Documentation Verification Report

Constructible

πŸ“ Source: Mathlib/Topology/Constructible.lean

Statistics

MetricCount
DefinitionsIsRetrocompact, IsConstructible, IsLocallyConstructible
3
TheoremsisConstructible, isRetrocompact, biInter, biUnion, empty, finsetInf, finsetInf', finsetSup, finsetSup', iInter, iUnion, image_of_isEmbedding, inter, inter_isOpen, isCompact, isConstructible, isLocallyConstructible, isOpen_inter, preimage_of_isClosedEmbedding, preimage_of_isOpenEmbedding, sInter, sUnion, singleton, union, univ, IsRetrocompact_iff_isSpectralMap_subtypeVal, isRetrocompact_iff_isCompact, of_isOpenCover, biInter, biUnion, compl, empty, empty_union_induction, himp, iInter, iUnion, image_of_isClosedEmbedding, image_of_isOpenEmbedding, induction_of_isTopologicalBasis, inter, isLocallyConstructible, of_compl, preimage, preimage_of_isClosedEmbedding, preimage_of_isOpenEmbedding, sInter, sUnion, sdiff, union, univ, biUnion, empty, finsetInf, finsetInf', iInter, iUnion, iff_isConstructible_of_isOpenCover, iff_of_isOpenCover, inter, inter_of_isOpen_isCompact, isConstructible, isConstructible_of_subset_of_isCompact, of_isOpenCover, of_isOpenCover', preimage_of_isOpenEmbedding, sInter, sUnion, union, univ, isConstructible_compl, isConstructible_preimage_iff_of_isOpenEmbedding
71
Total74

IsCompact

Theorems

NameKindAssumesProvesValidatesDepends On
isConstructible πŸ“–mathematicalIsCompact
IsOpen
Topology.IsConstructibleβ€”IsRetrocompact.isConstructible
isRetrocompact
isRetrocompact πŸ“–mathematicalIsCompact
IsOpen
IsRetrocompactβ€”inter_of_isOpen

