Documentation Verification Report

PathConnected

πŸ“ Source: Mathlib/Topology/Connected/PathConnected.lean

Statistics

MetricCount
DefinitionspathComponentZero, pathComponentZero, IsPathConnected, Joined, somePath, JoinedIn, somePath, PathConnectedSpace, somePath, pathComponentOne, pathComponentOne, ZerothHomotopy, inhabited, instTopologicalSpaceZerothHomotopy, pathComponent, pathComponentIn, pathSetoid
17
TheoremspathComponentZero, coe_pathComponentZero, coe_pathComponentZero, pathConnectedSpace, isPathConnected_image, isPathConnected_preimage, joinedIn, add, exists_path_through_family, exists_path_through_family', image, image', inv, isConnected, joinedIn, mem_pathComponent, mul, neg, nonempty, preimage_coe, subset_pathComponent, subset_pathComponentIn, union, add, inv, listProd, listSum, mem_pathComponent, mul, neg, refl, trans, add, inv, joined, joined_subtype, map, map_continuousOn, mem, mono, mul, neg, ofLine, refl, somePath_mem, source_mem, target_mem, trans, connectedSpace, exists_path_through_family, exists_path_through_family', joined, nonempty, instPathConnectedSpace, instPathConnectedSpace, joinedIn, pathComponentOne, coe_pathComponentOne, coe_pathComponentOne, isPathConnected_iff, joinedIn_image, preimage_singleton_eq_pathComponent, instCompactSpaceZerothHomotopy, isPathConnected_iff, isPathConnected_iff_eq, isPathConnected_iff_pathConnectedSpace, isPathConnected_pathComponent, isPathConnected_pathComponentIn, isPathConnected_range, isPathConnected_singleton, isPathConnected_univ, joinedIn_iff_joined, joinedIn_univ, mem_pathComponentIn_self, mem_pathComponent_iff, mem_pathComponent_of_mem, mem_pathComponent_self, nonempty, pathComponentIn_congr, pathComponentIn_mono, pathComponentIn_nonempty_iff, pathComponentIn_subset, pathComponentIn_univ, pathComponent_congr, pathComponent_subset_component, pathComponent_symm, pathConnectedSpace_iff, pathConnectedSpace_iff_eq, pathConnectedSpace_iff_univ, pathConnectedSpace_iff_zerothHomotopy
90
Total107

AddSubgroup

Definitions

NameCategoryTheorems
pathComponentZero πŸ“–CompOp
2 mathmath: Normal.pathComponentZero, coe_pathComponentZero

Theorems

NameKindAssumesProvesValidatesDepends On
coe_pathComponentZero πŸ“–mathematicalβ€”SetLike.coe
AddSubgroup
instSetLike
pathComponentZero
pathComponent
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
SubNegMonoid.toAddMonoid
AddGroup.toSubNegMonoid
β€”β€”

AddSubgroup.Normal

Theorems

NameKindAssumesProvesValidatesDepends On
pathComponentZero πŸ“–mathematicalβ€”AddSubgroup.Normal
AddSubgroup.pathComponentZero
β€”Continuous.fun_add
IsTopologicalAddGroup.toContinuousAdd
continuous_const
ContinuousMapClass.map_continuous
Path.continuousMapClass
Real.instIsOrderedRing
Path.source
add_zero
add_neg_cancel
Path.target

AddSubmonoid

Definitions

NameCategoryTheorems
pathComponentZero πŸ“–CompOp
1 mathmath: coe_pathComponentZero

Theorems

NameKindAssumesProvesValidatesDepends On
coe_pathComponentZero πŸ“–mathematicalβ€”SetLike.coe
AddSubmonoid
AddMonoid.toAddZeroClass
instSetLike
pathComponentZero
pathComponent
AddZero.toZero
AddZeroClass.toAddZero
β€”β€”

