Documentation Verification Report

Constructions

πŸ“ Source: Mathlib/Topology/Constructions.lean

Statistics

MetricCount
DefinitionsCofiniteTopology, instInhabited, instTopologicalSpace, of, ofEqSubtypes, piCurry, IsDiscrete, instTopologicalSpace, topologicalSpace, topologicalSpace, instTopologicalSpaceAdditive, instTopologicalSpaceMultiplicative, instTopologicalSpaceQuot, instTopologicalSpaceQuotient, instTopologicalSpaceSigma
15
TheoremsisClosed_iff, isOpen_iff, isOpen_iff', mem_nhds_iff, nhds_eq, codRestrict, finCons, finInit, finInsertNth, finSnoc, finTail, matrixVecCons, piMap, quotient_lift, quotient_liftOn', quotient_map', rangeFactorization, restrict, restrictPreimage, sigma_map, subtype_coind, subtype_map, subtype_mk, subtype_val, update, codRestrict, finCons, finInit, finInsertNth, finSnoc, finTail, matrixVecCons, piMap, restrict, restrictPreimage, update, quotient, quotient, isDiscrete, of_subset, preimage_of_continuous_injective, prod_nhdsSet, apply_nhds, finCons, finInit, finInsertNth, finSnoc, finTail, matrixVecCons, update, eventually_nhdsSet_prod_iff, continuous_restrict, continuous_restrict_apply, continuous_restrictβ‚‚, continuous_restrictβ‚‚_apply, isEmbedding_comp, ofEqSubtypes_toEquiv, piCurry_apply, piCurry_symm_apply, inter_preimage_val_iff, isClosedEmbedding_subtypeVal, isClosedMap_inclusion, isClosedMap_subtype_val, preimage_val, trans, codRestrict, mapsToRestrict, restrict, subtype_coind, subtype_map, subtype_mk, mono, to_subtype, inter_preimage_val_iff, isOpenEmbedding_subtypeVal, isOpenMap_inclusion, isOpenMap_subtype_val, preimage_val, trans, codRestrict, mapsToRestrict, piMap, restrict, subtype_coind, subtype_map, subtype_mk, piMap, curry_prodMap, prodMap, instDiscreteTopology, instNeBotNhdsWithinIio, instNeBotNhdsWithinIoi, continuous_postcomp, continuous_postcomp', continuous_precomp, continuous_precomp', continuous_restrict, continuous_restrict_apply, continuous_restrictβ‚‚, continuous_restrictβ‚‚_apply, discreteTopology, induced_precomp, induced_precomp', induced_restrict, induced_restrict_sUnion, preimage_mem_nhds, isDiscrete_iff_discreteTopology, discreteTopology, nhds_eq, nhds_mk, dense_iff, discreteTopology, inclusion, piMap, sigmaMk, subtypeVal, uliftDown, codRestrict, inclusion, piMap, restrict, sigmaMk, subtypeVal, uliftDown, codRestrict, of_codRestrict, piMap, subtypeVal, inclusion, piMap, restrict, sigmaMk, restrictPreimage_isOpen, isEmbedding_sigmaMap, isInducing_sigmaMap, isOpenEmbedding_sigmaMap, isClosed_iff, isOpen_iff, closure_subtype, comap_nhdsWithin_range, comap_sigmaMk_nhds, continuousAt_apply, continuousAt_codRestrict_iff, continuousAt_pi, continuousAt_pi', continuousAt_subtype_val, continuous_apply, continuous_apply_apply, continuous_bool_rng, continuous_inclusion, continuous_map_of_le, continuous_map_sInf, continuous_mulSingle, continuous_ofAdd, continuous_ofDual, continuous_ofMul, continuous_pi, continuous_pi_iff, continuous_quot_lift, continuous_quot_mk, continuous_quotient_mk', continuous_rangeFactorization_iff, continuous_sigma, continuous_sigmaMk, continuous_sigma_iff, continuous_sigma_map, continuous_single, continuous_subtype_val, continuous_toAdd, continuous_toDual, continuous_toMul, continuous_uliftDown, continuous_uliftMap, continuous_uliftUp, continuous_update, denseRange_inclusion_iff, exists_finset_piecewise_mem_of_mem_nhds, exists_open_dense_of_open_dense_subtype, frontier_inter_open_inter, induced_to_pi, inducing_iInf_to_pi, inducing_sigma, instCompactSpaceAdditive, instCompactSpaceMultiplicative, instDiscreteTopologyAdditive, instDiscreteTopologyMultiplicative, instDiscreteTopologySubtype, instDiscreteTopologyULift, instLocallyCompactSpaceAdditive, instLocallyCompactSpaceMultiplicative, instNoncompactSpaceAdditive, instNoncompactSpaceMultiplicative, instWeaklyLocallyCompactSpaceAdditive, instWeaklyLocallyCompactSpaceMultiplicative, interior_pi_set, isClosedMap_ofAdd, isClosedMap_ofDual, isClosedMap_ofMul, isClosedMap_sigmaMk, isClosedMap_toAdd, isClosedMap_toDual, isClosedMap_toMul, isClosed_preimage_val, isClosed_range_sigmaMk, isClosed_set_pi, isClosed_sigma_iff, isDiscrete_iff_discreteTopology, isOpenMap_ofAdd, isOpenMap_ofDual, isOpenMap_ofMul, isOpenMap_sigma, isOpenMap_sigmaMk, isOpenMap_sigma_map, isOpenMap_toAdd, isOpenMap_toDual, isOpenMap_toMul, isOpen_pi_iff, isOpen_pi_iff', isOpen_range_sigmaMk, isOpen_set_pi, isOpen_sigma_fst_preimage, isOpen_sigma_iff, isQuotientMap_quot_mk, isQuotientMap_quotient_mk', map_nhds_subtype_coe_eq_nhds, map_nhds_subtype_val, mem_nhds_of_pi_mem_nhds, mem_nhds_subtype, nhdsSet_prod_le, nhdsWithin_subtype_eq_bot_iff, nhds_ne_subtype_eq_bot_iff, nhds_ne_subtype_neBot_iff, nhds_ofAdd, nhds_ofDual, nhds_ofMul, nhds_pi, nhds_subtype, nhds_subtype_eq_comap, nhds_subtype_eq_comap_nhdsWithin, nhds_toAdd, nhds_toDual, nhds_toMul, pi_eq_generateFrom, pi_generateFrom_eq, pi_generateFrom_eq_finite, set_pi_mem_nhds, set_pi_mem_nhds_iff, tendsto_pi_nhds, tendsto_subtype_rng
249
Total264

CofiniteTopology

Definitions

NameCategoryTheorems
instInhabited πŸ“–CompOpβ€”
instTopologicalSpace πŸ“–CompOp
12 mathmath: instT1SpaceCofiniteTopology, continuous_of, mem_nhds_iff, nhds_eq, TopologicalSpace.instNoetherianSpaceCofiniteTopology, t1Space_TFAE, isClosed_iff, instIrreducibleSpaceCofiniteTopologyOfInfinite, t1Space_iff_continuous_cofinite_of, OnePoint.not_continuous_cofiniteTopology_of_symm, isOpen_iff, isOpen_iff'
of πŸ“–CompOp
4 mathmath: continuous_of, t1Space_TFAE, t1Space_iff_continuous_cofinite_of, OnePoint.not_continuous_cofiniteTopology_of_symm

Theorems

NameKindAssumesProvesValidatesDepends On
isClosed_iff πŸ“–mathematicalβ€”IsClosed
CofiniteTopology
instTopologicalSpace
Set.univ
Set.Finite
β€”compl_compl
isOpen_iff πŸ“–mathematicalβ€”IsOpen
CofiniteTopology
instTopologicalSpace
Set.Finite
Compl.compl
Set
Set.instCompl
β€”β€”
isOpen_iff' πŸ“–mathematicalβ€”IsOpen
CofiniteTopology
instTopologicalSpace
Set
Set.instEmptyCollection
Set.Finite
Compl.compl
Set.instCompl
β€”β€”
mem_nhds_iff πŸ“–mathematicalβ€”Set
CofiniteTopology
Filter
Filter.instMembership
nhds
instTopologicalSpace
Set.instMembership
Set.Finite
Compl.compl
Set.instCompl
β€”nhds_eq
nhds_eq πŸ“–mathematicalβ€”nhds
CofiniteTopology
instTopologicalSpace
Filter
Filter.instSup
Filter.instPure
Filter.cofinite
β€”Filter.ext
mem_nhds_iff
Filter.mem_sup
Filter.mem_of_superset
Set.Subset.rfl

Continuous

Theorems

NameKindAssumesProvesValidatesDepends On
codRestrict πŸ“–mathematicalContinuous
Set
Set.instMembership
Set.Elem
instTopologicalSpaceSubtype
Set.codRestrict
β€”β€”
finCons πŸ“–mathematicalContinuous
Pi.topologicalSpace
Fin.consβ€”continuous_iff_continuousAt
ContinuousAt.finCons
continuousAt
finInit πŸ“–mathematicalContinuous
Pi.topologicalSpace
Fin.initβ€”continuous_iff_continuousAt
ContinuousAt.finInit
continuousAt
finInsertNth πŸ“–mathematicalContinuous
Pi.topologicalSpace
Fin.succAbove
Fin.insertNthβ€”continuous_iff_continuousAt
ContinuousAt.finInsertNth
continuousAt
finSnoc πŸ“–mathematicalContinuous
Pi.topologicalSpace
Fin.snocβ€”continuous_iff_continuousAt
ContinuousAt.finSnoc
continuousAt
finTail πŸ“–mathematicalContinuous
Pi.topologicalSpace
Fin.tailβ€”continuous_iff_continuousAt
ContinuousAt.finTail
continuousAt
matrixVecCons πŸ“–mathematicalContinuous
Pi.topologicalSpace
Matrix.vecConsβ€”finCons
piMap πŸ“–mathematicalContinuousPi.topologicalSpace
Pi.map
β€”continuous_pi
comp
continuous_apply
quotient_lift πŸ“–mathematicalContinuousinstTopologicalSpaceQuotientβ€”continuous_coinduced_dom
quotient_liftOn' πŸ“–mathematicalContinuousinstTopologicalSpaceQuotient
Quotient.liftOn'
β€”quotient_lift
quotient_map' πŸ“–mathematicalContinuous
Relator.LiftFun
instTopologicalSpaceQuotient
Quotient.map'
β€”quotient_lift
comp
continuous_quotient_mk'
rangeFactorization πŸ“–mathematicalContinuousSet.Elem
Set.range
instTopologicalSpaceSubtype
Set
Set.instMembership
Set.rangeFactorization
β€”continuous_rangeFactorization_iff
restrict πŸ“–mathematicalSet.MapsTo
Continuous
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
Set.MapsTo.restrict
β€”codRestrict
comp
continuous_subtype_val
restrictPreimage πŸ“–mathematicalContinuousSet.Elem
Set.preimage
instTopologicalSpaceSubtype
Set
Set.instMembership
Set.restrictPreimage
β€”restrict
Set.mapsTo_preimage
sigma_map πŸ“–mathematicalContinuousinstTopologicalSpaceSigma
Sigma.map
β€”continuous_sigma_map
subtype_coind πŸ“–mathematicalContinuousinstTopologicalSpaceSubtype
Subtype.coind
β€”β€”
subtype_map πŸ“–mathematicalContinuousinstTopologicalSpaceSubtype
Subtype.map
β€”comp
continuous_subtype_val
subtype_mk πŸ“–mathematicalContinuousinstTopologicalSpaceSubtypeβ€”continuous_induced_rng
subtype_val πŸ“–β€”Continuous
instTopologicalSpaceSubtype
β€”β€”comp
continuous_subtype_val
update πŸ“–mathematicalContinuous
Pi.topologicalSpace
Function.updateβ€”continuous_iff_continuousAt
ContinuousAt.update
continuousAt

