Documentation Verification Report

LocallyConnected

📁 Source: Mathlib/Topology/Connected/LocallyConnected.lean

Statistics

MetricCount
DefinitionsLocallyConnectedSpace
1
TheoremstoLocallyConnectedSpace, connectedComponentIn, locallyConnectedSpace, open_connected_basis, isOpen_isPreconnected, locallyConnectedSpace, connectedComponentIn_mem_nhds, instDiscreteTopologyConnectedComponentsOfLocallyConnectedSpace, instFiniteConnectedComponentsOfLocallyConnectedSpaceOfCompactSpace, isClopen_connectedComponent, isOpen_connectedComponent, locallyConnectedSpace_iff_connectedComponentIn_open, locallyConnectedSpace_iff_connected_basis, locallyConnectedSpace_iff_connected_subsets, locallyConnectedSpace_iff_hasBasis_isOpen_isConnected, locallyConnectedSpace_iff_isTopologicalBasis_isOpen_isPreconnected, locallyConnectedSpace_iff_subsets_isOpen_isConnected, locallyConnectedSpace_of_connected_bases
18
Total19

DiscreteTopology

Theorems

NameKindAssumesProvesValidatesDepends On
toLocallyConnectedSpace 📖mathematicalLocallyConnectedSpacelocallyConnectedSpace_iff_subsets_isOpen_isConnected
Set.singleton_subset_iff
mem_of_mem_nhds
isOpen_discrete
isConnected_singleton

IsOpen

Theorems

NameKindAssumesProvesValidatesDepends On
connectedComponentIn 📖mathematicalIsOpenconnectedComponentInisOpen_iff_mem_nhds
connectedComponentIn_eq
connectedComponentIn_mem_nhds
mem_nhds
connectedComponentIn_subset
locallyConnectedSpace 📖mathematicalIsOpenLocallyConnectedSpace
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
Topology.IsOpenEmbedding.locallyConnectedSpace
isOpenEmbedding_subtypeVal

LocallyConnectedSpace

Theorems

NameKindAssumesProvesValidatesDepends On
open_connected_basis 📖mathematicalFilter.HasBasis
Set
nhds
IsOpen
Set.instMembership
IsConnected

TopologicalSpace.IsTopologicalBasis

Theorems

NameKindAssumesProvesValidatesDepends On
isOpen_isPreconnected 📖mathematicalTopologicalSpace.IsTopologicalBasis
setOf
Set
IsOpen
IsPreconnected
of_hasBasis_nhds
Filter.HasBasis.congr
LocallyConnectedSpace.open_connected_basis

Topology.IsOpenEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
locallyConnectedSpace 📖mathematicalTopology.IsOpenEmbeddingLocallyConnectedSpacelocallyConnectedSpace_of_connected_bases
Topology.IsInducing.nhds_eq_comap
Topology.IsEmbedding.toIsInducing
toIsEmbedding
Filter.HasBasis.comap
Filter.HasBasis.restrict_subset
LocallyConnectedSpace.open_connected_basis
IsOpen.mem_nhds
isOpen_range
Set.mem_range_self
IsPreconnected.preimage_of_isOpenMap
IsConnected.isPreconnected
Topology.IsEmbedding.injective
isOpenMap

(root)

Definitions

NameCategoryTheorems
LocallyConnectedSpace 📖CompData
13 mathmath: locallyConnectedSpace_iff_connected_subsets, IsOpen.locallyConnectedSpace, Homeomorph.locallyConnectedSpace, locallyConnectedSpace_iff_isTopologicalBasis_isOpen_isPreconnected, DiscreteTopology.toLocallyConnectedSpace, locallyConnectedSpace_iff_connectedComponentIn_open, Topology.IsOpenEmbedding.locallyConnectedSpace, locallyConnectedSpace_iff_connected_basis, instLocallyConnectedSpace, locallyConnectedSpace_of_connected_bases, locallyConnectedSpace_iff_subsets_isOpen_isConnected, locallyConnectedSpace_iff_hasBasis_isOpen_isConnected, ChartedSpace.locallyConnectedSpace