Function.Surjective

Theorems

NameKindAssumesProvesValidatesDepends On
pathConnectedSpace πŸ“–mathematicalContinuousPathConnectedSpaceβ€”pathConnectedSpace_iff_univ
range_eq
isPathConnected_range

Homeomorph

Theorems

NameKindAssumesProvesValidatesDepends On
isPathConnected_image πŸ“–mathematicalβ€”IsPathConnected
Set.image
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
β€”Topology.IsInducing.isPathConnected_iff
isInducing
isPathConnected_preimage πŸ“–mathematicalβ€”IsPathConnected
Set.preimage
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
β€”image_symm
isPathConnected_image

Inseparable

Theorems

NameKindAssumesProvesValidatesDepends On
joinedIn πŸ“–mathematicalInseparable
Set
Set.instMembership
JoinedInβ€”Specializes.joinedIn
specializes

IsPathConnected

Theorems

NameKindAssumesProvesValidatesDepends On
add πŸ“–mathematicalIsPathConnectedSet
Set.add
β€”Set.add_mem_add
Set.forall_mem_image2
JoinedIn.add
exists_path_through_family πŸ“–mathematicalIsPathConnected
Set
Set.instMembership
Set.instHasSubset
Set.range
Set.Elem
Real
unitInterval
DFunLike.coe
Path
Path.instFunLike
β€”Fin.snoc_last
Path.exists_congr
Fin.snoc_castSucc
Path.refl_range
Fin.isEmpty'
Fin.snoc_apply_zero
joinedIn
Path.trans_range
Set.range_subset_iff
exists_path_through_family' πŸ“–mathematicalIsPathConnected
Set
Set.instMembership
DFunLike.coe
Path
Set.Elem
Real
unitInterval
Path.instFunLike
β€”exists_path_through_family
Set.range_subset_iff
image πŸ“–mathematicalIsPathConnected
Continuous
Set.imageβ€”image'
Continuous.continuousOn
image' πŸ“–mathematicalIsPathConnected
ContinuousOn
Set.imageβ€”Set.mem_image_of_mem
ContinuousOn.mono
Set.range_subset_iff
JoinedIn.somePath_mem
inv πŸ“–mathematicalIsPathConnectedSet
Set.inv
InvolutiveInv.toInv
β€”Set.inv_mem_inv
Set.image_inv_eq_inv
inv_inv
JoinedIn.map
Set.mem_inv
ContinuousInv.continuous_inv
isConnected πŸ“–mathematicalIsPathConnectedIsConnectedβ€”isConnected_iff_connectedSpace
PathConnectedSpace.connectedSpace
isPathConnected_iff_pathConnectedSpace
joinedIn πŸ“–mathematicalIsPathConnected
Set
Set.instMembership
JoinedInβ€”JoinedIn.trans
JoinedIn.symm
mem_pathComponent πŸ“–mathematicalIsPathConnected
Set
Set.instMembership
pathComponentβ€”JoinedIn.joined
joinedIn
mul πŸ“–mathematicalIsPathConnectedSet
Set.mul
β€”Set.mul_mem_mul
Set.forall_mem_image2
JoinedIn.mul
neg πŸ“–mathematicalIsPathConnectedSet
Set.neg
InvolutiveNeg.toNeg
β€”Set.neg_mem_neg
Set.image_neg_eq_neg
neg_neg
JoinedIn.map
Set.mem_neg
ContinuousNeg.continuous_neg
nonempty πŸ“–mathematicalIsPathConnectedSet.Nonemptyβ€”isPathConnected_iff
preimage_coe πŸ“–mathematicalIsPathConnected
Set
Set.instHasSubset
Set.instMembership
instTopologicalSpaceSubtype
Set.preimage
β€”Topology.IsInducing.isPathConnected_iff
Topology.IsInducing.subtypeVal
Subtype.image_preimage_val
Set.inter_eq_right
subset_pathComponent πŸ“–mathematicalIsPathConnected
Set
Set.instMembership
Set.instHasSubset
pathComponent
β€”mem_pathComponent
subset_pathComponentIn πŸ“–mathematicalIsPathConnected
Set
Set.instMembership
Set.instHasSubset
pathComponentInβ€”JoinedIn.mono
joinedIn
union πŸ“–mathematicalIsPathConnected
Set.Nonempty
Set
Set.instInter
Set.instUnionβ€”JoinedIn.mono
joinedIn
Set.subset_union_left
Set.subset_union_right