IsRetrocompact

Theorems

NameKindAssumesProvesValidatesDepends On
biInter πŸ“–mathematicalIsRetrocompactSet.iInter
Set
Set.instMembership
β€”InfClosed.biInf_mem
univ
biUnion πŸ“–mathematicalIsRetrocompactSet.iUnion
Set
Set.instMembership
β€”SupClosed.biSup_mem
empty
empty πŸ“–mathematicalβ€”IsRetrocompact
Set
Set.instEmptyCollection
β€”Set.empty_inter
finsetInf πŸ“–mathematicalIsRetrocompactFinset.inf
Set
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
Set.instOrderTop
β€”Finset.cons_induction
Finset.inf_cons
inter
Finset.forall_of_forall_cons
finsetInf' πŸ“–mathematicalFinset.Nonempty
IsRetrocompact
Finset.inf'
Set
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
β€”Finset.inf'_eq_inf
finsetInf
finsetSup πŸ“–mathematicalIsRetrocompactFinset.sup
Set
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
β€”Finset.cons_induction
Finset.sup_empty
Finset.sup_cons
union
Finset.forall_of_forall_cons
finsetSup' πŸ“–mathematicalFinset.Nonempty
IsRetrocompact
Finset.sup'
Set
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
β€”Finset.sup'_eq_sup
finsetSup
iInter πŸ“–mathematicalIsRetrocompactSet.iInterβ€”InfClosed.iInf_mem
univ
iUnion πŸ“–mathematicalIsRetrocompactSet.iUnionβ€”SupClosed.iSup_mem
empty
image_of_isEmbedding πŸ“–mathematicalIsRetrocompact
Topology.IsEmbedding
Set.range
Set.imageβ€”Set.image_inter_preimage
Topology.IsEmbedding.isCompact_iff
Set.image_preimage_eq_inter_range
Set.inter_comm
IsOpen.preimage
Topology.IsEmbedding.continuous
inter πŸ“–mathematicalIsRetrocompactSet
Set.instInter
β€”IsCompact.inter
Set.inter_inter_distrib_right
inter_isOpen πŸ“–mathematicalIsRetrocompact
IsOpen
Set
Set.instInter
β€”IsOpen.inter
Set.inter_assoc
isCompact πŸ“–mathematicalIsRetrocompactIsCompactβ€”Set.inter_univ
CompactSpace.isCompact_univ
isConstructible πŸ“–mathematicalIsOpen
IsRetrocompact
Topology.IsConstructibleβ€”BooleanSubalgebra.subset_closure
isLocallyConstructible πŸ“–mathematicalIsOpen
IsRetrocompact
Topology.IsLocallyConstructibleβ€”Topology.IsConstructible.isLocallyConstructible
isConstructible
isOpen_inter πŸ“–mathematicalIsRetrocompact
IsOpen
Set
Set.instInter
β€”inter_isOpen
Set.inter_comm
preimage_of_isClosedEmbedding πŸ“–mathematicalTopology.IsClosedEmbedding
IsCompact
Compl.compl
Set
Set.instCompl
Set.range
IsRetrocompact
Set.preimageβ€”Set.range_diff_image
Topology.IsEmbedding.injective
Topology.IsClosedEmbedding.toIsEmbedding
sdiff_eq
Set.compl_inter
compl_compl
Set.union_comm
IsClosed.isOpen_compl
Topology.IsClosedEmbedding.isClosedMap
IsOpen.isClosed_compl
IsCompact.union
IsCompact.image
Topology.IsClosedEmbedding.continuous
Topology.IsEmbedding.isCompact_iff
Set.image_preimage_inter
Set.inter_union_distrib_left
Set.inter_left_comm
Set.inter_eq_right
Set.image_subset_range
Set.inter_compl_self
Set.inter_empty
Set.union_empty
IsCompact.inter_left
Topology.IsClosedEmbedding.isClosed_range
preimage_of_isOpenEmbedding πŸ“–mathematicalTopology.IsOpenEmbedding
IsRetrocompact
Set.preimageβ€”Topology.IsEmbedding.isCompact_iff
Topology.IsOpenEmbedding.toIsEmbedding
Set.image_preimage_inter
IsCompact.image
Topology.IsOpenEmbedding.continuous
Topology.IsOpenEmbedding.isOpenMap
sInter πŸ“–mathematicalIsRetrocompactSet.sInterβ€”InfClosed.sInf_mem
univ
sUnion πŸ“–mathematicalIsRetrocompactSet.sUnionβ€”SupClosed.sSup_mem
empty
singleton πŸ“–mathematicalβ€”IsRetrocompact
Set
Set.instSingletonSet
β€”Set.Subsingleton.isCompact
Set.Subsingleton.singleton_inter
union πŸ“–mathematicalIsRetrocompactSet
Set.instUnion
β€”IsCompact.union
Set.union_inter_distrib_right
univ πŸ“–mathematicalβ€”IsRetrocompact
Set.univ
β€”Set.univ_inter

QuasiSeparatedSpace

Theorems

NameKindAssumesProvesValidatesDepends On
isRetrocompact_iff_isCompact πŸ“–mathematicalIsOpenIsRetrocompact
IsCompact
β€”IsRetrocompact.isCompact
IsCompact.isRetrocompact
of_isOpenCover πŸ“–mathematicalTopologicalSpace.IsOpenCover
IsRetrocompact
SetLike.coe
TopologicalSpace.Opens
TopologicalSpace.Opens.instSetLike
IsQuasiSeparated
QuasiSeparatedSpaceβ€”IsCompact.elim_finite_subcover
TopologicalSpace.Opens.is_open'
TopologicalSpace.IsOpenCover.iSup_set_eq_univ
subset_antisymm
Set.instAntisymmSubset
Set.mem_iUnionβ‚‚
Finset.isCompact_biUnion
Set.inter_subset_left
IsOpen.inter

