Documentation Verification Report

TotallyDisconnected

📁 Source: Mathlib/Topology/Connected/TotallyDisconnected.lean

Statistics

MetricCount
DefinitionsconnectedComponentsLift, connectedComponentsMap, IsTotallyDisconnected, IsTotallySeparated, TotallyDisconnectedSpace, continuousMapEquivOfConnectedSpace, TotallySeparatedSpace
7
TheoremstotallyDisconnectedSpace, connectedComponentsLift_apply_coe, connectedComponentsLift_comp_coe, connectedComponentsLift_continuous, connectedComponentsLift_unique, connectedComponentsMap_continuous, image_connectedComponent_eq_singleton, image_eq_of_connectedComponent_eq, constant, constant_of_mapsTo, eqOn_const_of_mapsTo, subsingleton, isTotallyDisconnected, totallyDisconnectedSpace, constant, totallyDisconnectedSpace, totallyDisconnectedSpace, isTotallyDisconnected, isTotallyDisconnected_image, isTotallyDisconnected_range, continuousMapEquivOfConnectedSpace_symm_apply_apply, eq_of_continuous, isTotallyDisconnected_univ, isTotallySeparated_univ, of_discrete, totallyDisconnectedSpace, connectedComponent_eq_singleton, connectedComponents_lift_unique', exists_isClopen_of_totally_separated, instTotallyDisconnectedSpaceAdditive, instTotallyDisconnectedSpaceMultiplicative, instTotallyDisconnectedSpaceSigma, instTotallyDisconnectedSpaceSum, isTotallyDisconnected_empty, isTotallyDisconnected_of_image, isTotallyDisconnected_of_isTotallySeparated, isTotallyDisconnected_of_totallyDisconnectedSpace, isTotallyDisconnected_singleton, isTotallySeparated_empty, isTotallySeparated_singleton, totallyDisconnectedSpace_iff, totallyDisconnectedSpace_iff_connectedComponent_singleton, totallyDisconnectedSpace_iff_connectedComponent_subsingleton, totallyDisconnectedSpace_subtype_iff, totallySeparatedSpace_iff, totallySeparatedSpace_iff_exists_isClopen
46
Total53

ConnectedComponents

Theorems

NameKindAssumesProvesValidatesDepends On
totallyDisconnectedSpace 📖mathematical—TotallyDisconnectedSpace
ConnectedComponents
instTopologicalSpace
—totallyDisconnectedSpace_iff_connectedComponent_singleton
Function.Surjective.forall
surjective_coe
Topology.IsQuotientMap.image_connectedComponent
isQuotientMap_coe
connectedComponents_preimage_singleton
isConnected_connectedComponent
Set.image_preimage_eq

Continuous

Definitions

NameCategoryTheorems
connectedComponentsLift 📖CompOp
4 mathmath: connectedComponentsLift_comp_coe, connectedComponentsLift_unique, connectedComponentsLift_continuous, connectedComponentsLift_apply_coe
connectedComponentsMap 📖CompOp
1 mathmath: connectedComponentsMap_continuous

Theorems

NameKindAssumesProvesValidatesDepends On
connectedComponentsLift_apply_coe 📖mathematicalContinuousconnectedComponentsLift——
connectedComponentsLift_comp_coe 📖mathematicalContinuousConnectedComponents
connectedComponentsLift
——
connectedComponentsLift_continuous 📖mathematicalContinuousConnectedComponents
ConnectedComponents.instTopologicalSpace
connectedComponentsLift
—quotient_liftOn'
image_eq_of_connectedComponent_eq
connectedComponentsLift_unique 📖mathematicalContinuous
ConnectedComponents
connectedComponentsLift—connectedComponents_lift_unique'
connectedComponentsLift_comp_coe
connectedComponentsMap_continuous 📖mathematicalContinuousConnectedComponents
ConnectedComponents.instTopologicalSpace
connectedComponentsMap
—connectedComponentsLift_continuous
ConnectedComponents.totallyDisconnectedSpace
comp
ConnectedComponents.continuous_coe
image_connectedComponent_eq_singleton 📖mathematicalContinuousSet.image
connectedComponent
Set
Set.instSingletonSet
—Set.subsingleton_iff_singleton
Set.mem_image_of_mem
mem_connectedComponent
IsPreconnected.subsingleton
IsPreconnected.image
isPreconnected_connectedComponent
continuousOn
image_eq_of_connectedComponent_eq 📖—Continuous
connectedComponent
——Set.singleton_eq_singleton_iff
image_connectedComponent_eq_singleton