Joined

Definitions

NameCategoryTheorems
somePath πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
add πŸ“–mathematicalβ€”Joinedβ€”β€”
inv πŸ“–mathematicalβ€”Joinedβ€”β€”
listProd πŸ“–mathematicalJoinedMulOne.toMul
MulOneClass.toMulOne
MulOne.toOne
β€”refl
mul
listSum πŸ“–mathematicalJoinedAddZero.toAdd
AddZeroClass.toAddZero
AddZero.toZero
β€”refl
add
mem_pathComponent πŸ“–mathematicalβ€”Set
Set.instMembership
pathComponent
β€”trans
mul πŸ“–mathematicalβ€”Joinedβ€”β€”
neg πŸ“–mathematicalβ€”Joinedβ€”β€”
refl πŸ“–mathematicalβ€”Joinedβ€”β€”
trans πŸ“–mathematicalβ€”Joinedβ€”β€”

JoinedIn

Definitions

NameCategoryTheorems
somePath πŸ“–CompOp
1 mathmath: somePath_mem

Theorems

NameKindAssumesProvesValidatesDepends On
add πŸ“–mathematicalJoinedInSet
Set.add
β€”Set.add_mem_add
somePath_mem
inv πŸ“–mathematicalJoinedInSet
Set.inv
InvolutiveInv.toInv
β€”Set.inv_mem_inv
somePath_mem
joined πŸ“–mathematicalJoinedInJoinedβ€”β€”
joined_subtype πŸ“–mathematicalJoinedInJoined
Set
Set.instMembership
instTopologicalSpaceSubtype
source_mem
target_mem
β€”source_mem
target_mem
somePath_mem
ContinuousMapClass.map_continuous
Path.continuousMapClass
Real.instIsOrderedRing
Path.source
Path.target
map πŸ“–mathematicalJoinedIn
Continuous
Set.imageβ€”map_continuousOn
Continuous.continuousOn
map_continuousOn πŸ“–mathematicalJoinedIn
ContinuousOn
Set.imageβ€”ContinuousOn.mono
Set.range_subset_iff
Set.mem_image_of_mem
mem πŸ“–mathematicalJoinedInSet
Set.instMembership
β€”Real.instIsOrderedRing
Path.source
Path.target
mono πŸ“–β€”JoinedIn
Set
Set.instHasSubset
β€”β€”somePath_mem
mul πŸ“–mathematicalJoinedInSet
Set.mul
β€”Set.mul_mem_mul
somePath_mem
neg πŸ“–mathematicalJoinedInSet
Set.neg
InvolutiveNeg.toNeg
β€”Set.neg_mem_neg
somePath_mem
ofLine πŸ“–mathematicalContinuousOn
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
unitInterval
Real.instZero
Real.instOne
Set
Set.instHasSubset
Set.image
JoinedInβ€”Path.ofLine_mem
refl πŸ“–mathematicalSet
Set.instMembership
JoinedInβ€”β€”
somePath_mem πŸ“–mathematicalJoinedInSet
Set.instMembership
DFunLike.coe
Path
Set.Elem
Real
unitInterval
Path.instFunLike
somePath
β€”β€”
source_mem πŸ“–mathematicalJoinedInSet
Set.instMembership
β€”mem
target_mem πŸ“–mathematicalJoinedInSet
Set.instMembership
β€”mem
trans πŸ“–β€”JoinedInβ€”β€”mem
Joined.trans