Theorems

NameKindAssumesProvesValidatesDepends On
connectedComponentIn_mem_nhds 📖mathematicalSet
Filter
Filter.instMembership
nhds
connectedComponentInFilter.HasBasis.mem_iff
LocallyConnectedSpace.open_connected_basis
mem_nhds_iff
IsPreconnected.subset_connectedComponentIn
IsConnected.isPreconnected
instDiscreteTopologyConnectedComponentsOfLocallyConnectedSpace 📖mathematicalDiscreteTopology
ConnectedComponents
ConnectedComponents.instTopologicalSpace
discreteTopology_iff_isOpen_singleton
ConnectedComponents.surjective_coe
Topology.IsQuotientMap.isOpen_preimage
ConnectedComponents.isQuotientMap_coe
connectedComponents_preimage_singleton
instFiniteConnectedComponentsOfLocallyConnectedSpaceOfCompactSpace 📖mathematicalFinite
ConnectedComponents
finite_of_compact_of_discrete
instCompactSpaceConnectedComponents
instDiscreteTopologyConnectedComponentsOfLocallyConnectedSpace
isClopen_connectedComponent 📖mathematicalIsClopen
connectedComponent
isClosed_connectedComponent
isOpen_connectedComponent
isOpen_connectedComponent 📖mathematicalIsOpen
connectedComponent
connectedComponentIn_univ
IsOpen.connectedComponentIn
isOpen_univ
locallyConnectedSpace_iff_connectedComponentIn_open 📖mathematicalLocallyConnectedSpace
IsOpen
connectedComponentIn
IsOpen.connectedComponentIn
locallyConnectedSpace_iff_subsets_isOpen_isConnected
HasSubset.Subset.trans
Set.instIsTransSubset
connectedComponentIn_subset
interior_subset
isOpen_interior
mem_interior_iff_mem_nhds
mem_connectedComponentIn
isConnected_connectedComponentIn_iff
locallyConnectedSpace_iff_connected_basis 📖mathematicalLocallyConnectedSpace
Filter.HasBasis
Set
nhds
Filter
Filter.instMembership
IsPreconnected
locallyConnectedSpace_iff_connected_subsets
Filter.hasBasis_self
locallyConnectedSpace_iff_connected_subsets 📖mathematicalLocallyConnectedSpace
Set
Filter
Filter.instMembership
nhds
IsPreconnected
Set.instHasSubset
locallyConnectedSpace_iff_subsets_isOpen_isConnected
IsOpen.mem_nhds
IsConnected.isPreconnected
locallyConnectedSpace_iff_connectedComponentIn_open
isOpen_iff_mem_nhds
connectedComponentIn_eq
connectedComponentIn_subset
Filter.mem_of_superset
IsPreconnected.subset_connectedComponentIn
mem_of_mem_nhds
locallyConnectedSpace_iff_hasBasis_isOpen_isConnected 📖mathematicalLocallyConnectedSpace
Filter.HasBasis
Set
nhds
IsOpen
Set.instMembership
IsConnected
LocallyConnectedSpace.open_connected_basis
locallyConnectedSpace_iff_isTopologicalBasis_isOpen_isPreconnected 📖mathematicalLocallyConnectedSpace
TopologicalSpace.IsTopologicalBasis
setOf
Set
IsOpen
IsPreconnected
TopologicalSpace.IsTopologicalBasis.isOpen_isPreconnected
Filter.HasBasis.congr
TopologicalSpace.IsTopologicalBasis.nhds_hasBasis
locallyConnectedSpace_iff_subsets_isOpen_isConnected 📖mathematicalLocallyConnectedSpace
Set
Set.instHasSubset
IsOpen
Set.instMembership
IsConnected
Filter.HasBasis.mem_iff
mem_nhds_iff
locallyConnectedSpace_of_connected_bases 📖mathematicalFilter.HasBasis
nhds
IsPreconnected
LocallyConnectedSpacelocallyConnectedSpace_iff_connected_basis
Filter.HasBasis.to_hasBasis
Filter.HasBasis.mem_of_mem
subset_rfl
Set.instReflSubset
Filter.HasBasis.property_index
Filter.HasBasis.set_index_subset

---

← Back to Index