ContinuousAt

Theorems

NameKindAssumesProvesValidatesDepends On
codRestrict πŸ“–mathematicalSet
Set.instMembership
ContinuousAt
Set.Elem
instTopologicalSpaceSubtype
Set.codRestrict
β€”continuousAt_codRestrict_iff
finCons πŸ“–mathematicalContinuousAt
Pi.topologicalSpace
Fin.consβ€”Filter.Tendsto.finCons
tendsto
finInit πŸ“–mathematicalContinuousAt
Pi.topologicalSpace
Fin.initβ€”Filter.Tendsto.finInit
tendsto
finInsertNth πŸ“–mathematicalContinuousAt
Pi.topologicalSpace
Fin.succAbove
Fin.insertNthβ€”Filter.Tendsto.finInsertNth
tendsto
finSnoc πŸ“–mathematicalContinuousAt
Pi.topologicalSpace
Fin.snocβ€”Filter.Tendsto.finSnoc
tendsto
finTail πŸ“–mathematicalContinuousAt
Pi.topologicalSpace
Fin.tailβ€”Filter.Tendsto.finTail
tendsto
matrixVecCons πŸ“–mathematicalContinuousAt
Pi.topologicalSpace
Matrix.vecConsβ€”finCons
piMap πŸ“–mathematicalContinuousAtPi.topologicalSpace
Pi.map
β€”continuousAt_pi
comp
continuousAt_apply
restrict πŸ“–mathematicalSet.MapsTo
ContinuousAt
Set
Set.instMembership
Set.Elem
instTopologicalSpaceSubtype
Set.MapsTo.restrict
β€”codRestrict
comp
continuousAt_subtype_val
restrictPreimage πŸ“–mathematicalContinuousAt
Set
Set.instMembership
Set.preimage
Set.Elem
instTopologicalSpaceSubtype
Set.restrictPreimage
β€”restrict
Set.mapsTo_preimage
update πŸ“–mathematicalContinuousAt
Pi.topologicalSpace
Function.updateβ€”Filter.Tendsto.update
tendsto

Dense

Theorems

NameKindAssumesProvesValidatesDepends On
quotient πŸ“–mathematicalDenseinstTopologicalSpaceQuotient
Set.image
β€”DenseRange.dense_image
Function.Surjective.denseRange
Quotient.mk''_surjective
continuous_coinduced_rng

DenseRange

Theorems

NameKindAssumesProvesValidatesDepends On
quotient πŸ“–mathematicalDenseRangeinstTopologicalSpaceQuotientβ€”comp
Function.Surjective.denseRange
Quotient.mk''_surjective
continuous_coinduced_rng

DiscreteTopology

Theorems

NameKindAssumesProvesValidatesDepends On
isDiscrete πŸ“–mathematicalβ€”IsDiscreteβ€”β€”
of_subset πŸ“–mathematicalSet
Set.instHasSubset
DiscreteTopology
Set.Elem
instTopologicalSpaceSubtype
Set.instMembership
β€”Topology.IsEmbedding.discreteTopology
Topology.IsEmbedding.inclusion
preimage_of_continuous_injective πŸ“–mathematicalContinuousDiscreteTopology
Set.Elem
Set.preimage
instTopologicalSpaceSubtype
Set
Set.instMembership
β€”of_continuous_injective
Continuous.restrict
Function.Injective.injOn

Filter

Theorems

NameKindAssumesProvesValidatesDepends On
eventually_nhdsSet_prod_iff πŸ“–mathematicalβ€”Eventually
nhdsSet
instTopologicalSpaceProd
SProd.sprod
Set
Set.instSProd
nhds
β€”nhds_prod_eq

Filter.Eventually

Theorems

NameKindAssumesProvesValidatesDepends On
prod_nhdsSet πŸ“–mathematicalFilter.Eventually
nhdsSet
instTopologicalSpaceProd
SProd.sprod
Set
Set.instSProd
β€”nhdsSet_prod_le
Filter.mem_of_superset
Filter.prod_mem_prod

Filter.Tendsto

Theorems

NameKindAssumesProvesValidatesDepends On
apply_nhds πŸ“–β€”Filter.Tendsto
nhds
Pi.topologicalSpace
β€”β€”comp
ContinuousAt.tendsto
continuousAt_apply
finCons πŸ“–mathematicalFilter.Tendsto
nhds
Pi.topologicalSpace
Fin.consβ€”tendsto_pi_nhds
Fin.cons_zero
Fin.cons_succ
finInit πŸ“–mathematicalFilter.Tendsto
nhds
Pi.topologicalSpace
Fin.initβ€”tendsto_pi_nhds
apply_nhds
finInsertNth πŸ“–mathematicalFilter.Tendsto
nhds
Pi.topologicalSpace
Fin.succAbove
Fin.insertNthβ€”tendsto_pi_nhds
Fin.insertNth_apply_same
Fin.insertNth_apply_succAbove
finSnoc πŸ“–mathematicalFilter.Tendsto
nhds
Pi.topologicalSpace
Fin.snocβ€”tendsto_pi_nhds
Fin.snoc_last
Fin.snoc_castSucc
finTail πŸ“–mathematicalFilter.Tendsto
nhds
Pi.topologicalSpace
Fin.tailβ€”tendsto_pi_nhds
apply_nhds
matrixVecCons πŸ“–mathematicalFilter.Tendsto
nhds
Pi.topologicalSpace
Matrix.vecConsβ€”finCons
update πŸ“–mathematicalFilter.Tendsto
nhds
Pi.topologicalSpace
Function.updateβ€”tendsto_pi_nhds
eq_or_ne
Function.update_self
Function.update_of_ne
apply_nhds

Finset

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_restrict πŸ“–mathematicalβ€”Continuous
Pi.topologicalSpace
Finset
SetLike.instMembership
instSetLike
restrict
β€”continuous_pi
continuous_apply
continuous_restrict_apply πŸ“–mathematicalContinuousFinset
SetLike.instMembership
instSetLike
instTopologicalSpaceSubtype
restrict
β€”Continuous.comp
continuous_subtype_val
continuous_restrictβ‚‚ πŸ“–mathematicalFinset
instHasSubset
Continuous
Pi.topologicalSpace
SetLike.instMembership
instSetLike
restrictβ‚‚
β€”continuous_pi
continuous_apply
continuous_restrictβ‚‚_apply πŸ“–mathematicalFinset
instHasSubset
Continuous
SetLike.instMembership
instSetLike
instTopologicalSpaceSubtype
restrictβ‚‚β€”Continuous.comp
continuous_inclusion

Function.Surjective

Theorems

NameKindAssumesProvesValidatesDepends On
isEmbedding_comp πŸ“–mathematicalβ€”Topology.IsEmbedding
Pi.topologicalSpace
β€”Topology.isInducing_iff_nhds
nhds_pi
iInf_congr
Filter.comap_iInf
Filter.comap_comap
injective_comp_right

Homeomorph

Definitions

NameCategoryTheorems
ofEqSubtypes πŸ“–CompOp
1 mathmath: ofEqSubtypes_toEquiv
piCurry πŸ“–CompOp
2 mathmath: piCurry_apply, piCurry_symm_apply

Theorems

NameKindAssumesProvesValidatesDepends On
ofEqSubtypes_toEquiv πŸ“–mathematicalβ€”toEquiv
instTopologicalSpaceSubtype
ofEqSubtypes
Equiv.subtypeEquivProp
β€”β€”
piCurry_apply πŸ“–mathematicalβ€”DFunLike.coe
Homeomorph
Pi.topologicalSpace
EquivLike.toFunLike
instEquivLike
piCurry
β€”β€”
piCurry_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Homeomorph
Pi.topologicalSpace
EquivLike.toFunLike
instEquivLike
symm
piCurry
β€”β€”

IsClosed

Theorems

NameKindAssumesProvesValidatesDepends On
inter_preimage_val_iff πŸ“–mathematicalβ€”IsClosed
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
Set.preimage
Set.instInter
β€”Subtype.image_preimage_coe
isClosedMap_subtype_val
preimage_val
Subtype.preimage_coe_self_inter
isClosedEmbedding_subtypeVal πŸ“–mathematicalβ€”Topology.IsClosedEmbedding
Set
Set.instMembership
instTopologicalSpaceSubtype
β€”Topology.IsClosedEmbedding.subtypeVal
isClosedMap_inclusion πŸ“–mathematicalSet
Set.instHasSubset
IsClosedMap
Set.Elem
instTopologicalSpaceSubtype
Set.instMembership
Set.inclusion
β€”IsClosedMap.subtype_map
IsClosedMap.id
isClosedMap_subtype_val πŸ“–mathematicalβ€”IsClosedMap
Set
Set.instMembership
instTopologicalSpaceSubtype
β€”Topology.IsClosedEmbedding.isClosedMap
isClosedEmbedding_subtypeVal
preimage_val πŸ“–mathematicalβ€”IsClosed
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
Set.preimage
β€”preimage
continuous_subtype_val
trans πŸ“–mathematicalβ€”IsClosed
Set.image
Set
Set.instMembership
β€”isClosed_induced_iff
Subtype.image_preimage_coe
inter

IsClosedMap

Theorems

NameKindAssumesProvesValidatesDepends On
codRestrict πŸ“–mathematicalIsClosedMap
Set
Set.instMembership
Set.Elem
instTopologicalSpaceSubtype
Set.codRestrict
β€”β€”
mapsToRestrict πŸ“–mathematicalIsClosedMap
Set.MapsTo
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
Set.MapsTo.restrict
β€”codRestrict
restrict
restrict πŸ“–mathematicalIsClosedMapSet.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
Set.restrict
β€”comp
IsClosed.isClosedMap_subtype_val
subtype_coind πŸ“–mathematicalIsClosedMapinstTopologicalSpaceSubtype
Subtype.coind
β€”β€”
subtype_map πŸ“–mathematicalIsClosedMap
Set
Set.instMembership
instTopologicalSpaceSubtype
Subtype.map
β€”comp
IsClosed.isClosedMap_subtype_val
subtype_mk πŸ“–mathematicalIsClosedMapinstTopologicalSpaceSubtypeβ€”Set.ext
IsClosed.preimage
continuous_subtype_val

IsDiscrete

Theorems

NameKindAssumesProvesValidatesDepends On
mono πŸ“–β€”IsDiscrete
Set
Set.instHasSubset
β€”β€”DiscreteTopology.of_subset
to_subtype
to_subtype πŸ“–mathematicalIsDiscreteDiscreteTopology
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
β€”β€”