PathConnectedSpace

Definitions

NameCategoryTheorems
somePath πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
connectedSpace πŸ“–mathematicalβ€”ConnectedSpaceβ€”connectedSpace_iff_connectedComponent
isPathConnected_iff_eq
pathConnectedSpace_iff_univ
Set.univ_subset_iff
pathComponent_subset_component
pathComponentIn_univ
exists_path_through_family πŸ“–mathematicalβ€”Set
Set.instMembership
Set.range
Set.Elem
Real
unitInterval
DFunLike.coe
Path
Path.instFunLike
β€”pathConnectedSpace_iff_univ
IsPathConnected.exists_path_through_family
exists_path_through_family' πŸ“–mathematicalβ€”DFunLike.coe
Path
Set.Elem
Real
unitInterval
Path.instFunLike
β€”pathConnectedSpace_iff_univ
IsPathConnected.exists_path_through_family'
joined πŸ“–mathematicalβ€”Joinedβ€”β€”
nonempty πŸ“–β€”β€”β€”β€”β€”

Quotient

Theorems

NameKindAssumesProvesValidatesDepends On
instPathConnectedSpace πŸ“–mathematicalβ€”PathConnectedSpace
instTopologicalSpaceQuotient
β€”Function.Surjective.pathConnectedSpace
mk'_surjective
continuous_coinduced_rng

Real

Theorems

NameKindAssumesProvesValidatesDepends On
instPathConnectedSpace πŸ“–mathematicalβ€”PathConnectedSpace
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
β€”Continuous.fun_add
IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
Continuous.fun_mul
IsTopologicalSemiring.toContinuousMul
Continuous.sub
IsTopologicalAddGroup.to_continuousSub
instIsTopologicalAddGroupReal
continuous_const
continuous_subtype_val
instIsOrderedRing
sub_zero
one_mul
MulZeroClass.zero_mul
add_zero
sub_self
zero_add

Specializes

Theorems

NameKindAssumesProvesValidatesDepends On
joinedIn πŸ“–mathematicalSpecializes
Set
Set.instMembership
JoinedInβ€”Real.instIsOrderedRing
IsClosed.continuous_piecewise_of_specializes
isClosed_singleton
Subtype.t1Space
T5Space.toT1Space
OrderTopology.t5Space
instOrderTopologyReal
continuous_const
Set.piecewise_eq_of_notMem
NeZero.one
unitInterval.instNontrivialElemReal
Set.piecewise_eq_of_mem

Subgroup

Definitions

NameCategoryTheorems
pathComponentOne πŸ“–CompOp
2 mathmath: coe_pathComponentOne, Normal.pathComponentOne

Theorems

NameKindAssumesProvesValidatesDepends On
coe_pathComponentOne πŸ“–mathematicalβ€”SetLike.coe
Subgroup
instSetLike
pathComponentOne
pathComponent
MulOne.toOne
MulOneClass.toMulOne
Monoid.toMulOneClass
DivInvMonoid.toMonoid
Group.toDivInvMonoid
β€”β€”

Subgroup.Normal

Theorems

NameKindAssumesProvesValidatesDepends On
pathComponentOne πŸ“–mathematicalβ€”Subgroup.Normal
Subgroup.pathComponentOne
β€”Continuous.fun_mul
IsTopologicalGroup.toContinuousMul
continuous_const
ContinuousMapClass.map_continuous
Path.continuousMapClass
Real.instIsOrderedRing
Path.source
mul_one
mul_inv_cancel
Path.target

Submonoid

Definitions

NameCategoryTheorems
pathComponentOne πŸ“–CompOp
1 mathmath: coe_pathComponentOne

Theorems

NameKindAssumesProvesValidatesDepends On
coe_pathComponentOne πŸ“–mathematicalβ€”SetLike.coe
Submonoid
Monoid.toMulOneClass
instSetLike
pathComponentOne
pathComponent
MulOne.toOne
MulOneClass.toMulOne
β€”β€”