Topology

Definitions

NameCategoryTheorems
IsConstructible πŸ“–MathDef
14 mathmath: IsConstructible.empty, IsCompact.isConstructible, IsLocallyConstructible.iff_isConstructible_of_isOpenCover, PrimeSpectrum.isConstructible_basicOpen, IsLocallyConstructible.isConstructible, IsLocallyConstructible.inter_of_isOpen_isCompact, isConstructible_compl, PrimeSpectrum.ConstructibleSetData.isConstructible_toSet, PrimeSpectrum.exists_constructibleSetData_iff, IsLocallyConstructible.isConstructible_of_subset_of_isCompact, IsConstructible.univ, isConstructible_preimage_iff_of_isOpenEmbedding, IsRetrocompact.isConstructible, PrimeSpectrum.isConstructible_range_comap
IsLocallyConstructible πŸ“–MathDef
6 mathmath: IsConstructible.isLocallyConstructible, IsLocallyConstructible.iff_of_isOpenCover, IsLocallyConstructible.iff_isConstructible_of_isOpenCover, IsLocallyConstructible.univ, IsLocallyConstructible.empty, IsRetrocompact.isLocallyConstructible

Theorems

NameKindAssumesProvesValidatesDepends On
isConstructible_compl πŸ“–mathematicalβ€”IsConstructible
Compl.compl
Set
Set.instCompl
β€”BooleanSubalgebra.compl_mem_iff
isConstructible_preimage_iff_of_isOpenEmbedding πŸ“–mathematicalIsOpenEmbedding
IsRetrocompact
Set.range
Set
Set.instHasSubset
IsConstructible
Set.preimage
β€”Set.image_preimage_eq_range_inter
Set.inter_eq_right
IsConstructible.image_of_isOpenEmbedding
IsConstructible.preimage_of_isOpenEmbedding

