpen
Set
Set.instMembership
Filter.HasBasis
nhds
Filter
Filter.instMembership
IsPathConnected
Set.instHasSubset
Filter.HasBasis.hasBasis_self_subset
LocPathConnectedSpace.path_connected_basis
IsOpen.mem_nhds

---

← Back to Index