Topology.IsInducing

Theorems

NameKindAssumesProvesValidatesDepends On
isPathConnected_iff πŸ“–mathematicalTopology.IsInducingIsPathConnected
Set.image
β€”joinedIn_image
joinedIn_image πŸ“–mathematicalTopology.IsInducing
Set
Set.instMembership
JoinedIn
Set.image
β€”Real.instIsOrderedRing
specializes_iff
Path.source
specializes_refl
Path.target
continuous_iff
ContinuousMapClass.map_continuous
Path.continuousMapClass
JoinedIn.trans
Specializes.joinedIn
JoinedIn.map
continuous

ZerothHomotopy

Definitions

NameCategoryTheorems
inhabited πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
preimage_singleton_eq_pathComponent πŸ“–mathematicalβ€”Set.preimage
pathSetoid
Set
Set.instSingletonSet
pathComponent
β€”Set.ext
Set.mem_preimage
Set.mem_singleton_iff
mem_pathComponent_iff
Quotient.eq

(root)

Definitions

NameCategoryTheorems
IsPathConnected πŸ“–MathDef
32 mathmath: IsSimplyConnected.isPathConnected, Homeomorph.isPathConnected_preimage, isPathConnected_singleton, Metric.isPathConnected_ball, isPathConnected_univ, isPathConnected_compl_singleton_of_one_lt_rank, Metric.isPathConnected_closedEBall, Convex.isPathConnected, Homeomorph.isPathConnected_image, Set.Countable.isPathConnected_compl_of_one_lt_rank, pathConnected_subset_basis, isPathConnected_iff, isPathConnected_stdSimplex, isPathConnected_pathComponent, isPathConnected_pathComponentIn, StarConvex.isPathConnected, Metric.isPathConnected_closedBall, isPathConnected_iff_eq, Unitary.isPathConnected_ball, isPathConnected_sphere, pathConnectedSpace_iff_univ, isOpen_isPathConnected_basis, isPathConnected_iff_pathConnectedSpace, isPathConnected_compl_of_one_lt_codim, Metric.isPathConnected_eball, isPathConnected_range, LocPathConnectedSpace.path_connected_basis, unitary.isPathConnected_ball, Submodule.isPathConnected, IsOpen.isConnected_iff_isPathConnected, Topology.IsInducing.isPathConnected_iff, isSimplyConnected_iff_exists_homotopy_refl_forall_mem
Joined πŸ“–MathDef
18 mathmath: Joined.refl, Joined.symm, Joined.trans, mem_pathComponent_iff, JoinedIn.joined, JoinedIn.joined_subtype, Joined.inv, joinedIn_univ, pathConnectedSpace_iff, unitary.joined, Unitary.joined, ContinuousMap.homotopic_const_iff, Joined.neg, Joined.mul, Joined.add, PathConnectedSpace.joined, joinedIn_iff_joined, selfAdjoint.joined_one_expUnitary
JoinedIn πŸ“–MathDef
10 mathmath: isPathConnected_iff, joinedIn_univ, JoinedIn.ofLine, IsPathConnected.joinedIn, Inseparable.joinedIn, Specializes.joinedIn, JoinedIn.of_segment_subset, Topology.IsInducing.joinedIn_image, joinedIn_iff_joined, JoinedIn.refl
PathConnectedSpace πŸ“–CompData