Topology.IsConstructible

Theorems

NameKindAssumesProvesValidatesDepends On
biInter πŸ“–mathematicalTopology.IsConstructibleSet.iInter
Set
Set.instMembership
β€”BooleanSubalgebra.biInf_mem
biUnion πŸ“–mathematicalTopology.IsConstructibleSet.iUnion
Set
Set.instMembership
β€”BooleanSubalgebra.biSup_mem
compl πŸ“–mathematicalTopology.IsConstructibleCompl.compl
Set
Set.instCompl
β€”Topology.isConstructible_compl
empty πŸ“–mathematicalβ€”Topology.IsConstructible
Set
Set.instEmptyCollection
β€”BooleanSubalgebra.bot_mem
empty_union_induction πŸ“–β€”BooleanSubalgebra.subset_closure
Set
Set.instBooleanAlgebra
setOf
IsOpen
IsRetrocompact
Set.instUnion
union
Compl.compl
Set.instCompl
compl
Topology.IsConstructible
β€”β€”BooleanSubalgebra.subset_closure
union
compl
BooleanSubalgebra.closure_bot_sup_induction
isOpen_empty
IsRetrocompact.empty
himp πŸ“–mathematicalTopology.IsConstructibleHImp.himp
Set
BooleanAlgebra.toHImp
Set.instBooleanAlgebra
β€”BooleanSubalgebra.himp_mem
iInter πŸ“–mathematicalTopology.IsConstructibleSet.iInterβ€”BooleanSubalgebra.iInf_mem
iUnion πŸ“–mathematicalTopology.IsConstructibleSet.iUnionβ€”BooleanSubalgebra.iSup_mem
image_of_isClosedEmbedding πŸ“–mathematicalTopology.IsClosedEmbedding
IsRetrocompact
Compl.compl
Set
Set.instCompl
Set.range
Topology.IsConstructible
Set.imageβ€”empty_union_induction
Set.range_diff_image
Topology.IsEmbedding.injective
Topology.IsClosedEmbedding.toIsEmbedding
sdiff_eq
Set.compl_inter
compl_compl
Set.union_comm
IsClosed.isOpen_compl
Topology.IsClosedEmbedding.isClosedMap
IsOpen.isClosed_compl
Set.union_inter_distrib_right
Set.image_inter_preimage
IsCompact.union
IsCompact.image
Topology.IsClosedEmbedding.isCompact_preimage
IsOpen.preimage
Topology.IsClosedEmbedding.continuous
sdiff_compl
Set.inter_eq_left
Set.image_subset_range
Set.compl_inter_self
Set.union_empty
sdiff
IsRetrocompact.isConstructible
Topology.IsClosedEmbedding.isClosed_range
Set.image_union
union
of_compl
image_of_isOpenEmbedding πŸ“–mathematicalTopology.IsOpenEmbedding
IsRetrocompact
Set.range
Topology.IsConstructible
Set.imageβ€”empty_union_induction
IsRetrocompact.isConstructible
Topology.IsOpenEmbedding.isOpenMap
IsRetrocompact.image_of_isEmbedding
Topology.IsOpenEmbedding.isEmbedding
Set.image_union
union
Set.range_diff_image
Topology.IsEmbedding.injective
Topology.IsOpenEmbedding.toIsEmbedding
sdiff
Topology.IsOpenEmbedding.isOpen_range
induction_of_isTopologicalBasis πŸ“–β€”TopologicalSpace.IsTopologicalBasis
Set.range
Set
IsCompact
Set.instSDiff
Set.iUnion
Set.instMembership
sdiff
IsCompact.isConstructible
TopologicalSpace.IsTopologicalBasis.isOpen
biUnion
Set.instUnion
union
Topology.IsConstructible
β€”β€”sdiff
IsCompact.isConstructible
TopologicalSpace.IsTopologicalBasis.isOpen
biUnion
union
BooleanSubalgebra.closure_sdiff_sup_induction
IsOpen.union
IsRetrocompact.union
IsOpen.inter
IsRetrocompact.inter_isOpen
isOpen_empty
IsRetrocompact.empty
isOpen_univ
IsRetrocompact.univ
isCompact_open_iff_eq_finite_iUnion_of_isTopologicalBasis
BooleanSubalgebra.sdiff_mem
BooleanSubalgebra.subset_closure
IsRetrocompact.isCompact
Set.iUnion_diff
Set.Finite.induction_on
Set.iUnion_congr_Prop
Set.iUnion_of_empty
instIsEmptyFalse
Set.iUnion_empty
Set.iUnion_iUnion_eq_left
sdiff_self
Set.biUnion_insert
isOpen_biUnion
IsRetrocompact.biUnion
IsCompact.isRetrocompact
inter πŸ“–mathematicalTopology.IsConstructibleSet
Set.instInter
β€”BooleanSubalgebra.inf_mem
isLocallyConstructible πŸ“–mathematicalTopology.IsConstructibleTopology.IsLocallyConstructibleβ€”Topology.isConstructible_preimage_iff_of_isOpenEmbedding
IsOpen.isOpenEmbedding_subtypeVal
isOpen_univ
Subtype.range_coe_subtype
of_compl πŸ“–β€”Topology.IsConstructible
Compl.compl
Set
Set.instCompl
β€”β€”Topology.isConstructible_compl
preimage πŸ“–β€”Continuous
IsRetrocompact
Set.preimage
Topology.IsConstructible
β€”β€”empty_union_induction
IsRetrocompact.isConstructible
IsOpen.preimage
Set.preimage_union
union
Set.preimage_compl
compl
preimage_of_isClosedEmbedding πŸ“–mathematicalTopology.IsClosedEmbedding
IsCompact
Compl.compl
Set
Set.instCompl
Set.range
Topology.IsConstructible
Set.preimageβ€”preimage
Topology.IsClosedEmbedding.continuous
IsRetrocompact.preimage_of_isClosedEmbedding
preimage_of_isOpenEmbedding πŸ“–mathematicalTopology.IsOpenEmbedding
Topology.IsConstructible
Set.preimageβ€”preimage
Topology.IsOpenEmbedding.continuous
IsRetrocompact.preimage_of_isOpenEmbedding
sInter πŸ“–mathematicalTopology.IsConstructibleSet.sInterβ€”BooleanSubalgebra.sInf_mem
sUnion πŸ“–mathematicalTopology.IsConstructibleSet.sUnionβ€”BooleanSubalgebra.sSup_mem
sdiff πŸ“–mathematicalTopology.IsConstructibleSet
Set.instSDiff
β€”BooleanSubalgebra.sdiff_mem
union πŸ“–mathematicalTopology.IsConstructibleSet
Set.instUnion
β€”BooleanSubalgebra.sup_mem
univ πŸ“–mathematicalβ€”Topology.IsConstructible
Set.univ
β€”BooleanSubalgebra.top_mem