IsPreconnected

Theorems

NameKindAssumesProvesValidatesDepends On
constant 📖—IsPreconnected
ContinuousOn
Set
Set.instMembership
——subsingleton
TotallySeparatedSpace.totallyDisconnectedSpace
TotallySeparatedSpace.of_discrete
image
Set.mem_image_of_mem
constant_of_mapsTo 📖—IsPreconnected
IsDiscrete
ContinuousOn
Set.MapsTo
Set
Set.instMembership
——PreconnectedSpace.constant
isDiscrete_iff_discreteTopology
isPreconnected_iff_preconnectedSpace
ContinuousOn.mapsToRestrict
eqOn_const_of_mapsTo 📖mathematicalIsPreconnected
IsDiscrete
ContinuousOn
Set.MapsTo
Set.Nonempty
Set
Set.instMembership
Set.EqOn
—Set.eq_empty_or_nonempty
Set.eqOn_empty
constant_of_mapsTo
subsingleton 📖mathematicalIsPreconnectedSet.Subsingleton—TotallyDisconnectedSpace.isTotallyDisconnected_univ
Set.subset_univ

IsTotallySeparated

Theorems

NameKindAssumesProvesValidatesDepends On
isTotallyDisconnected 📖mathematicalIsTotallySeparatedIsTotallyDisconnected—isTotallyDisconnected_of_isTotallySeparated

Pi

Theorems

NameKindAssumesProvesValidatesDepends On
totallyDisconnectedSpace 📖mathematicalTotallyDisconnectedSpacetopologicalSpace—IsPreconnected.image
Continuous.continuousOn
continuous_apply
IsPreconnected.subsingleton

PreconnectedSpace

Theorems

NameKindAssumesProvesValidatesDepends On
constant 📖—Continuous——IsPreconnected.constant
isPreconnected_univ
Continuous.continuousOn

Prod

Theorems

NameKindAssumesProvesValidatesDepends On
totallyDisconnectedSpace 📖mathematical—TotallyDisconnectedSpace
instTopologicalSpaceProd
—IsPreconnected.image
Continuous.continuousOn
continuous_fst
continuous_snd
IsPreconnected.subsingleton

Subtype

Theorems

NameKindAssumesProvesValidatesDepends On
totallyDisconnectedSpace 📖mathematical—TotallyDisconnectedSpace
instTopologicalSpaceSubtype
—totallyDisconnectedSpace_subtype_iff
isTotallyDisconnected_of_totallyDisconnectedSpace

Topology.IsEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
isTotallyDisconnected 📖—Topology.IsEmbedding
IsTotallyDisconnected
Set.image
——isTotallyDisconnected_of_image
Continuous.continuousOn
continuous
injective
isTotallyDisconnected_image 📖mathematicalTopology.IsEmbeddingIsTotallyDisconnected
Set.image
—isTotallyDisconnected
Set.inter_subset_right
Set.image_preimage_inter
Set.inter_eq_left
Set.Subsingleton.image
Topology.IsInducing.isPreconnected_image
isInducing
isTotallyDisconnected_range 📖mathematicalTopology.IsEmbeddingIsTotallyDisconnected
Set.range
TotallyDisconnectedSpace
—totallyDisconnectedSpace_iff
Set.image_univ
isTotallyDisconnected_image

TotallyDisconnectedSpace

Definitions

NameCategoryTheorems
continuousMapEquivOfConnectedSpace 📖CompOp
1 mathmath: continuousMapEquivOfConnectedSpace_symm_apply_apply

Theorems

NameKindAssumesProvesValidatesDepends On
continuousMapEquivOfConnectedSpace_symm_apply_apply 📖mathematical—DFunLike.coe
ContinuousMap
ContinuousMap.instFunLike
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
continuousMapEquivOfConnectedSpace
——
eq_of_continuous 📖—Continuous——IsPreconnected.subsingleton
IsPreconnected.image
PreconnectedSpace.isPreconnected_univ
Continuous.continuousOn
isTotallyDisconnected_univ 📖mathematical—IsTotallyDisconnected
Set.univ
——