IsOpen

Theorems

NameKindAssumesProvesValidatesDepends On
inter_preimage_val_iff πŸ“–mathematicalIsOpenSet.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
Set.preimage
Set.instInter
β€”Subtype.image_preimage_coe
isOpenMap_subtype_val
preimage_val
Subtype.preimage_coe_self_inter
isOpenEmbedding_subtypeVal πŸ“–mathematicalIsOpenTopology.IsOpenEmbedding
Set
Set.instMembership
instTopologicalSpaceSubtype
β€”Topology.IsEmbedding.subtypeVal
Subtype.range_coe
isOpenMap_inclusion πŸ“–mathematicalIsOpen
Set
Set.instHasSubset
IsOpenMap
Set.Elem
instTopologicalSpaceSubtype
Set.instMembership
Set.inclusion
β€”IsOpenMap.subtype_map
IsOpenMap.id
isOpenMap_subtype_val πŸ“–mathematicalIsOpenIsOpenMap
Set
Set.instMembership
instTopologicalSpaceSubtype
β€”Topology.IsOpenEmbedding.isOpenMap
isOpenEmbedding_subtypeVal
preimage_val πŸ“–mathematicalIsOpenSet.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
Set.preimage
β€”preimage
continuous_subtype_val
trans πŸ“–mathematicalIsOpen
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
Set.imageβ€”isOpen_induced_iff
Subtype.image_preimage_coe
inter

IsOpenMap

Theorems

NameKindAssumesProvesValidatesDepends On
codRestrict πŸ“–mathematicalIsOpenMap
Set
Set.instMembership
Set.Elem
instTopologicalSpaceSubtype
Set.codRestrict
β€”β€”
mapsToRestrict πŸ“–mathematicalIsOpenMap
IsOpen
Set.MapsTo
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
Set.MapsTo.restrict
β€”codRestrict
restrict
piMap πŸ“–mathematicalIsOpenMapPi.topologicalSpace
Pi.map
β€”of_nhds_le
nhds_pi
Filter.map_piMap_pi
Filter.pi_mono
nhds_le
restrict πŸ“–mathematicalIsOpenMap
IsOpen
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
Set.restrict
β€”comp
IsOpen.isOpenMap_subtype_val
subtype_coind πŸ“–mathematicalIsOpenMapinstTopologicalSpaceSubtype
Subtype.coind
β€”β€”
subtype_map πŸ“–mathematicalIsOpenMap
IsOpen
Set
Set.instMembership
instTopologicalSpaceSubtype
Subtype.map
β€”comp
IsOpen.isOpenMap_subtype_val
subtype_mk πŸ“–mathematicalIsOpenMapinstTopologicalSpaceSubtypeβ€”Set.ext
IsOpen.preimage
continuous_subtype_val

IsOpenQuotientMap

Theorems

NameKindAssumesProvesValidatesDepends On
piMap πŸ“–mathematicalIsOpenQuotientMapPi.topologicalSpace
Pi.map
β€”Function.Surjective.piMap
surjective
Continuous.piMap
continuous
IsOpenMap.piMap
isOpenMap
Filter.Eventually.of_forall

MapClusterPt

Theorems

NameKindAssumesProvesValidatesDepends On
curry_prodMap πŸ“–mathematicalβ€”MapClusterPt
instTopologicalSpaceProd
Filter.curry
β€”Filter.HasBasis.mapClusterPt_iff_frequently
Filter.HasBasis.prod_nhds
Filter.basis_sets
Filter.frequently_curry_iff
Filter.Frequently.mono
mapClusterPt_iff_frequently
prodMap πŸ“–mathematicalβ€”MapClusterPt
instTopologicalSpaceProd
SProd.sprod
Filter
Filter.instSProd
β€”mono
curry_prodMap
Filter.map_mono
Filter.curry_le_prod

OrderDual

Definitions

NameCategoryTheorems
instTopologicalSpace πŸ“–CompOp
46 mathmath: Topology.isUpper_orderDual, instIsTopologicalGroup, instNeBotNhdsWithinIio, instIsUpper, instSeparableSpaceOrderDual, borelSpace, supConvergenceClass, instFirstCountableTopologyOrderDual, instIsLower, instCompactIccSpaceOrderDual, instContinuousAddOrderDual, instIsLowerSet, continuous_ofDual, Topology.isUpperSet_orderDual, instClosedIciTopologyOrderDual, isClosedMap_toDual, instBoundedGENhdsClassOrderDual, instContinuousNeg, isClosedMap_ofDual, instBoundedLENhdsClassOrderDual, topologicalLattice, instContinuousInv, instIsTopologicalAddGroup, instContinuousConstVAddOrderDual, continuous_toDual, nhds_ofDual, isOpenMap_ofDual, opensMeasurableSpace, infConvergenceClass, instNeBotNhdsWithinIoi, instIsUpperSet, instDiscreteTopology, instOrderClosedTopologyOrderDual, instOrderTopologyOrderDual, Topology.isLowerSet_orderDual, continuousInf, instContinuousMulOrderDual, Topology.isLower_orderDual, instHasUpperLowerClosureOrderDual, nhds_toDual, Dense.orderDual, continuousSup, instContinuousConstSMulOrderDual, isOpenMap_toDual, instSecondCountableTopologyOrderDual, instClosedIicTopologyOrderDual

Theorems

NameKindAssumesProvesValidatesDepends On
instDiscreteTopology πŸ“–mathematicalβ€”DiscreteTopology
OrderDual
instTopologicalSpace
β€”β€”
instNeBotNhdsWithinIio πŸ“–mathematicalβ€”Filter.NeBot
OrderDual
nhdsWithin
instTopologicalSpace
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toDual
Set.Iio
instPreorder
β€”β€”
instNeBotNhdsWithinIoi πŸ“–mathematicalβ€”Filter.NeBot
OrderDual
nhdsWithin
instTopologicalSpace
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toDual
Set.Ioi
instPreorder
β€”β€”