Topology.IsLocallyConstructible

Theorems

NameKindAssumesProvesValidatesDepends On
biUnion πŸ“–mathematicalTopology.IsLocallyConstructibleSet.iUnion
Set
Set.instMembership
β€”SupClosed.biSup_mem
union
empty
empty πŸ“–mathematicalβ€”Topology.IsLocallyConstructible
Set
Set.instEmptyCollection
β€”Topology.IsConstructible.isLocallyConstructible
Topology.IsConstructible.empty
finsetInf πŸ“–mathematicalTopology.IsLocallyConstructibleFinset.inf
Set
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
Set.instOrderTop
β€”Finset.cons_induction
Finset.inf_cons
inter
Finset.forall_of_forall_cons
finsetInf' πŸ“–mathematicalFinset.Nonempty
Topology.IsLocallyConstructible
Finset.inf'
Set
Lattice.toSemilatticeInf
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
β€”Finset.inf'_eq_inf
finsetInf
iInter πŸ“–mathematicalTopology.IsLocallyConstructibleSet.iInterβ€”InfClosed.iInf_mem
univ
iUnion πŸ“–mathematicalTopology.IsLocallyConstructibleSet.iUnionβ€”SupClosed.iSup_mem
union
empty
iff_isConstructible_of_isOpenCover πŸ“–mathematicalTopologicalSpace.IsOpenCover
IsCompact
SetLike.coe
TopologicalSpace.Opens
TopologicalSpace.Opens.instSetLike
Topology.IsLocallyConstructible
Topology.IsConstructible
Set
Set.instInter
β€”inter_of_isOpen_isCompact
TopologicalSpace.Opens.is_open'
of_isOpenCover'
Topology.IsConstructible.isLocallyConstructible
iff_of_isOpenCover πŸ“–mathematicalTopologicalSpace.IsOpenCoverTopology.IsLocallyConstructible
Set.Elem
SetLike.coe
TopologicalSpace.Opens
TopologicalSpace.Opens.instSetLike
instTopologicalSpaceSubtype
Set
Set.instMembership
Set.preimage
β€”preimage_of_isOpenEmbedding
IsOpen.isOpenEmbedding_subtypeVal
TopologicalSpace.Opens.is_open'
of_isOpenCover
inter πŸ“–mathematicalTopology.IsLocallyConstructibleSet
Set.instInter
β€”Filter.inter_mem
IsOpen.inter
Topology.IsConstructible.inter
Set.inter_subset_left
Set.inter_subset_right
Topology.IsConstructible.preimage_of_isOpenEmbedding
Topology.IsOpenEmbedding.inclusion
IsOpen.preimage
continuous_subtype_val
inter_of_isOpen_isCompact πŸ“–mathematicalTopology.IsLocallyConstructible
IsOpen
IsCompact
Topology.IsConstructible
Set
Set.instInter
β€”isConstructible_of_subset_of_isCompact
inter
Topology.IsConstructible.isLocallyConstructible
IsCompact.isConstructible
Set.inter_subset_right
isConstructible πŸ“–mathematicalTopology.IsLocallyConstructibleTopology.IsConstructibleβ€”isConstructible_of_subset_of_isCompact
Set.subset_univ
isCompact_univ
isConstructible_of_subset_of_isCompact πŸ“–mathematicalTopology.IsLocallyConstructible
Set
Set.instHasSubset
IsCompact
Topology.IsConstructibleβ€”TopologicalSpace.IsTopologicalBasis.mem_nhds_iff
PrespectralSpace.isTopologicalBasis
Topology.IsConstructible.preimage_of_isOpenEmbedding
Topology.IsOpenEmbedding.restrict
Topology.IsOpenEmbedding.id
Topology.IsConstructible.image_of_isOpenEmbedding
IsOpen.isOpenEmbedding_subtypeVal
Subtype.range_coe_subtype
IsCompact.isRetrocompact
Subtype.image_preimage_coe
IsCompact.elim_nhds_subcover
IsOpen.mem_nhds
subset_antisymm
Set.instAntisymmSubset
Set.iUnionβ‚‚_inter
Set.subset_inter_iff
HasSubset.Subset.trans
Set.instIsTransSubset
subset_rfl
Set.instReflSubset
Set.iUnionβ‚‚_subset
Set.inter_subset_right
Topology.IsConstructible.biUnion
Finset.finite_toSet
of_isOpenCover πŸ“–β€”TopologicalSpace.IsOpenCover
Topology.IsLocallyConstructible
Set.Elem
SetLike.coe
TopologicalSpace.Opens
TopologicalSpace.Opens.instSetLike
instTopologicalSpaceSubtype
Set
Set.instMembership
Set.preimage
β€”β€”TopologicalSpace.IsOpenCover.exists_mem
Topology.IsOpenEmbedding.image_mem_nhds
IsOpen.isOpenEmbedding_subtypeVal
TopologicalSpace.Opens.is_open'
IsOpen.isOpenMap_subtype_val
Subtype.val_injective
Topology.IsOpenEmbedding.isInducing
Topology.IsOpenEmbedding.restrict
Set.image_congr
Set.ext
Function.Injective.mem_set_image
Equiv.Set.image_symm_apply
Topology.IsConstructible.preimage_of_isOpenEmbedding
Homeomorph.isOpenEmbedding
of_isOpenCover' πŸ“–β€”TopologicalSpace.IsOpenCover
Topology.IsLocallyConstructible
Set
Set.instInter
SetLike.coe
TopologicalSpace.Opens
TopologicalSpace.Opens.instSetLike
β€”β€”of_isOpenCover
Subtype.preimage_coe_inter_self
preimage_of_isOpenEmbedding
IsOpen.isOpenEmbedding_subtypeVal
TopologicalSpace.Opens.is_open'
preimage_of_isOpenEmbedding πŸ“–mathematicalTopology.IsLocallyConstructible
Topology.IsOpenEmbedding
Set.preimageβ€”ContinuousAt.preimage_mem_nhds
Continuous.continuousAt
Topology.IsOpenEmbedding.continuous
IsOpen.preimage
Topology.IsConstructible.preimage_of_isOpenEmbedding
Topology.IsOpenEmbedding.restrictPreimage
sInter πŸ“–mathematicalTopology.IsLocallyConstructibleSet.sInterβ€”InfClosed.sInf_mem
univ
sUnion πŸ“–mathematicalTopology.IsLocallyConstructibleSet.sUnionβ€”SupClosed.sSup_mem
union
empty
union πŸ“–mathematicalTopology.IsLocallyConstructibleSet
Set.instUnion
β€”Filter.inter_mem
IsOpen.inter
Set.inter_subset_left
Set.inter_subset_right
Set.ext
Topology.IsConstructible.union
Topology.IsConstructible.preimage_of_isOpenEmbedding
Topology.IsOpenEmbedding.inclusion
IsOpen.preimage
continuous_subtype_val
univ πŸ“–mathematicalβ€”Topology.IsLocallyConstructible
Set.univ
β€”Topology.IsConstructible.isLocallyConstructible
Topology.IsConstructible.univ