25 mathmath: Quotient.instPathConnectedSpace, SimplexCategory.instPathConnectedSpaceCarrierObjTopCatToTop, Complex.instPathConnectedSpaceUnits, Real.instPathConnectedSpace, instPathConnectedSpaceElemForallRealStdSimplexOfNonempty, SimplyConnectedSpace.instPathConnectedSpace, SimplexCategory.instPathConnectedSpaceCarrierObjTopCatToTopβ‚€, ContractibleSpace.instPathConnectedSpace, EuclideanHalfSpace.pathConnectedSpace, Function.Surjective.pathConnectedSpace, pathConnectedSpace_iff, simply_connected_iff_paths_homotopic, NormedSpace.instPathConnectedSpace, PathConnectedSpace.of_locPathConnectedSpace, pathConnectedSpace_iff_univ, IsTopologicalAddGroup.pathConnectedSpace, isPathConnected_iff_pathConnectedSpace, pathConnectedSpace_iff_zerothHomotopy, pathConnectedSpace_iff_connectedSpace, EuclideanQuadrant.pathConnectedSpace, AddCircle.pathConnectedSpace, simply_connected_iff_loops_nullhomotopic, simply_connected_iff_paths_homotopic', Convex.instPathConnectedSpace, pathConnectedSpace_iff_eq
ZerothHomotopy πŸ“–CompOp
4 mathmath: instCompactSpaceZerothHomotopy, pathConnectedSpace_iff_zerothHomotopy, instFiniteZerothHomotopyOfCompactSpace, instDiscreteTopologyZerothHomotopy
instTopologicalSpaceZerothHomotopy πŸ“–CompOp
2 mathmath: instCompactSpaceZerothHomotopy, instDiscreteTopologyZerothHomotopy
pathComponent πŸ“–CompOp
26 mathmath: IsClopen.pathComponent, Unitary.mem_pathComponentOne_iff, OpenNormalSubgroup.pathComponentOne_carrier, Joined.mem_pathComponent, mem_pathComponent_iff, Subgroup.coe_pathComponentOne, pathComponent.nonempty, isPathConnected_pathComponent, IsPathConnected.subset_pathComponent, AddSubmonoid.coe_pathComponentZero, pathComponent_congr, mem_pathComponent_self, ZerothHomotopy.preimage_singleton_eq_pathComponent, Submonoid.coe_pathComponentOne, pathComponent_subset_component, IsPathConnected.mem_pathComponent, AddSubgroup.coe_pathComponentZero, IsClosed.pathComponent, mem_pathComponent_of_mem, pathComponentIn_univ, OpenNormalAddSubgroup.pathComponentZero_carrier, pathComponent_eq_connectedComponent, unitary.mem_pathComponentOne_iff, pathConnectedSpace_iff_eq, IsOpen.pathComponent, pathComponent_symm
pathComponentIn πŸ“–CompOp
12 mathmath: locPathConnectedSpace_iff_pathComponentIn_mem_nhds, mem_pathComponentIn_self, IsOpen.pathComponentIn, IsPathConnected.subset_pathComponentIn, isPathConnected_pathComponentIn, isPathConnected_iff_eq, pathComponentIn_mono, pathComponentIn_subset, pathComponentIn_nonempty_iff, pathComponentIn_mem_nhds, pathComponentIn_univ, locPathConnectedSpace_iff_isOpen_pathComponentIn
pathSetoid πŸ“–CompOp
1 mathmath: ZerothHomotopy.preimage_singleton_eq_pathComponent