Pi

Definitions

NameCategoryTheorems
topologicalSpace πŸ“–CompOp
928 mathmath: pi_Iio_mem_nhds, comul_eq_adjoint, IsProperMap.pi_map, NumberField.mixedEmbedding.integral_comp_polarSpaceCoord_symm, NumberField.mixedEmbedding.fundamentalCone.expMapBasis_apply', ContinuousLinearMap.sum_comp_single, PiLp.continuousLinearEquiv_symm_apply, continuousInv, hasStrictFDerivAt_apply, differentiableWithinAt_finCons', Filter.coprodα΅’_cocompact, Equicontinuous.inducing_uniformFun_iff_pi, isCompact_stdSimplex, Path.Homotopic.comp_pi_eq_pi_comp, NumberField.mixedEmbedding.normAtComplexPlaces_mixedSpaceOfRealSpace, CommRingCat.HomTopology.mvPolynomialHomeomorph_apply_snd, Homeomorph.finTwoArrow_apply, NumberField.mixedEmbedding.lintegral_comp_polarCoord_symm, Continuous.matrix_blockDiag, NumberField.mixedEmbedding.fundamentalCone.interior_paramSet, NumberField.mixedEmbedding.measurable_polarCoordReal_symm, ContinuousMap.constPi_apply, isOpen_pi_iff, hasStrictFDerivAt_list_prod_finRange', ContinuousMultilinearMap.norm_iteratedFDerivComponent_le, NormedSpace.Dual.isClosed_image_polar_of_mem_nhds, Profinite.NobelingProof.injective_Ο€s', FundamentalGroupoidFunctor.piIso_hom, Homeomorph.piCongr_apply, hasFDerivAtFilter_pi, Homeomorph.finTwoArrow_symm_apply, hasFDerivAt_multiset_prod, AlternatingMap.continuous_of_bound, WeakBilin.isEmbedding, hasProd, Matrix.l2_opNorm_mulVec, thickenedIndicatorAux_tendsto_indicator_closure, GenLoop.fromLoop_apply, differentiableWithinAt_pi'', EquicontinuousOn.tendsto_uniformOnFun_iff_pi', ContinuousMap.toEquiv_homeoFnOfDiscrete, Set.UniformEquicontinuousOn.closure, WeakDual.isClosed_image_polar_of_mem_nhds, RestrictedProduct.continuous_rng_of_principal, stdSimplexHomeomorphUnitInterval_symm_apply_coe, isOpenMap_eval, t2Space, Profinite.NobelingProof.Products.span_nil_eq_top, ContinuousAlternatingMap.opNNNorm_pi, Function.compactSpace, PiNat.exists_retraction_subtype_of_isClosed, Topology.RelCWComplex.continuousOn_symm, has_continuous_neg', EquicontinuousOn.isClosed_range_pi_of_uniformOnFun, Topology.CWComplex.continuousOn, NumberField.mixedEmbedding.normAtPlace_polarCoord_symm_of_isComplex, NumberField.mixedEmbedding.fundamentalCone.abs_det_completeBasis_equivFunL_symm, Profinite.NobelingProof.GoodProducts.linearIndependent_iff_union_smaller, Profinite.NobelingProof.coe_Ο€s, HomotopyGroup.symmAt_indep, pi_Ioo_mem_nhds, deltaGenerated_eq_coinduced, Bornology.isVonNBounded_pi_iff, NumberField.mixedEmbedding.fundamentalCone.completeBasis_apply_of_ne, differentiableOn_pi, RestrictedProduct.continuous_coe, Function.locallyCompactSpace, Path.pi_coe, isClosed_setOf_lipschitzOnWith, locallyConvexSpace, ContinuousMap.specializes_coe, ContinuousAlternatingMap.piLIE_apply_apply, instTietzeExtension, MeasureTheory.Integrable.of_eval, pi_Ico_mem_nhds', Profinite.NobelingProof.instSubsingletonLocallyConstantElemForallBoolEmptyCollectionSetInt, UnitAddTorus.mFourierSubalgebra_coe, Homeomorph.piCongrLeft_symm_apply, Matrix.blockDiagonal_tsum, ContinuousMultilinearMap.piLinearEquiv_symm_apply, ContinuousAlternatingMap.coe_pi, instIsTopologicalSemiring, pi_Iic_mem_nhds', NumberField.mixedEmbedding.instIsAddHaarMeasureMixedSpaceVolume, continuous_equivFun_basis, ContinuousLinearMap.isCompact_image_coe_of_bounded_of_closed_image, NumberField.mixedEmbedding.fundamentalCone.compactSet_eq_union_aux₁, UnitAddTorus.mFourierSubalgebra_closure_eq_top, continuousAt_pi', HasFDerivWithinAt.continuousMultilinearMapCompContinuousLinearMap, NumberField.mixedEmbedding.polarCoordReal_apply, instConnectedSpaceForall, Homeomorph.funSplitAt_symm_apply, Profinite.NobelingProof.Products.max_eq_eval, Homeomorph.toEquiv_piCongr, cfcβ‚™_map_pi, isClosed_setOf_map_add, continuous_precomp, hasDerivWithinAt_pi, Profinite.NobelingProof.Products.eval_Ο€s, Homeomorph.toEquiv_piCongrLeft, ContinuousLinearMap.single_apply, Homeomorph.piCurry_apply, orderClosedTopology', Profinite.NobelingProof.GoodProducts.injective, MeasureTheory.ProbabilityMeasure.continuous_pi, stdSimplexHomeomorphUnitInterval_zero, IsClosed.lowerClosure_pi, Summable.matrix_blockDiag, GenLoop.homotopyTo_apply, differentiable_finCons', Fin.appendHomeomorph_apply, Function.update_exp, PiNat.isTopologicalBasis_cylinders, Homeomorph.sumArrowHomeomorphProdArrow_apply, hasStrictFDerivAt_pi', HasFDerivAt.continuousMultilinearMapCompContinuousLinearMap, LocallyConstant.eval_apply, PiLp.coe_continuousLinearEquiv, ContinuousMultilinearMap.linearDeriv_apply, NumberField.mixedEmbedding.polarSpaceCoord_target, NumberField.mixedEmbedding.negAt_apply_snd, EquicontinuousOn.tendsto_uniformOnFun_iff_pi, ContinuousAlternatingMap.piEquiv_apply, hasFDerivWithinAt_pi', ProbabilityTheory.IsGaussianProcess.hasGaussianLaw, ContinuousMap.piEquiv_symm_apply, fderivWithin_pi, RestrictedProduct.isOpenEmbedding_structureMap, HomotopyGroup.isUnital_auxGroup, UniformOnFun.isEmbedding_toFun_finite, Profinite.NobelingProof.GoodProducts.equiv_toFun_eq_eval, Fin.consEquivL_apply, Topology.RelCWComplex.continuousOn, NumberField.mixedEmbedding.fundamentalCone.expMap_target, Filter.Tendsto.coeFun, NumberField.mixedEmbedding.negAt_preimage, NumberField.mixedEmbedding.fundamentalCone.volume_frontier_normLeOne, MeasureTheory.charFunDual_pi', differentiable_apply, NumberField.mixedEmbedding.iUnion_negAt_plusPart_ae, Profinite.NobelingProof.Products.eval_Ο€s', Profinite.NobelingProof.GoodProducts.span_sum, Profinite.NobelingProof.GoodProducts.range_equiv_factorization, pi_Ico_mem_nhds, counit_eq_adjoint, Homeomorph.piCongrLeft_apply_apply, compRightL_apply, inseparable_pi, induced_restrict, ContinuousLinearMap.pi_apply, set_pi_mem_nhds, NumberField.mixedEmbedding.fundamentalCone.isCompact_compactSet, Path.trans_pi_eq_pi_trans, SimplexCategory.continuous_toTopMap, NumberField.mixedEmbedding.negAt_signSet_apply_isComplex, NumberField.mixedEmbedding.fundamentalCone.volume_interior_eq_volume_closure, PiLp.continuous_toLp, ContinuousMap.piMap_apply, GenLoop.loopHomeo_apply, UnitAddTorus.mFourierCoeff_toLp, ContinuousMap.coe_homeoFnOfDiscrete, BoxIntegral.Box.isCompact_Icc, HasOuterApproxClosed.tendsto_apprSeq, Profinite.NobelingProof.fin_comap_jointlySurjective, NumberField.mixedEmbedding.euclidean.stdOrthonormalBasis_map_eq, EquicontinuousOn.inducing_uniformOnFun_iff_pi', ContinuousLinearEquiv.piUnique_symm_apply, nhdsKer_singleton_pi, hasStrictFDerivAt_multiset_prod, supConvergenceClass', NumberField.mixedEmbedding.normAtComplexPlaces_polarSpaceCoord_symm, OpenPartialHomeomorph.pi_target, exists_retractionCantorSet, ContinuousLinearMap.isCompact_image_coe_closedBall, ContinuousLinearMap.isClosed_image_coe_closedBall, Profinite.NobelingProof.GoodProducts.spanFin, Profinite.NobelingProof.succ_exact, ContinuousLinearEquiv.finTwoArrow_symm_apply, NumberField.mixedEmbedding.fundamentalCone.logMap_expMapBasis, instPathConnectedSpaceElemForallRealStdSimplexOfNonempty, nhdsWithin_pi_univ_eq, ContinuousLinearMap.det_pi, ContinuousLinearMap.iInf_ker_proj, Equicontinuous.tendsto_uniformFun_iff_pi, Profinite.NobelingProof.GoodProducts.smaller_factorization, hasFDerivAt_finCons, Matrix.linfty_opNNNorm_eq_opNNNorm, hasFDerivWithinAt_finCons, MeasureTheory.closedCompactCylinders.isCompact, NumberField.mixedEmbedding.convexBodySum_compact, IsModuleTopology.continuous_bilinear_of_pi_fintype, has_continuous_inv', ContinuousMap.Homotopic.pi, Profinite.NobelingProof.Ο€s'_apply_apply, ContinuousLinearEquiv.piUnique_apply, AddMonoidHom.isClosed_range_coe, continuous_precomp', isCompact_closure_iff, FunOnFinite.continuous_linearMap, SimplexCategory.toTop_obj, NumberField.mixedEmbedding.fundamentalCone.subset_interior_normLeOne, HomotopyGroup.transAt_indep, ProfiniteGrp.denseRange_toLimit, ContinuousLinearMap.proj_apply, NumberField.mixedEmbedding.negAt_signSet_apply_isReal, summable_matrix_diagonal, isClosed_setOf_map_zero, exists_nat_nat_continuous_surjective_of_completeSpace, SimplexCategory.toTop_map, contMDiffWithinAt_pi_space, ContinuousLinearMap.isClosed_image_coe_of_bounded_of_weak_closed, differentiableOn_finCons', GenLoop.instContinuousEval, Profinite.NobelingProof.Products.eval_eq, locallyCompactSpace_of_finite, Matrix.linfty_opNNNorm_toMatrix, FundamentalGroupoidFunctor.piToPiTop_map, continuous_apply_apply, LinearIndependent.eventually, Homeomorph.piSplitAt_symm_apply, differentiableAt_apply, ContinuousMultilinearMap.range_toUniformOnFun, ContinuousLinearMap.pi_eq_zero, ContinuousLinearMap.pi_proj, ContinuousAlternatingMap.piEquiv_symm_apply, nhds_pi, NumberField.mixedEmbedding.instDiscreteTopologySubtypeMixedSpaceMemSubmoduleIntIdealLattice, differentiableAt_pi'', isClosedMap_restrict_of_compactSpace, OpenPartialHomeomorph.pi_source, PiLp.hasFDerivAt_toLp, ContinuousMap.homeoFnOfDiscrete_symm_apply, Homeomorph.sumArrowHomeomorphProdArrow_symm_apply, CFC.nnrpow_map_pi, ContinuousMap.inseparable_coe, UnitAddTorus.mFourier_add, instNeBotNhdsWithinIoi, SimplexCategory.toTopβ‚€_map, deriv_pi, Homeomorph.funUnique_apply, hasFDerivAt_apply, NumberField.mixedEmbedding.polarCoordReal_source, Profinite.NobelingProof.Products.evalFacProps, hasFTaylorSeriesUpToOn_pi', contMDiffOn_pi_space, PointwiseConvergenceCLM.isEmbedding_coeFn, NumberField.mixedEmbedding.fundamentalCone.prod_deriv_expMap_single, MeasureTheory.Measure.pi.isLocallyFiniteMeasure, UnitAddTorus.mFourier_zero, instBoundedLENhdsClass, topologicalGroup, Matrix.exp_diagonal, Matrix.l2_opNNNorm_mulVec, NumberField.mixedEmbedding.fundamentalCone.norm_expMapBasis, isCompact_pi_infinite, RestrictedProduct.continuous_rng_of_top, isOpen_pi_iff', instNeBotNhdsWithinIio, Asymptotics.IsLittleOTVS.pi, LinearMap.isClosed_range_coe, TopologicalSpace.productOfMemOpens_isEmbedding, hasFDerivWithinAt_finCons', InfiniteGalois.mulEquivToLimit_symm_continuous, opensMeasurableSpace, PointwiseConvergenceCLM.isInducing_inducingFn, HasSum.matrix_blockDiag', IsHomeomorph.pi_map, ContinuousMultilinearMap.hasBasis_nhds_zero, tendsto_indicator_const_iff_forall_eventually, UnitAddTorus.coeFn_mFourierLp, GenLoop.ext_iff, NumberField.mixedEmbedding.polarCoord_symm_apply, hasDerivAt_update, Homeomorph.piEquivPiSubtypeProd_apply, Finset.continuous_restrictβ‚‚, continuous_pi, Continuous.piMap, ContinuousAt.coeFun, MeasureTheory.Measure.pi.isHaarMeasure, AddHom.isClosed_range_coe, InfiniteGalois.isOpen_mulEquivToLimit_image_fixingSubgroup, OpenPartialHomeomorph.pi_apply, Preorder.continuous_frestrictLe, isClosed_stdSimplex, UnitAddTorus.mFourier_neg, Function.Surjective.isEmbedding_comp, SimplexCategory.toTopβ‚€_obj, Topology.IsOpenEmbedding.piMap, MeasureTheory.withDensity_tsum, isConnected_univ_pi, Profinite.IndexFunctor.surjective_Ο€_app, MeasureTheory.Measure.instIsLocallyFiniteMeasureForallVolumeOfSigmaFinite, Function.locallyCompactSpace_of_finite, Profinite.NobelingProof.continuous_swapTrue, hasFDerivAt_list_prod', EquicontinuousOn.isClosed_range_pi_of_uniformOnFun', hasStrictFDerivAt_finCons, TopCat.piFan_pt, Path.Homotopic.pi_lift, isClosed_antitoneOn, Module.Basis.equivFunL_symm_apply_repr, Profinite.NobelingProof.iso_map_bijective, closure_upperClosure_comm_pi, isClosed_set_pi, stdSimplex.continuous_map, Homeomorph.toEquiv_piCongrRight, NumberField.mixedEmbedding.euclidean.volumePreserving_toMixed, ContinuousAlternatingMap.hasStrictFDerivAt, NumberField.mixedEmbedding.negAt_apply_isReal_and_notMem, UniqueDiffOn.pi, ContinuousLinearMapWOT.isInducing_inducingFn, differentiableOn_pi'', DenseRange.piMap, RestrictedProduct.isEmbedding_coe_of_principal, FundamentalGroupoidFunctor.instIsIsoFanGrpdObjTopCatFundamentalGroupoidFunctorPiTopToPiCone, TopCat.piIsoPi_inv_Ο€_apply, GenLoop.continuous_fromLoop, Topology.IsClosedEmbedding.piMap, TopologicalSpace.productOfMemOpens_injective, NumberField.mixedEmbedding.fundamentalCone.expMap_basis_of_eq, NumberField.mixedEmbedding.volume_preserving_negAt, hasFDerivAt_finCons', instPolynormableSpaceForall, instProperConstSMulForall, NumberField.mixedEmbedding.fundamentalCone.prod_expMapBasis_pow, NumberField.mixedEmbedding.negAt_apply_isComplex, NumberField.mixedEmbedding.fundamentalCone.expMapBasis_closure_subset_compactSet, NumberField.mixedEmbedding.fundamentalCone.continuous_expMap, ContinuousMultilinearMap.coe_continuous, hasStrictDerivAt_finCons', ContinuousLinearEquiv.finTwoArrow_apply, hasStrictDerivAt_finCons, isClosed_setOf_map_smul, Profinite.NobelingProof.Products.eval_Ο€s_image', isClosedEmbedding_update, UnitAddTorus.mFourier_norm, GenLoop.toLoop_apply, ContinuousMultilinearMap.piLinearEquiv_apply, NumberField.mixedEmbedding.normAtComplexPlaces_normAtAllPlaces, pi_Ioc_mem_nhds, isCompact_univ_pi, NumberField.mixedEmbedding.fundamentalCone.expMap_smul, CommRingCat.HomTopology.isClosedEmbedding_hom, isOpen_setOf_affineIndependent, instContinuousStarForall, Set.OrdConnected.null_frontier, TopologicalSpace.productOfMemOpens_isInducing, Profinite.NobelingProof.factors_prod_eq_basis_of_ne, summable_matrix_blockDiagonal', Profinite.NobelingProof.continuous_projRestrict, NumberField.mixedEmbedding.mem_negAt_plusPart_of_mem, ContinuousLinearMap.continuousMultilinearMapOption_apply_eq_self, CFC.rpow_eq_rpow_pi, MeasureTheory.Measure.instIsAddHaarMeasureForallVolumeOfMeasurableAddOfSigmaFinite, Module.Basis.equivFunL_apply, PiNat.isOpen_cylinder, EquicontinuousOn.isClosed_range_uniformOnFun_iff_pi, hasFDerivAt_list_prod_finRange', HomotopyGroup.mul_spec, ContinuousMultilinearMap.hasStrictFDerivAt, ContinuousLinearMap.coe_pi, NumberField.mixedEmbedding.fundamentalCone.closure_normLeOne_subset, ContinuousMultilinearMap.pi_apply, ContinuousMultilinearMap.isUniformEmbedding_toUniformOnFun, pi_Ici_mem_nhds', Profinite.NobelingProof.continuous_CC'₁, ContinuousLinearMapWOT.isEmbedding_inducingFn, HasSum.matrix_diag, Finset.continuous_restrict, tendsto_indicator_const_iff_forall_eventually', GenLoop.fromLoop_symm_toLoop, NumberField.mixedEmbedding.convexBodySumFun_continuous, CommRingCat.HomTopology.mvPolynomialHomeomorph_symm_apply_hom, ProbabilityTheory.IsGaussianProcess.hasGaussianLaw_increments, PiNat.isOpen_iff_dist, exists_nat_bool_continuous_surjective_of_compact, Summable.matrix_blockDiag', MeasureTheory.mem_closedCompactCylinders, tendsto_pi_nhds, NumberField.mixedEmbedding.fundamentalCone.normAtAllPlaces_mem_fundamentalCone_iff, ProbabilityTheory.Kernel.withDensity_tsum, Homeomorph.piCongrLeft_apply, pi_Ioi_mem_nhds', Summable.matrix_diag, ContinuousMultilinearMap.opNorm_pi, instPreconnectedSpaceForall, differentiableAt_finCons, Profinite.NobelingProof.GoodProducts.span, ContinuousMap.homeoFnOfDiscrete_apply, ContinuousLinearMap.continuousWithinAt_uncurry_of_multilinear, NumberField.mixedEmbedding.volume_preserving_mixedSpaceToRealMixedSpace_symm, continuousOn_apply, SmoothBumpCovering.embeddingPiTangent_injective_mfderiv, RestrictedProduct.nhds_eq_map_structureMap, CommRingCat.HomTopology.isEmbedding_hom, NumberField.mixedEmbedding.fundamentalCone.hasFDerivAt_expMap, Profinite.NobelingProof.isClosed_C0, Profinite.NobelingProof.GoodProducts.linearIndependent_iff_smaller, pi_eq_generateFrom, instT0Space, MeasureTheory.IsClosed.cylinder, Metric.PiNatEmbed.exists_closed_embedding_to_hilbert_cube, mem_closure_pi, ContinuousMultilinearMap.instContinuousEval, Topology.continuous_reorderRestrictProd, RestrictedProduct.topologicalSpace_eq_of_principal, differentiable_pi, compactSpace, ContinuousAlternatingMap.pi_apply, MulHom.isClosed_range_coe, discreteTopology, deriv_update, Continuous.coeFun, BoundedContinuousFunction.continuous_coe, OpenPartialHomeomorph.pi_toPartialEquiv, thickenedIndicator_tendsto_indicator_closure, NumberField.mixedEmbedding.fundamentalCone.continuous_expMapBasis, isOpen_deltaGenerated_iff, fderivWithin_continuousMultilinearMapCompContinuousLinearMap, hasFDerivAt_single, Topology.IsEmbedding.piMap, Fin.appendHomeomorph_toEquiv, instT35SpaceForall, Submodule.closure_coe_iSup_map_single, instContinuousSMulForall, ContinuousAlternatingMap.hasBasis_nhds_zero, NumberField.mixedEmbedding.fundamentalCone.expMap_symm_apply, NumberField.mixedEmbedding.polarCoord_source, SmoothBumpCovering.embeddingPiTangent_ker_mfderiv, Profinite.NobelingProof.GoodProducts.linearIndependent_iff_sum, compact_Icc_space', Topology.image_snd_preimageImageRestrict, NumberField.mixedEmbedding.continuous_norm, IsOpenMap.piMap, ContinuousAlternatingMap.toContinuousMultilinearMapCLM_comp_fderivCompContinuousLinearMap, MultilinearMap.continuous_of_bound, borelSpace, NumberField.mixedEmbedding.polarSpaceCoord_symm_apply, stdSimplexHomeomorphUnitInterval_apply_coe, NumberField.mixedEmbedding.fundamentalCone.norm_normAtAllPlaces, fderiv_update, dense_pi, DeltaGeneratedSpace.isOpen_iff, WeakDual.coeFn_continuous, isPathConnected_stdSimplex, Homeomorph.piCongrRight_apply, instOrderClosedTopologyForall, isOpen_set_pi, Perfect.exists_nat_bool_injection, continuous_pi_iff, Profinite.NobelingProof.e_mem_of_eq_true, ContinuousLinearMap.continuous_uncurry_of_multilinear, instT3SpaceForall, continuousAdd', Profinite.IndexFunctor.map_comp_Ο€_app, TopologicalSpace.isSeparable_pi, NumberField.mixedEmbedding.mixedSpaceToRealMixedSpace_apply, ContDiffMapSupportedIn.isUniformEmbedding_pi_structureMapCLM, ContinuousMultilinearMap.piEquiv_apply, Asymptotics.isBigOTVS_pi, summable, Profinite.NobelingProof.Ο€s_apply_apply, ContinuousMultilinearMap.isEmbedding_toUniformOnFun, TopologicalSpace.metrizableSpace_pi, GenLoop.toLoop_apply_coe, induced_precomp, NumberField.Units.instDiscrete_unitLattice, NumberField.mixedEmbedding.fundamentalCone.closure_paramSet, Profinite.NobelingProof.GoodProducts.finsuppSum_mem_span_eval, differentiableWithinAt_pi, Homeomorph.piCongrRight_symm, continuousNeg, MeasureTheory.memLp_pi_iff, NumberField.mixedEmbedding.polarCoord_target, ContinuousLinearMap.norm_single, Profinite.NobelingProof.GoodProducts.linearIndependent, NumberField.mixedEmbedding.fundamentalCone.hasFDerivAt_expMapBasis, NumberField.mixedEmbedding.normAtPlace_polarCoord_symm_of_isReal, MeasureTheory.Measure.instIsHaarMeasureForallVolumeOfMeasurableMulOfSigmaFinite, continuous_matrix_diag, continuous_postcomp, Profinite.NobelingProof.GoodProducts.square_commutes, derivWithin_pi, NumberField.mixedEmbedding.negAt_symm, Homeomorph.piUnique_apply, NumberField.InfinitePlace.denseRange_algebraMap_pi, GenLoop.loopHomeo_symm_apply, Set.Equicontinuous.closure, Module.Basis.continuous_toMatrix, isClosed_monotone, NumberField.mixedEmbedding.polarCoord_symm_eq, nhdsWithin_pi_neBot, ContinuousAlternatingMap.piLIE_symm_apply_apply, BoxIntegral.Box.exists_seq_mono_tendsto, instWeaklyLocallyCompactSpaceForallOfFinite, hasStrictFDerivAt_finCons', Profinite.NobelingProof.spanFinBasis.span, continuous_update, instCompletelyRegularSpaceForall, nhdsKer_pi, NumberField.mixedEmbedding.negAt_apply_isReal_and_mem, MeasureTheory.addHaarMeasure_eq_volume_pi, ContinuousMultilinearMap.cont, NumberField.mixedEmbedding.polarSpaceCoord_target', PiLp.toEquiv_homeomorph, hasStrictFDerivAt_list_prod_attach', NumberField.mixedEmbedding.volume_negAt_plusPart, deriv_single, continuous_restrict, Module.Basis.parallelepiped_eq_map, ContinuousAlternatingMap.piLinearEquiv_symm_apply, instR1SpaceForall, hasFDerivAt_update, TopCat.piIsoPi_hom_apply, pi_Iio_mem_nhds', isClosed_setOf_map_inv, ContinuousMap.piEquiv_apply, continuousAt_pi, ProbabilityTheory.iIndepFun.hasGaussianLaw, UniqueDiffOn.univ_pi, instRegularSpaceForall, hasDerivAtFilter_finCons', ContinuousAlternatingMap.range_toAlternatingMap, pi_generateFrom_eq, hasDerivWithinAt_finCons', NumberField.mixedEmbedding.iUnion_negAt_plusPart_union, ContinuousMultilinearMap.norm_iteratedFDeriv_le', hasStrictFDerivAt_finset_prod, WeakBilin.coeFn_continuous, UniqueDiffWithinAt.pi, NumberField.mixedEmbedding.homeoRealMixedSpacePolarSpace_apply_fst_ofIsReal, SmoothBumpCovering.embeddingPiTangent_injOn, pi_le_borel_pi, Continuous.matrix_blockDiag', Matrix.exp_blockDiagonal, hasFDerivAtFilter_finCons, ContinuousLinearMap.pi_comp, UnitAddTorus.mFourierSubalgebra_separatesPoints, ContinuousMap.isHomeomorph_coe, isClosed_setOf_map_mul, continuousMul', NumberField.mixedEmbedding.continuous_normAtPlace, Homeomorph.piFinTwo_apply, PiLp.continuous_ofLp, isCompact_iff, tendstoIccClassNhdsPi, HasSum.matrix_blockDiag, Homeomorph.piCurry_symm_apply, ContinuousMultilinearMap.iteratedFDerivComponent_apply, Profinite.NobelingProof.isClosed_proj, induced_restrict_sUnion, ContinuousMultilinearMap.hasFDerivAt, HomotopyGroup.one_def, PolishSpace.exists_nat_nat_continuous_surjective, MonoidHom.isClosed_range_coe, pi_Iic_mem_nhds, ContinuousLinearMap.continuousOn_uncurry_of_multilinear, NumberField.mixedEmbedding.injective_mixedSpaceOfRealSpace, NumberField.mixedEmbedding.fundamentalCone.expMapBasis_pos, TopologicalSpace.instSecondCountableTopologyForallOfCountable, ContinuousLinearMap.proj_pi, ContinuousMultilinearMap.piβ‚—α΅’_symm_apply, nhdsWithin_pi_eq, NumberField.mixedEmbedding.volume_preserving_homeoRealMixedSpacePolarSpace, CFC.nnrpow_eq_nnrpow_pi, Profinite.NobelingProof.isClosed_C', ContinuousMultilinearMap.hasBasis_nhds_zero_of_basis, SmoothBumpCovering.comp_embeddingPiTangent_mfderiv, IsClosed.exists_nat_bool_injection_of_not_countable, fderiv_continuousMultilinearMapCompContinuousLinearMap, RestrictedProduct.continuous_dom_pi, ContinuousAlternatingMap.hasBasis_nhds_zero_of_basis, NumberField.mixedEmbedding.fundamentalCone.expMap_apply, LinearMap.continuous_on_pi, Matrix.linfty_opNorm_toMatrix, NumberField.mixedEmbedding.instDiscreteTopologySubtypeMixedSpaceMemSubmoduleIntIntegerLattice, ContinuousMultilinearMap.opNNNorm_pi, stdSimplexHomeomorphUnitInterval_one, ContinuousMultilinearMap.coe_pi, ContinuousMultilinearMap.hasStrictFDerivAt_compContinuousLinearMap, Profinite.NobelingProof.continuous_projRestricts, ProbabilityTheory.iIndepFun_iff_charFunDual_pi', instBoundedGENhdsClass, TopologicalSpace.IsCompletelyPseudoMetrizableSpace.pi_countable, continuousMul, Profinite.NobelingProof.GoodProducts.smaller_mono, FunOnFinite.continuous_map, HomotopyGroup.inv_spec, closure_pi_set, hasSum, instCompactIccSpaceForall, OpenPartialHomeomorph.pi_symm_apply, mapsTo_tangentConeAt_pi, continuous_single, topologicalAddGroup, ContinuousLinearMap.hasFDerivAt_uncurry_of_multilinear, induced_to_pi, tendsto_indicator_const_iff_tendsto_pi_pure, SmoothBumpCovering.embeddingPiTangent_injective, Continuous.matrix_diag, HasStrictFDerivAt.continuousMultilinearMapCompContinuousLinearMap, Profinite.NobelingProof.GoodProducts.linearIndependentEmpty, PiLp.hasFDerivAt_ofLp, NumberField.mixedEmbedding.fundamentalCone.injective_expMapBasis, UniqueDiffWithinAt.univ_pi, FundamentalGroupoidFunctor.piToPiTop_obj_as, NumberField.mixedEmbedding.homeoRealMixedSpacePolarSpace_apply_fst_ofIsComplex, differentiableAt_finCons', locallyCompactSpace, NumberField.mixedEmbedding.lintegral_comp_polarCoordReal_symm, TopCat.partialSections.closed, NumberField.mixedEmbedding.measurable_polarCoord_symm, cfc_map_pi, NumberField.mixedEmbedding.fundamentalCone.expMap_source, withSeminorms_pi, Homeomorph.piUnique_symm_apply, Homeomorph.piEquivPiSubtypeProd_symm_apply, ProfiniteGrp.instCompactSpaceSubtypeForallCarrierToTopTotallyDisconnectedSpaceToProfiniteObjMemSubgroupLimitConePtAux, NumberField.mixedEmbedding.fundamentalCone.expMapBasis_apply'', ContinuousLinearMap.coe_proj, tendsto_mulIndicator_thickening_mulIndicator_closure, FundamentalGroupoidFunctor.piIso_inv, MeasureTheory.MemLp.of_eval, exists_compact_superset_iff, hasDerivAtFilter_finCons, det_fderivPiPolarCoordSymm, cantorToHilbert_continuous, ContinuousAddMonoidHom.isClosedEmbedding_coe, infConvergenceClass, ContinuousLinearMap.isCompact_closure_image_coe_of_bounded, NumberField.mixedEmbedding.polarCoord_apply, NumberField.mixedEmbedding.hasFDerivAt_polarCoordReal_symm, nhdsWithin_pi_eq_bot, ContinuousLinearMapWOT.continuous_inducingFn, tendsto_indicator_cthickening_indicator_closure, NumberField.mixedEmbedding.continuous_normAtAllPlaces, MeasureTheory.charFunDual_eq_pi_iff', hasFDerivAt_pi_polarCoord_symm, Profinite.NobelingProof.GoodProducts.span_iff_products, IsUpperSet.null_frontier, MeasureTheory.closedCompactCylinders.isClosed, hasStrictDerivAt_pi, Matrix.linfty_opNorm_eq_opNorm, Profinite.NobelingProof.GoodProducts.sum_equiv_comp_eval_eq_elim, MeasureTheory.isAddHaarMeasure_volume_pi, continuousWithinAt_pi, NumberField.mixedEmbedding.normAtPlace_negAt, ContinuousLinearMap.norm_pi_le_of_le, continuous_apply, inducing_iInf_to_pi, isClosed_setOf_map_neg, NumberField.mixedEmbedding.homeoRealMixedSpacePolarSpace_apply, instContinuousConstVAddForall, hasFDerivWithinAt_pi, GenLoop.Homotopic.equiv, differentiableWithinAt_apply, ContinuousAlternatingMap.hasFDerivWithinAt, ContinuousMultilinearMap.piEquiv_symm_apply, NumberField.mixedEmbedding.polarCoordReal_symm_target_ae_eq_univ, RestrictedProduct.isEmbedding_coe_of_top, continuousAt_apply, TopCat.piIsoPi_inv_Ο€, ContinuousLinearMap.norm_single_le_one, NumberField.mixedEmbedding.polarSpaceCoord_apply, NumberField.mixedEmbedding.negAt_apply_norm_isReal, Topology.IsInducing.piMap, CommRingCat.HomTopology.mvPolynomialHomeomorph_apply_fst, hasStrictFDerivAt_list_prod, ContinuousMultilinearMap.toUniformOnFun_toFun, hasDerivAtFilter_pi, instSigmaCompactSpaceForallOfFinite, NumberField.mixedEmbedding.fundamentalCone.expMap_add, instAlexandrovDiscreteOfFinite, hasDerivAt_finCons', NumberField.mixedEmbedding.fundamentalCone.expMapBasis_apply, instT1SpaceForall, Profinite.NobelingProof.CC_comp_zero, differentiable_pi'', UnitAddTorus.span_mFourier_closure_eq_top, ContinuousMap.homeoFnOfDiscrete_symm_apply_apply, hasDerivAt_single, RestrictedProduct.topologicalSpace_eq_of_bot, PiLp.coe_symm_continuousLinearEquiv, differentiableOn_apply, NumberField.mixedEmbedding.homeoRealMixedSpacePolarSpace_apply_snd, Profinite.NobelingProof.eval_eq_Ο€J, differentiableAt_pi, Fin.appendHomeomorph_symm_apply, Profinite.NobelingProof.continuous_CC'β‚€, ContinuousWithinAt.coeFun, continuousOn_pi', Profinite.NobelingProof.Products.evalFacProp, MeasureTheory.AnalyticSet_def, ZSpan.discreteTopology_pi_basisFun, continuous_restrictβ‚‚, MeasureTheory.Measure.pi.isAddHaarMeasure, ContinuousLinearMap.pi_proj_comp, MeasureTheory.integrable_pi_iff, NumberField.mixedEmbedding.polarSpaceCoord_source, Homeomorph.piCongrLeft_refl, Profinite.NobelingProof.Products.evalCons, Real.continuous_ofDigits, ContinuousMap.pi_eval, NumberField.mixedEmbedding.fundamentalCone.setLIntegral_expMapBasis_image, TopologicalSpace.instSeparableSpaceForallOfCountable, hasFDerivAtFilter_finCons', CFC.rpow_map_pi, UnitAddTorus.mFourier_single, Cube.insertAt_boundary, instIsTopologicalRing, pi_Ici_mem_nhds, Profinite.NobelingProof.one_sub_e_mem_of_false, isClosed_antitone, ProfiniteGrp.toLimitFun_continuous, contMDiff_pi_space, NumberField.mixedEmbedding.polarCoord_target_eq_polarCoordReal_target, induced_precomp', set_pi_mem_nhds_iff, continuous_mulSingle, MeasureTheory.charFunDual_pi, NumberField.mixedEmbedding.fundamentalCone.compactSet_ae, NumberField.mixedEmbedding.fundamentalCone.abs_det_fderiv_expMapBasis, NumberField.mixedEmbedding.instIsAddHaarMeasureRealMixedSpaceVolume, TopologicalSpace.instFirstCountableTopologyForallOfCountable, InfiniteGalois.algEquivToLimit_continuous, ContinuousAlternatingMap.differentiable, ENNReal.tsum_apply, RestrictedProduct.isEmbedding_coe_of_bot, CFC.sqrt_map_pi, NumberField.mixedEmbedding.fundamentalCone.realSpaceToLogSpace_expMap_symm, isCompact_iff_of_isClosed, Profinite.NobelingProof.injective_Ο€s, ContinuousAlternatingMap.continuousMapClass, NumberField.mixedEmbedding.measurableSet_negAt_plusPart, NumberField.mixedEmbedding.homeoRealMixedSpacePolarSpace_symm_apply, pi_Ioc_mem_nhds', ContinuousAt.piMap, NumberField.mixedEmbedding.euclidean.volumePreserving_toMixed_symm, Profinite.Nobeling.isClosedEmbedding, interior_pi_set, ContinuousMultilinearMap.piβ‚—α΅’_apply, Module.Basis.opNNNorm_le, infConvergenceClass', Profinite.NobelingProof.coe_Ο€s', Profinite.NobelingProof.continuous_proj, Homeomorph.funSplitAt_apply, ContinuousMap.Homotopic.piMap, hasStrictFDerivAt_list_prod', Profinite.NobelingProof.GoodProducts.range_equiv_smaller_toFun_bijective, EquicontinuousOn.isInducing_uniformOnFun_iff_pi, NumberField.mixedEmbedding.fundamentalCone.sum_expMap_symm_apply, Set.UniformEquicontinuous.closure, continuous_coeFun, Fin.continuous_append, pi_Icc_mem_nhds, RestrictedProduct.nhds_zero_eq_map_structureMap, isTopologicalBasis_pi, MeasureTheory.Measure.instIsOpenPosMeasureForallVolumeOfSigmaFinite, Matrix.exp_blockDiagonal', NumberField.mixedEmbedding.fundamentalCone.normAtAllPlaces_image_preimage_expMapBasis, Matrix.diagonal_tsum, ContinuousMap.eval_apply, pi_Ioi_mem_nhds, ContinuousMultilinearMap.continuousMapClass, PiLp.hasStrictFDerivAt_ofLp, ContinuousMultilinearMap.fderivCompContinuousLinearMap_apply, Module.Basis.continuous_coe_repr, NumberField.mixedEmbedding.normAtAllPlaces_mixedSpaceOfRealSpace, NumberField.mixedEmbedding.det_fderivPolarCoordRealSymm, nhdsWithin_pi_eq', Module.Basis.opNorm_le, RestrictedProduct.topologicalSpace_eq_of_top, differentiable_finCons, ContinuousAlternatingMap.opNorm_pi, NumberField.mixedEmbedding.fundamentalCone.expMap_sum, Profinite.NobelingProof.list_prod_apply, instContinuousVAddForall, IsOpenQuotientMap.piMap, IsModuleTopology.instPi, PiNat.exists_retraction_of_isClosed, instR0SpaceForall, PiLp.continuousLinearEquiv_apply, ContinuousAlternatingMap.instContinuousEval, NumberField.mixedEmbedding.fundamentalCone.normAtAllPlaces_normLeOne_eq_image, ContinuousLinearMap.coe_pi', tendsto_indicator_const_iff_tendsto_pi_pure', Submodule.topologicalClosure_iSup_map_single, instContinuousConstSMulForall, instContinuousAddForallOfIsTopologicalSemiring, ContinuousAlternatingMap.hasFDerivAt, IsClosed.upperClosure_pi, ContinuousLinearMap.pi_zero, opensMeasurableSpace_of_subsingleton, differentiableOn_finCons, Matrix.blockDiagonal'_tsum, Homeomorph.funUnique_symm_apply, pi_Ioo_mem_nhds', hasDerivAt_pi, ContinuousMap.HomotopyRel.pi_apply, pi_Icc_mem_nhds', IsLowerSet.null_frontier, NumberField.mixedEmbedding.polarCoordReal_target, hasDerivWithinAt_finCons, contMDiffAt_pi_space, TopologicalSpace.pseudoMetrizableSpace_pi, fderiv_pi, Set.EquicontinuousOn.closure, Homeomorph.piSplitAt_apply, Profinite.NobelingProof.GoodProducts.linearIndependent_iff_range, ContinuousLinearMap.isCompact_image_coe_of_bounded_of_weak_closed, Profinite.NobelingProof.GoodProducts.max_eq_eval, isClosed_monotoneOn, NumberField.mixedEmbedding.fundamentalCone.expMapBasis_source, continuousAdd, tendsto_mulIndicator_cthickening_mulIndicator_closure, continuous_postcomp', WeakDual.isClosed_image_coe_of_bounded_of_closed, NumberField.mixedEmbedding.integral_comp_polarCoord_symm, SmoothBumpCovering.embeddingPiTangent_coe, ContinuousAlternatingMap.coe_continuous, piChartedSpace_chartAt, NumberField.mixedEmbedding.fundamentalCone.expMap_pos, supConvergenceClass, Topology.CWComplex.continuousOn_symm, FundamentalGroupoidFunctor.proj_map, Homeomorph.piFinTwo_symm_apply, hasFDerivAtFilter_pi', isClosed_setOf_lipschitzWith, NumberField.mixedEmbedding.norm_negAt, ContinuousMultilinearMap.isUniformInducing_toUniformOnFun, ContinuousAlternatingMap.piLinearEquiv_apply, GenLoop.boundary, GenLoop.homotopyFrom_apply, GenLoop.const_apply, Profinite.NobelingProof.GoodProducts.linearIndependentSingleton, stdSimplex.instCompactSpace_coe, TopologicalSpace.IsCompletelyMetrizableSpace.pi_countable, NumberField.mixedEmbedding.fundamentalCone.normLeOne_eq_preimage, TopCat.piFan_Ο€_app, GenLoop.fromLoop_coe, hasFDerivAt_pi', borelSpace_of_subsingleton, ContinuousMultilinearMap.hasStrictFDerivAt_uncurry, Preorder.continuous_restrictLe, tendsto_indicator_thickening_indicator_closure, continuousOn_pi, Profinite.NobelingProof.Products.eval_Ο€s_image, MeasureTheory.Measure.instIsFiniteMeasureOnCompactsForallVolumeOfSigmaFinite, MeasureTheory.Measure.pi.isOpenPosMeasure, RestrictedProduct.continuous_rng_of_bot, Measurable.ennreal_tsum', instNeBotNhdsWithinUnivPi, closure_lowerClosure_comm_pi, Profinite.NobelingProof.isClosed_C1, ProfiniteAddGrp.instCompactSpaceSubtypeForallCarrierToTopTotallyDisconnectedSpaceToProfiniteObjMemAddSubgroupLimitConePtAux, NumberField.mixedEmbedding.integral_comp_polarCoordReal_symm, Fin.consEquivL_symm_apply, NumberField.mixedEmbedding.fundamentalCone.compactSet_eq_union, fderiv_single, GenLoop.homotopicTo, HasOuterApproxClosed.exAppr, Preorder.continuous_frestrictLeβ‚‚, hasFDerivAt_list_prod_attach', Set.EquicontinuousAt.closure, ContinuousLinearEquiv.piCongrRight_symm_apply, NumberField.mixedEmbedding.normAtPlace_mixedSpaceOfRealSpace, GenLoop.continuous_toLoop, NumberField.mixedEmbedding.measurable_polarSpaceCoord_symm, isOpen_setOf_linearIndependent, AnalyticOnNhd.eval_continuousLinearMap, hasStrictFDerivAt_pi, GenLoop.fromLoop_trans_toLoop, Asymptotics.isLittleOTVS_pi, Real.fromBinary_continuous, totallyDisconnectedSpace, FundamentalGroupoidFunctor.coneDiscreteComp_obj_mapCone, CantorScheme.VanishingDiam.map_continuous, NumberField.mixedEmbedding.fundamentalCone.injective_expMap, ContinuousLinearEquiv.coe_funUnique_symm, TopologicalSpace.IsSeparable.univ_pi, ContinuousLinearEquiv.piCongrRight_apply, Profinite.NobelingProof.factors_prod_eq_basis, NumberField.mixedEmbedding.fundamentalCone.expMap_basis_of_ne, isClosed_setOf_map_one, hasDerivAt_finCons, NumberField.mixedEmbedding.disjoint_negAt_plusPart, ContinuousLinearEquiv.piFinTwo_symm_apply, Preorder.continuous_restrictLeβ‚‚, Profinite.NobelingProof.factors_prod_eq_basis_of_eq, Asymptotics.IsBigOTVS.pi, summable_matrix_blockDiagonal, Profinite.NobelingProof.GoodProducts.union, specializes_pi, exp_def, ContinuousLinearEquiv.coe_funUnique, MvPolynomial.continuous_eval, NumberField.mixedEmbedding.fundamentalCone.expMapBasis_nonneg, hasFDerivAt_pi, ContinuousMonoidHom.isClosedEmbedding_coe, CategoryTheory.PreGaloisCategory.autEmbedding_isClosedEmbedding, GenLoop.instContinuousEvalConst, Set.EquicontinuousWithinAt.closure, differentiableWithinAt_finCons, DeltaGeneratedSpace.continuous_iff, NumberField.mixedEmbedding.fundamentalCone.logMap_normAtAllPlaces, NumberField.mixedEmbedding.fundamentalCone.normAtAllPlaces_normLeOne, ContinuousLinearMap.continuousAt_uncurry_of_multilinear, RestrictedProduct.isEmbedding_structureMap, hasFDerivWithinAt_apply, NumberField.mixedEmbedding.normAtAllPlaces_normAtAllPlaces, TopCat.piIsoPi_inv_Ο€_assoc, pi_generateFrom_eq_finite, multipliable, ContinuousLinearEquiv.piFinTwo_apply, MeasureTheory.Measure.pi.isFiniteMeasureOnCompacts, Metric.PiNatEmbed.exists_embedding_to_hilbert_cube, Profinite.NobelingProof.GoodProducts.max_eq_eval_unapply, isPreconnected_univ_pi, instIsTopologicalAddTorsorForall, Profinite.NobelingProof.succ_mono, NumberField.mixedEmbedding.mixedSpaceOfRealSpace_apply, NumberField.mixedEmbedding.fundamentalCone.closure_paramSet_ae_interior, CategoryTheory.PreGaloisCategory.autEmbedding_range_isClosed, coe_exp, NumberField.mixedEmbedding.lintegral_comp_polarSpaceCoord_symm, PiLp.hasStrictFDerivAt_toLp, hasFDerivAt_finset_prod