(root)

Definitions

NameCategoryTheorems
IsRetrocompact πŸ“–MathDef
10 mathmath: PrimeSpectrum.isRetrocompact_zeroLocus_compl_of_fg, IsRetrocompact_iff_isSpectralMap_subtypeVal, IsRetrocompact.singleton, IsRetrocompact.empty, IsCompact.isRetrocompact, AlgebraicGeometry.isRetrocompact_basicOpen, PrimeSpectrum.isRetrocompact_zeroLocus_compl, QuasiSeparatedSpace.isRetrocompact_iff_isCompact, PrimeSpectrum.isRetrocompact_basicOpen, IsRetrocompact.univ

Theorems

NameKindAssumesProvesValidatesDepends On
IsRetrocompact_iff_isSpectralMap_subtypeVal πŸ“–mathematicalβ€”IsRetrocompact
IsSpectralMap
Set
Set.instMembership
instTopologicalSpaceSubtype
β€”continuous_subtype_val
Topology.IsEmbedding.isCompact_iff
Topology.IsEmbedding.subtypeVal
Set.image_preimage_eq_inter_range
Subtype.range_coe_subtype
Set.setOf_mem_eq
Set.inter_comm
Subtype.image_preimage_coe
IsCompact.image
IsSpectralMap.isCompact_preimage_of_isOpen

---

← Back to Index