TotallySeparatedSpace

Theorems

NameKindAssumesProvesValidatesDepends On
isTotallySeparated_univ 📖mathematical—IsTotallySeparated
Set.univ
——
of_discrete 📖mathematical—TotallySeparatedSpace—isOpen_discrete
Eq.subset
Set.instReflSubset
Set.compl_union_self
disjoint_compl_left
totallyDisconnectedSpace 📖mathematical—TotallyDisconnectedSpace—IsTotallySeparated.isTotallyDisconnected
isTotallySeparated_univ

(root)

Definitions

NameCategoryTheorems
IsTotallyDisconnected 📖MathDef
12 mathmath: totallyDisconnectedSpace_subtype_iff, IsTotallySeparated.isTotallyDisconnected, isTotallyDisconnected_of_totallyDisconnectedSpace, isTotallyDisconnected_iff_lt, isTotallyDisconnected_singleton, Set.Countable.isTotallyDisconnected, Topology.IsEmbedding.isTotallyDisconnected_range, isTotallyDisconnected_of_isTotallySeparated, Topology.IsEmbedding.isTotallyDisconnected_image, TotallyDisconnectedSpace.isTotallyDisconnected_univ, isTotallyDisconnected_empty, totallyDisconnectedSpace_iff
IsTotallySeparated 📖MathDef
5 mathmath: isTotallySeparated_singleton, isTotallySeparated_empty, krullTopology_isTotallySeparated, TotallySeparatedSpace.isTotallySeparated_univ, totallySeparatedSpace_iff
TotallyDisconnectedSpace 📖CompData
265 mathmath: LightCondensed.free_internallyProjective_iff_tensor_condition, LightProfinite.proj_comp_transitionMap, LightProfinite.Extend.functorOp_obj, LightCondensed.lanPresheafIso_hom, LightCondensed.isoFinYonedaComponents_hom_apply, ProfiniteGrp.coe_of, ProfiniteGrp.instReflectsIsomorphismsProfiniteForget₂ContinuousMonoidHomCarrierToTopTotallyDisconnectedSpaceToProfiniteContinuousMap, LightCondensed.ihomPoints_apply, Profinite.Extend.cocone_pt, CondensedMod.IsSolid.isIso_solidification_map, Profinite.forget_preservesLimits, instFullFintypeCatProfiniteToProfinite, LightCondensed.forget_obj_val_map, Profinite.Extend.functorOp_map, ProfiniteGrp.limit_one_val, ProfiniteAddGrp.ofHom_hom, LightCondensed.ihomPoints_symm_comp, Profinite.instEnoughProjectives, ProfiniteGrp.ProfiniteCompletion.lift_eta, LightCondSet.continuous_coinducingCoprod, LightCondSet.epi_iff_locallySurjective_on_lightProfinite, totallyDisconnectedSpace_iff_connectedComponent_singleton, LightProfinite.instCountableClopensCarrierToTopAndTotallyDisconnectedSpaceSecondCountableTopology, LightCondensed.isoFinYoneda_inv_app, CondensedMod.isDiscrete_tfae, LightCondensed.free_lightProfinite_internallyProjective_iff_tensor_condition, Profinite.Extend.cone_π_app, instFaithfulFintypeCatLightProfiniteToLightProfinite, ProfiniteAddGrp.ofHom_apply, LightCondensed.finYoneda_map, ProfiniteGrp.coe_id, Profinite.effectiveEpi_tfae, LightCondMod.isDiscrete_tfae, LocallyConstant.freeOfProfinite, instFaithfulLightDiagramProfiniteLightDiagramToProfinite, instPreservesEpimorphismsLightProfiniteLightCondSetLightProfiniteToLightCondSet, LightProfinite.instSecondCountableTopologyCarrierToTopAndTotallyDisconnectedSpace, Profinite.NobelingProof.spanFunctorIsoIndexFunctor_hom_app_hom_hom_apply_coe, ProfiniteGrp.ProfiniteCompletion.lift_eta_assoc, InfiniteGalois.toAlgEquivAux_eq_proj_of_mem, CategoryTheory.PreGaloisCategory.instTotallyDisconnectedSpaceAutFunctorFintypeCat, LightCondensed.discrete_map, LightProfinite.proj_comp_transitionMapLE', lightDiagramToProfinite_map, LightProfinite.Extend.cocone_ι_app, totallyDisconnectedSpace_subtype_iff, ProfiniteGrp.instFaithfulProfiniteForget₂ContinuousMonoidHomCarrierToTopTotallyDisconnectedSpaceToProfiniteContinuousMap, Condensed.lanPresheafExt_inv, ProfiniteAddGrp.instFaithfulProfiniteForget₂ContinuousAddMonoidHomCarrierToTopTotallyDisconnectedSpaceToProfiniteContinuousMap, instFaithfulFintypeCatProfiniteToProfinite, Profinite.injective_of_light, LightCondSet.topCatAdjunctionUnit_val_app_apply, ProfiniteAddGrp.instPreservesLimitsProfiniteForget₂ContinuousAddMonoidHomCarrierToTopTotallyDisconnectedSpaceToProfiniteContinuousMap, Profinite.epi_iff_surjective, lightProfiniteToLightDiagram_map, Profinite.exists_locallyConstant_finite_aux, Prod.totallyDisconnectedSpace, Profinite.instTotallyDisconnectedSpaceCarrierToTop, ProfiniteGrp.toLimit_surjective, LightProfinite.isClosedMap, ProfiniteAddGrp.hom_neg_apply, lightDiagramToLightProfinite_obj, Condensed.isoFinYonedaComponents_hom_apply, ProfiniteGrp.hom_id, ProfiniteAddGrp.hom_id, Profinite.Extend.functorOp_obj, ProfiniteAddGrp.neg_hom_apply, instTotallyDisconnectedSpaceMultiplicative, Condensed.finYoneda_map, LightProfinite.lightToProfinite_map_proj_eq, FintypeCat.toProfinite_map_hom_hom_apply, ProfiniteGrp.denseRange_toLimit, Profinite.hasColimits, ProfiniteAddGrp.limit_zero_val, ProfiniteGrp.comp_apply, LightProfinite.effectiveEpi_iff_surjective, ProfiniteAddGrp.coe_of, ProfiniteAddGrp.comp_apply, LightProfinite.continuous_iff_convergent, Profinite.instPreregular, LightCondensed.internallyProjective_iff_tensor_condition, LightProfinite.instPreservesEpimorphismsProfiniteLightToProfinite, instTotallyDisconnectedSpaceSum, LightProfinite.instHasExplicitFiniteCoproductsAndTotallyDisconnectedSpaceCarrierSecondCountableTopology, LightProfinite.instCountableDiscreteQuotient, ProfiniteGrp.ofHom_hom, Condensed.instPreservesLimitsOfShapeOppositeProfiniteDiscreteCarrierToTopTotallyDisconnectedSpaceOfFinite, ProfiniteGrp.topologicalGroup, instPreservesFiniteLimitsLightProfiniteLightCondSetLightProfiniteToLightCondSet, LightProfinite.hasSheafify, ProfiniteGrp.hom_comp, InfiniteGalois.mulEquivToLimit_symm_continuous, LightCondMod.LocallyConstant.instFullModuleCatSheafLightProfiniteCoherentTopologyConstantSheaf, LightProfinite.instWEqualsLocallyBijectiveCoherentTopology, ProfiniteAddGrp.instIsTopologicalAddGroupCarrierToTopTotallyDisconnectedSpacePtProfiniteLimitConeCompForget₂ContinuousAddMonoidHomToProfiniteContinuousMap, ProfiniteGrp.inv_hom_apply, ProfiniteAddGrp.id_apply, InfiniteGalois.isOpen_mulEquivToLimit_image_fixingSubgroup, LightCondensed.isColimitLocallyConstantPresheafDiagram_desc_apply, Condensed.instPreservesFiniteProductsOppositeProfiniteVal, ProfiniteGrp.cone_pt, instPreservesLimitsOfShapeLightProfiniteLightCondSetLightProfiniteToLightCondSetOfCountableCategory, LightCondensed.isoFinYonedaComponents_inv_comp, ProfiniteAddGrp.coe_id, LightCondensed.free_lightProfinite_internallyProjective_iff_tensor_condition', Profinite.instEpiAppDiscreteQuotientCarrierToTopTotallyDisconnectedSpaceπAsLimitCone, instFaithfulLightProfiniteLightCondSetLightProfiniteToLightCondSet, InfiniteGalois.proj_adjoin_singleton_val, Profinite.instHasExplicitFiniteCoproductsTotallyDisconnectedSpaceCarrier, LightProfinite.Extend.functor_map, LightCondensed.instPreservesLimitsOfShapeOppositeLightProfiniteDiscreteCarrier, ProfiniteGrp.limit_mul_val, ProfiniteGrp.ProfiniteCompletion.denseRange, LightCondensed.forget_map_val_app, LightCondensed.isoLocallyConstantOfIsColimit_inv, Profinite.instReflectsEffectiveEpisCompHausProfiniteToCompHaus, FintypeCat.toLightProfinite_map_hom_hom_apply, Condensed.instIsRightKanExtensionFintypeCatCondensedModProfiniteProfiniteSolidProfiniteSolidCounit, instTotallyDisconnectedSpaceCarrierToTopTrueObjProfiniteCompHausProfiniteToCompHaus, LightProfinite.injective, LightCondensed.isLocallySurjective_iff_locallySurjective_on_lightProfinite, Profinite.projective_ultrafilter, CompHaus.toProfinite_obj', instTotallyDisconnectedSpaceUltrafilter, Condensed.isoLocallyConstantOfIsColimit_inv, Profinite.instPreservesEffectiveEpisCompHausProfiniteToCompHaus, lightDiagramToProfinite_obj, ProfiniteAddGrp.limit_add_val, Condensed.lanPresheafNatIso_hom_app, LightProfinite.surjective_transitionMapLE, Profinite.Extend.functor_obj, LightProfinite.instHasPropAndTotallyDisconnectedSpaceCarrierSecondCountableTopology, LightCondensed.free_internallyProjective_iff_tensor_condition', ProfiniteGrp.profiniteCompletion_map, LightProfinite.instHasCountableLimits, LightProfinite.forget_reflectsIsomorphisms, Condensed.isoFinYonedaComponents_inv_comp, Condensed.instFinalOppositeDiscreteQuotientCarrierToTopTotallyDisconnectedSpaceCostructuredArrowFintypeCatProfiniteOpToProfiniteOpPtAsLimitConeFunctorOp, LightProfinite.instHasExplicitPullbacksAndTotallyDisconnectedSpaceCarrierSecondCountableTopology, ProfiniteAddGrp.limit_ext_iff, Profinite.lift_lifts_assoc, instIsEquivalenceLightDiagramLightProfiniteLightDiagramToLightProfinite, LightProfinite.Extend.functorOp_map, LightProfinite.instTotallyDisconnectedSpaceCarrierToTopAndSecondCountableTopology, ProfiniteGrp.hom_inv_apply, instEssentiallySmallLightProfinite, LightCondensed.hom_ext_iff, lightProfiniteToLightCondSetIsoTopCatToLightCondSet_hom_app_val_app_apply, loc_compact_t2_tot_disc_iff_tot_sep, ProfiniteGrp.cone_π_app, LightCondensed.underlying_obj, LightCondSet.hom_naturality_apply, CondensedSet.isDiscrete_tfae, LightProfinite.instTotallyDisconnectedSpaceCarrierToTopTruePtCompHausLimitConeCompLightProfiniteToCompHaus, Profinite.exists_locallyConstant, LightProfinite.instPreservesLimitsOfShapeOppositeNatForgetContinuousMapCarrierToTopAndTotallyDisconnectedSpaceSecondCountableTopology, Profinite.lift_lifts, LightCondensed.equalizerCondition, InfiniteGalois.toAlgEquivAux_eq_liftNormal, LightCondMod.hom_naturality_apply, TotallySeparatedSpace.totallyDisconnectedSpace, LightCondensed.ihomPoints_symm_apply, LightCondensed.discrete_obj, Condensed.StoneanProfinite.instPreservesEffectiveEpisStoneanProfiniteToProfinite, ProfiniteGrp.toLimit_injective, lightProfiniteToLightDiagram_obj, Condensed.StoneanProfinite.instEffectivelyEnoughStoneanProfiniteToProfinite, ProfiniteAddGrp.coe_comp, LightDiagram.id_hom_hom_hom_apply, LightCondMod.LocallyConstant.instFaithfulModuleCatSheafLightProfiniteCoherentTopologyConstantSheaf, LightCondensed.lanPresheafNatIso_hom_app, ProfiniteGrp.ofHom_apply, Topology.IsEmbedding.isTotallyDisconnected_range, lightCondSetToTopCat_obj_carrier, instTotallyDisconnectedSpaceAdditive, LightProfinite.Extend.cocone_pt, LightCondMod.epi_iff_locallySurjective_on_lightProfinite, Profinite.instHasExplicitPullbacksTotallyDisconnectedSpaceCarrier, ProfiniteGrp.instCompactSpaceSubtypeForallCarrierToTopTotallyDisconnectedSpaceToProfiniteObjMemSubgroupLimitConePtAux, LightCondensed.ihom_map_val_app, Profinite.instEffectivelyEnoughCompHausProfiniteToCompHaus, Condensed.isColimitLocallyConstantPresheafDiagram_desc_apply, LightCondSet.LocallyConstant.instHasPropAndTotallyDisconnectedSpaceCarrierSecondCountableTopologySubtypeToTop, InfiniteGalois.finGaloisGroupFunctor_map_proj_eq_proj, Condensed.StoneanProfinite.instReflectsEffectiveEpisStoneanProfiniteToProfinite, Profinite.Extend.cocone_ι_app, Homeomorph.totallyDisconnectedSpace, Condensed.isoFinYoneda_hom_app, Profinite.Extend.cone_pt, instFullLightProfiniteLightCondSetLightProfiniteToLightCondSet, Profinite.NobelingProof.spanFunctorIsoIndexFunctor_inv_app, lightDiagramToLightProfinite_map, LightProfinite.surjective_transitionMap, ProfiniteGrp.coe_comp, Profinite.projective_of_extrDisc, LightCondensed.lanPresheafExt_inv, LightProfinite.epi_iff_surjective, Condensed.lanPresheafExt_hom, instFullLightDiagramProfiniteLightDiagramToProfinite, Profinite.injective_of_finite, InfiniteGalois.mk_toAlgEquivAux, LightCondMod.LocallyConstant.instFullSheafLightProfiniteCoherentTopologyTypeConstantSheaf, InfiniteGalois.proj_of_le, Stonean.instProjectiveProfiniteObjToProfinite, LightCondSet.isDiscrete_tfae, LightCondSet.topCatAdjunctionUnit_val_app, LightDiagram.comp_hom_hom_hom_apply, Profinite.presentation.epi_π, LightCondensed.instFinalNatCostructuredArrowOppositeFintypeCatLightProfiniteOpToLightProfiniteOpPtAsLimitConeFunctorOp, LightProfinite.instPreregular, LightCondMod.LocallyConstant.instHasSheafifyLightProfiniteCoherentTopologyModuleCat, ProfiniteGrp.toLimitFun_continuous, ProfiniteGrp.diagram_map, LightCondensed.id_val, InfiniteGalois.algEquivToLimit_continuous, totallyDisconnectedSpace_iff_connectedComponent_subsingleton, LightProfinite.Extend.functor_obj, LightCondensed.isoFinYoneda_hom_app, ProfiniteGrp.id_apply, Profinite.Nobeling.isClosedEmbedding, LightProfinite.proj_surjective, LightProfinite.proj_comp_transitionMapLE, LightProfinite.instEpiAppOppositeNatπAsLimitCone, LightCondMod.LocallyConstant.instFaithfulSheafLightProfiniteCoherentTopologyTypeConstantSheaf, ProfiniteGrp.isIso_toLimit, LightCondensed.instHasColimitsOfShapeCostructuredArrowOppositeFintypeCatLightProfiniteOpToLightProfiniteType, instSecondCountableTopologyCarrierToTopTotallyDisconnectedSpacePtOppositeNatProfiniteCone, InfiniteGalois.limitToAlgEquiv_symm_apply, LightCondensed.internallyProjective_iff_tensor_condition', LightProfinite.hasSheafify_type, LightCondensed.comp_val, lightProfiniteToLightCondSetIsoTopCatToLightCondSet_inv_app_val_app_hom_hom, LightCondensed.underlying_map, LightCondMod.isDiscrete_iff_isDiscrete_forget, Subtype.totallyDisconnectedSpace, instIsEquivalenceLightProfiniteLightDiagramLightProfiniteToLightDiagram, LightCondSet.toTopCatMap_hom_apply, LightCondensed.lanPresheafExt_hom, Rat.instTotallyDisconnectedSpace, Profinite.exists_locallyConstant_finite_nonempty, Profinite.hasLimits, ProfiniteGrp.instPreservesLimitsProfiniteForget₂ContinuousMonoidHomCarrierToTopTotallyDisconnectedSpaceToProfiniteContinuousMap, Condensed.isoFinYoneda_inv_app, ProfiniteGrp.limit_ext_iff, Profinite.exists_locallyConstant_fin_two, ProfiniteAddGrp.hom_comp, Profinite.effectiveEpiFamily_tfae, LightProfinite.proj_comp_transitionMap', totallyDisconnectedSpace_iff, ProfiniteGrp.instIsTopologicalGroupCarrierToTopTotallyDisconnectedSpacePtProfiniteLimitConeCompForget₂ContinuousMonoidHomToProfiniteContinuousMap, Profinite.Extend.functor_map, Condensed.locallyConstantIsoFinYoneda_hom_app, ProfiniteAddGrp.instCompactSpaceSubtypeForallCarrierToTopTotallyDisconnectedSpaceToProfiniteObjMemAddSubgroupLimitConePtAux, instFullFintypeCatLightProfiniteToLightProfinite, Condensed.equalizerCondition_profinite, Profinite.instHasPropTotallyDisconnectedSpaceCarrier, Profinite.isIso_asLimitCone_lift, Condensed.lanPresheafIso_hom, ProfiniteAddGrp.topologicalAddGroup, ConnectedComponents.totallyDisconnectedSpace, LightCondensed.instPreservesFiniteProductsOppositeLightProfiniteVal, Profinite.exists_hom, LightCondensed.instIsMonoidalFunctorOppositeLightProfiniteModuleCatWCoherentTopology, ProfiniteGrp.diagram_obj, ProfiniteGrp.instReflectsIsomorphismsForgetContinuousMonoidHomCarrierToTopTotallyDisconnectedSpaceToProfinite
TotallySeparatedSpace 📖CompData
19 mathmath: CompletelyRegularSpace.totallySeparatedSpace_of_cardinalMk_lt_continuum, PriestleySpace.toTotallySeparatedSpace, instTotallySeparatedSpaceOfT2SpaceOfPrespectralSpace, instTotallySeparatedSpaceAlgEquivOfIsIntegral, NonarchimedeanAddGroup.instTotallySeparated, CompleteType.instTotallySeparatedSpaceCompleteType, instTotallySeparatedSpaceOfExtremallyDisconnectedOfT2Space, TotallySeparatedSpace.of_discrete, loc_compact_t2_tot_disc_iff_tot_sep, totallySeparatedSpace_iff, totallySeparatedSpace_of_t0_of_basis_clopen, instTotallySeparatedSpaceOfIsUltrametricDist, OnePoint.instTotallySeparatedSpaceOfDiscreteTopology, Set.Countable.totallySeparatedSpace, totallySeparatedSpace_iff_exists_isClopen, totallySeparatedSpace_of_t1_of_basis_clopen, CompletelyRegularSpace.instTotallySeparatedSpaceOfCountable, NonarchimedeanGroup.instTotallySeparated, instTotallySeparatedSpaceOfTotallyDisconnectedSpace