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_postcomp πŸ“–mathematicalContinuoustopologicalSpaceβ€”continuous_postcomp'
continuous_postcomp' πŸ“–mathematicalContinuoustopologicalSpaceβ€”continuous_pi
Continuous.comp
continuous_apply
continuous_precomp πŸ“–mathematicalβ€”Continuous
topologicalSpace
β€”continuous_precomp'
continuous_precomp' πŸ“–mathematicalβ€”Continuous
topologicalSpace
β€”continuous_pi
continuous_apply
continuous_restrict πŸ“–mathematicalβ€”Continuous
topologicalSpace
Set.Elem
Set
Set.instMembership
Set.restrict
β€”continuous_precomp'
continuous_restrict_apply πŸ“–mathematicalContinuousSet.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
Set.restrict
β€”Continuous.comp
continuous_subtype_val
continuous_restrictβ‚‚ πŸ“–mathematicalSet
Set.instHasSubset
Continuous
topologicalSpace
Set.Elem
Set.instMembership
Set.restrictβ‚‚
β€”continuous_pi
continuous_apply
continuous_restrictβ‚‚_apply πŸ“–mathematicalSet
Set.instHasSubset
Continuous
Set.Elem
instTopologicalSpaceSubtype
Set.instMembership
Set.restrictβ‚‚β€”Continuous.comp
continuous_inclusion
discreteTopology πŸ“–mathematicalDiscreteTopologytopologicalSpaceβ€”discreteTopology_iff_isOpen_singleton
Set.univ_pi_singleton
isOpen_set_pi
Set.finite_univ
isOpen_discrete
induced_precomp πŸ“–mathematicalβ€”TopologicalSpace.induced
topologicalSpace
iInf
TopologicalSpace
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
Function.eval
β€”induced_precomp'
induced_precomp' πŸ“–mathematicalβ€”TopologicalSpace.induced
topologicalSpace
iInf
TopologicalSpace
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
Function.eval
β€”induced_iInf
induced_compose
induced_restrict πŸ“–mathematicalβ€”TopologicalSpace.induced
Set.restrict
topologicalSpace
Set.Elem
Set
Set.instMembership
iInf
TopologicalSpace
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
Function.eval
β€”iInf_congr_Prop
induced_precomp'
induced_restrict_sUnion πŸ“–mathematicalβ€”TopologicalSpace.induced
Set.restrict
Set.sUnion
topologicalSpace
Set.Elem
Set
Set.instMembership
iInf
TopologicalSpace
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
β€”induced_restrict
iInf_congr_Prop
iInf_sUnion