Theorems

NameKindAssumesProvesValidatesDepends On
instCompactSpaceZerothHomotopy πŸ“–mathematicalβ€”CompactSpace
ZerothHomotopy
instTopologicalSpaceZerothHomotopy
β€”Quotient.compactSpace
isPathConnected_iff πŸ“–mathematicalβ€”IsPathConnected
Set.Nonempty
JoinedIn
β€”IsPathConnected.joinedIn
isPathConnected_iff_eq πŸ“–mathematicalβ€”IsPathConnected
Set
Set.instMembership
pathComponentIn
β€”Set.ext
JoinedIn.mem
isPathConnected_iff_pathConnectedSpace πŸ“–mathematicalβ€”IsPathConnected
PathConnectedSpace
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
β€”pathConnectedSpace_iff_univ
Topology.IsInducing.isPathConnected_iff
Topology.IsInducing.subtypeVal
Set.image_univ
Subtype.range_val_subtype
Set.setOf_mem_eq
isPathConnected_pathComponent πŸ“–mathematicalβ€”IsPathConnected
pathComponent
β€”pathComponentIn_univ
isPathConnected_pathComponentIn
Set.mem_univ
isPathConnected_pathComponentIn πŸ“–mathematicalSet
Set.instMembership
IsPathConnected
pathComponentIn
β€”mem_pathComponentIn_self
Path.extend_zero
Path.extend_extends'
Real.instZeroLEOneClass
isPathConnected_range πŸ“–mathematicalContinuousIsPathConnected
Set.range
β€”Set.image_univ
IsPathConnected.image
isPathConnected_univ
isPathConnected_singleton πŸ“–mathematicalβ€”IsPathConnected
Set
Set.instSingletonSet
β€”JoinedIn.refl
isPathConnected_univ πŸ“–mathematicalβ€”IsPathConnected
Set.univ
β€”pathConnectedSpace_iff_univ
joinedIn_iff_joined πŸ“–mathematicalSet
Set.instMembership
JoinedIn
Joined
instTopologicalSpaceSubtype
β€”JoinedIn.joined_subtype
continuous_subtype_val
Path.map_coe
joinedIn_univ πŸ“–mathematicalβ€”JoinedIn
Set.univ
Joined
β€”β€”
mem_pathComponentIn_self πŸ“–mathematicalSet
Set.instMembership
pathComponentInβ€”JoinedIn.refl
mem_pathComponent_iff πŸ“–mathematicalβ€”Set
Set.instMembership
pathComponent
Joined
β€”β€”
mem_pathComponent_of_mem πŸ“–mathematicalβ€”Set
Set.instMembership
pathComponent
β€”Joined.symm
mem_pathComponent_self πŸ“–mathematicalβ€”Set
Set.instMembership
pathComponent
β€”Joined.refl
pathComponentIn_congr πŸ“–β€”Set
Set.instMembership
pathComponentIn
β€”β€”Set.ext
JoinedIn.trans
JoinedIn.symm
pathComponentIn_mono πŸ“–mathematicalSet
Set.instHasSubset
pathComponentInβ€”β€”
pathComponentIn_nonempty_iff πŸ“–mathematicalβ€”Set.Nonempty
pathComponentIn
Set
Set.instMembership
β€”Real.instIsOrderedRing
Path.source
mem_pathComponentIn_self
pathComponentIn_subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
pathComponentIn
β€”JoinedIn.target_mem
pathComponentIn_univ πŸ“–mathematicalβ€”pathComponentIn
Set.univ
pathComponent
β€”β€”
pathComponent_congr πŸ“–mathematicalβ€”pathComponentβ€”Set.ext
pathComponent_symm
Joined.symm
Joined.trans
pathComponent_subset_component πŸ“–mathematicalβ€”Set
Set.instHasSubset
pathComponent
connectedComponent
β€”IsConnected.subset_connectedComponent
isConnected_range
unitInterval.instConnectedSpaceElemReal
Path.continuous
Real.instIsOrderedRing
Path.source
Path.target
pathComponent_symm πŸ“–mathematicalβ€”Set
Set.instMembership
pathComponent
β€”mem_pathComponent_of_mem
pathConnectedSpace_iff πŸ“–mathematicalβ€”PathConnectedSpace
Joined
β€”β€”
pathConnectedSpace_iff_eq πŸ“–mathematicalβ€”PathConnectedSpace
pathComponent
Set.univ
β€”pathComponentIn_univ
pathConnectedSpace_iff_univ πŸ“–mathematicalβ€”PathConnectedSpace
IsPathConnected
Set.univ
β€”β€”
pathConnectedSpace_iff_zerothHomotopy πŸ“–mathematicalβ€”PathConnectedSpace
ZerothHomotopy
β€”nonempty_quotient_iff
PathConnectedSpace.nonempty
PathConnectedSpace.joined

pathComponent

Theorems

NameKindAssumesProvesValidatesDepends On
nonempty πŸ“–mathematicalβ€”Set.Nonempty
pathComponent
β€”mem_pathComponent_self

---

← Back to Index