Theorems

NameKindAssumesProvesValidatesDepends On
connectedComponent_eq_singleton 📖mathematical—connectedComponent
Set
Set.instSingletonSet
—totallyDisconnectedSpace_iff_connectedComponent_singleton
connectedComponents_lift_unique' 📖—ConnectedComponents——Function.Surjective.injective_comp_right
ConnectedComponents.surjective_coe
exists_isClopen_of_totally_separated 📖mathematical—Pairwise
Set
IsClopen
Set.instMembership
Compl.compl
Set.instCompl
—totallySeparatedSpace_iff_exists_isClopen
instTotallyDisconnectedSpaceAdditive 📖mathematical—TotallyDisconnectedSpace
Additive
instTopologicalSpaceAdditive
——
instTotallyDisconnectedSpaceMultiplicative 📖mathematical—TotallyDisconnectedSpace
Multiplicative
instTopologicalSpaceMultiplicative
——
instTotallyDisconnectedSpaceSigma 📖mathematicalTotallyDisconnectedSpaceinstTopologicalSpaceSigma—Set.eq_empty_or_nonempty
Set.subsingleton_empty
Sigma.isConnected_iff
Set.Subsingleton.image
IsPreconnected.subsingleton
IsConnected.isPreconnected
instTotallyDisconnectedSpaceSum 📖mathematical—TotallyDisconnectedSpace
instTopologicalSpaceSum
—Sum.isPreconnected_iff
Set.Subsingleton.image
IsPreconnected.subsingleton
isTotallyDisconnected_empty 📖mathematical—IsTotallyDisconnected
Set
Set.instEmptyCollection
——
isTotallyDisconnected_of_image 📖—ContinuousOn
IsTotallyDisconnected
Set.image
——Set.image_mono
IsPreconnected.image
ContinuousOn.mono
Set.mem_image_of_mem
isTotallyDisconnected_of_isTotallySeparated 📖mathematicalIsTotallySeparatedIsTotallyDisconnected—Set.Nonempty.ne_empty
HasSubset.Subset.trans
Set.instIsTransSubset
Disjoint.inter_eq
Set.inter_empty
isTotallyDisconnected_of_totallyDisconnectedSpace 📖mathematical—IsTotallyDisconnected—TotallyDisconnectedSpace.isTotallyDisconnected_univ
Set.subset_univ
isTotallyDisconnected_singleton 📖mathematical—IsTotallyDisconnected
Set
Set.instSingletonSet
—Set.Subsingleton.anti
Set.subsingleton_singleton
isTotallySeparated_empty 📖mathematical—IsTotallySeparated
Set
Set.instEmptyCollection
——
isTotallySeparated_singleton 📖mathematical—IsTotallySeparated
Set
Set.instSingletonSet
—Set.eq_of_mem_singleton
totallyDisconnectedSpace_iff 📖mathematical—TotallyDisconnectedSpace
IsTotallyDisconnected
Set.univ
——
totallyDisconnectedSpace_iff_connectedComponent_singleton 📖mathematical—TotallyDisconnectedSpace
connectedComponent
Set
Set.instSingletonSet
—totallyDisconnectedSpace_iff_connectedComponent_subsingleton
Set.subsingleton_iff_singleton
mem_connectedComponent
totallyDisconnectedSpace_iff_connectedComponent_subsingleton 📖mathematical—TotallyDisconnectedSpace
Set.Subsingleton
connectedComponent
—TotallyDisconnectedSpace.isTotallyDisconnected_univ
Set.subset_univ
isPreconnected_connectedComponent
Set.eq_empty_or_nonempty
Set.subsingleton_empty
Set.Subsingleton.anti
IsPreconnected.subset_connectedComponent
totallyDisconnectedSpace_subtype_iff 📖mathematical—TotallyDisconnectedSpace
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
IsTotallyDisconnected
—Topology.IsEmbedding.isTotallyDisconnected_range
Topology.IsEmbedding.subtypeVal
Subtype.range_val
totallySeparatedSpace_iff 📖mathematical—TotallySeparatedSpace
IsTotallySeparated
Set.univ
——
totallySeparatedSpace_iff_exists_isClopen 📖mathematical—TotallySeparatedSpace
Pairwise
Set
IsClopen
Set.instMembership
Compl.compl
Set.instCompl
—isClopen_of_disjoint_cover_open
Set.disjoint_iff
IsClopen.compl
Eq.ge
Set.union_compl_self
disjoint_compl_right

---

← Back to Index