Quotient

Theorems

NameKindAssumesProvesValidatesDepends On
preimage_mem_nhds πŸ“–mathematicalSet
Filter
Filter.instMembership
nhds
instTopologicalSpaceQuotient
Set.preimageβ€”preimage_nhds_coinduced

SetLike

Theorems

NameKindAssumesProvesValidatesDepends On
isDiscrete_iff_discreteTopology πŸ“–mathematicalβ€”IsDiscrete
coe
DiscreteTopology
instMembership
instTopologicalSpaceSubtype
β€”IsDiscrete.to_subtype

Sigma

Theorems

NameKindAssumesProvesValidatesDepends On
discreteTopology πŸ“–mathematicalDiscreteTopologyinstTopologicalSpaceSigmaβ€”iSup_eq_bot
DiscreteTopology.eq_bot
coinduced_bot
nhds_eq πŸ“–mathematicalβ€”nhds
instTopologicalSpaceSigma
Filter.map
β€”β€”
nhds_mk πŸ“–mathematicalβ€”nhds
instTopologicalSpaceSigma
Filter.map
β€”Topology.IsOpenEmbedding.map_nhds_eq
Topology.IsOpenEmbedding.sigmaMk

Subtype

Theorems

NameKindAssumesProvesValidatesDepends On
dense_iff πŸ“–mathematicalβ€”Dense
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
Set.instHasSubset
closure
Set.image
β€”Topology.IsInducing.dense_iff
Topology.IsInducing.subtypeVal
SetCoe.forall

Sum

Theorems

NameKindAssumesProvesValidatesDepends On
discreteTopology πŸ“–mathematicalβ€”DiscreteTopology
instTopologicalSpaceSum
β€”sup_eq_bot_iff
DiscreteTopology.eq_bot
coinduced_bot

Topology

Theorems

NameKindAssumesProvesValidatesDepends On
isEmbedding_sigmaMap πŸ“–mathematicalβ€”IsEmbedding
instTopologicalSpaceSigma
Sigma.map
β€”isInducing_sigmaMap
Function.Injective.sigma_map_iff
isInducing_sigmaMap πŸ“–mathematicalβ€”IsInducing
instTopologicalSpaceSigma
Sigma.map
β€”Filter.map_sigma_mk_comap
sigma_mk_injective
isOpenEmbedding_sigmaMap πŸ“–mathematicalβ€”IsOpenEmbedding
instTopologicalSpaceSigma
Sigma.map
β€”isEmbedding_sigmaMap

Topology.IsClosedEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
inclusion πŸ“–mathematicalSet
Set.instHasSubset
Topology.IsClosedEmbedding
Set.Elem
instTopologicalSpaceSubtype
Set.instMembership
Set.inclusion
β€”Topology.IsEmbedding.inclusion
Set.range_inclusion
piMap πŸ“–mathematicalTopology.IsClosedEmbeddingPi.topologicalSpace
Pi.map
β€”Topology.IsEmbedding.piMap
toIsEmbedding
Set.range_piMap
isClosed_set_pi
isClosed_range
sigmaMk πŸ“–mathematicalβ€”Topology.IsClosedEmbedding
instTopologicalSpaceSigma
β€”of_continuous_injective_isClosedMap
continuous_sigmaMk
sigma_mk_injective
isClosedMap_sigmaMk
subtypeVal πŸ“–mathematicalβ€”Topology.IsClosedEmbedding
instTopologicalSpaceSubtype
β€”Topology.IsEmbedding.subtypeVal
Subtype.range_coe_subtype
uliftDown πŸ“–mathematicalβ€”Topology.IsClosedEmbedding
ULift.topologicalSpace
β€”Topology.IsEmbedding.uliftDown
Function.Surjective.range_eq
ULift.down_surjective

Topology.IsEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
codRestrict πŸ“–mathematicalTopology.IsEmbedding
Set
Set.instMembership
Set.Elem
instTopologicalSpaceSubtype
Set.codRestrict
β€”of_comp
Continuous.codRestrict
continuous
continuous_subtype_val
inclusion πŸ“–mathematicalSet
Set.instHasSubset
Topology.IsEmbedding
Set.Elem
instTopologicalSpaceSubtype
Set.instMembership
Set.inclusion
β€”codRestrict
subtypeVal
piMap πŸ“–mathematicalTopology.IsEmbeddingPi.topologicalSpace
Pi.map
β€”Topology.IsInducing.piMap
toIsInducing
Function.Injective.piMap
injective
restrict πŸ“–mathematicalTopology.IsEmbedding
Set.MapsTo
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
Set.MapsTo.restrict
β€”of_comp
Continuous.restrict
continuous
continuous_subtype_val
comp
subtypeVal
sigmaMk πŸ“–mathematicalβ€”Topology.IsEmbedding
instTopologicalSpaceSigma
β€”Topology.IsClosedEmbedding.toIsEmbedding
Topology.IsClosedEmbedding.sigmaMk
subtypeVal πŸ“–mathematicalβ€”Topology.IsEmbedding
instTopologicalSpaceSubtype
β€”Topology.IsInducing.subtypeVal
Subtype.coe_injective
uliftDown πŸ“–mathematicalβ€”Topology.IsEmbedding
ULift.topologicalSpace
β€”ULift.down_injective

Topology.IsInducing

Theorems

NameKindAssumesProvesValidatesDepends On
codRestrict πŸ“–mathematicalTopology.IsInducing
Set
Set.instMembership
Set.Elem
instTopologicalSpaceSubtype
Set.codRestrict
β€”of_comp
Continuous.codRestrict
continuous
continuous_subtype_val
of_codRestrict πŸ“–β€”Set
Set.instMembership
Topology.IsInducing
Set.Elem
instTopologicalSpaceSubtype
Set.codRestrict
β€”β€”comp
subtypeVal
piMap πŸ“–mathematicalTopology.IsInducingPi.topologicalSpace
Pi.map
β€”nhds_pi
nhds_eq_comap
Filter.pi_comap
subtypeVal πŸ“–mathematicalβ€”Topology.IsInducing
Set
Set.instMembership
instTopologicalSpaceSubtype
β€”β€”

Topology.IsOpenEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
inclusion πŸ“–mathematicalSet
Set.instHasSubset
IsOpen
Set.Elem
instTopologicalSpaceSubtype
Set.instMembership
Set.preimage
Topology.IsOpenEmbedding
Set.inclusion
β€”Topology.IsEmbedding.inclusion
Set.range_inclusion
piMap πŸ“–mathematicalTopology.IsOpenEmbeddingPi.topologicalSpace
Pi.map
β€”Topology.IsEmbedding.piMap
toIsEmbedding
Set.range_piMap
isOpen_set_pi
Set.finite_univ
isOpen_range
restrict πŸ“–mathematicalTopology.IsOpenEmbedding
Set.MapsTo
IsOpen
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
Set.MapsTo.restrict
β€”Topology.IsEmbedding.restrict
isEmbedding
Set.MapsTo.range_restrict
Continuous.isOpen_preimage
continuous_subtype_val
isOpenMap
sigmaMk πŸ“–mathematicalβ€”Topology.IsOpenEmbedding
instTopologicalSpaceSigma
β€”of_continuous_injective_isOpenMap
continuous_sigmaMk
sigma_mk_injective
isOpenMap_sigmaMk

Topology.IsQuotientMap

Theorems

NameKindAssumesProvesValidatesDepends On
restrictPreimage_isOpen πŸ“–mathematicalTopology.IsQuotientMap
IsOpen
Set.Elem
Set.preimage
instTopologicalSpaceSubtype
Set
Set.instMembership
Set.restrictPreimage
β€”Topology.isQuotientMap_iff
Function.Surjective.restrictPreimage
surjective
Topology.IsOpenEmbedding.isOpen_iff_image_isOpen
IsOpen.isOpenEmbedding_subtypeVal
isOpen_preimage
IsOpen.preimage
continuous
Set.image_val_preimage_restrictPreimage

ULift

Definitions

NameCategoryTheorems
topologicalSpace πŸ“–CompOp
34 mathmath: ContinuousMap.Homotopy.apply_zero_path, instDiscreteTopologyULift, ContinuousMap.Homotopy.evalAt_eq, instIsTopologicalRingULift, ContinuousMap.Homotopy.ulift_apply, Topology.IsOpenEmbedding.uliftMap, compactSpace, continuous_uliftUp, Topology.IsClosedEmbedding.uliftMap, ContinuousMap.Homotopy.apply_one_path, instContinuousVAddULift, instIsTopologicalSemiringULift, instContinuousAddULift, Topology.IsEmbedding.uliftMap, instSigmaCompactSpaceULift, instT3Space, Topology.IsEmbedding.uliftDown, instContinuousSMulULift, instCompletelyNormalSpace, instBorelSpace, continuous_uliftDown, instT2Space, instIsTopologicalGroupULift, instContinuousInvULift, instT0Space, instContinuousNegULift, isClosed_iff, continuous_uliftMap, isOpen_iff, instT5Space, Topology.IsClosedEmbedding.uliftDown, instT4Space, instContinuousMulULift, instT1Space

Theorems

NameKindAssumesProvesValidatesDepends On
isClosed_iff πŸ“–mathematicalβ€”IsClosed
topologicalSpace
Set.preimage
β€”isOpen_compl_iff
isOpen_iff
Set.preimage_compl
isOpen_iff πŸ“–mathematicalβ€”IsOpen
topologicalSpace
Set.preimage
β€”topologicalSpace.eq_1
Equiv.ulift_apply
Equiv.coinduced_symm
isOpen_coinduced

(root)

Definitions

NameCategoryTheorems
CofiniteTopology πŸ“–CompOp
12 mathmath: instT1SpaceCofiniteTopology, CofiniteTopology.continuous_of, CofiniteTopology.mem_nhds_iff, CofiniteTopology.nhds_eq, TopologicalSpace.instNoetherianSpaceCofiniteTopology, t1Space_TFAE, CofiniteTopology.isClosed_iff, instIrreducibleSpaceCofiniteTopologyOfInfinite, t1Space_iff_continuous_cofinite_of, OnePoint.not_continuous_cofiniteTopology_of_symm, CofiniteTopology.isOpen_iff, CofiniteTopology.isOpen_iff'
IsDiscrete πŸ“–CompData
25 mathmath: IsDiscrete.of_openPartialHomeomorph, isDiscrete_iff_nhdsWithin, IsEmbedding.isDiscrete_range, Algebra.QuasiFinite.isDiscrete_comap_preimage_singleton, mem_codiscrete', AlgebraicGeometry.Scheme.Hom.isDiscrete_preimage_singleton, Function.locallyFinsuppWithin.discreteSupport, DiscreteTopology.isDiscrete, isClosed_and_discrete_iff, IsDiscrete.univ, Set.Finite.isDiscrete_of_subset_closedPoints, isDiscrete_univ_iff, IsDiscrete.of_nhdsWithin, IsOpenMap.isDiscrete_range, Set.Finite.isDiscrete, AlgebraicGeometry.locallyQuasiFinite_iff_isDiscrete_preimage_singleton, isDiscrete_iff_forall_exists_isOpen, isDiscrete_iff_nhdsNE, isDiscrete_iff_discreteTopology, IsLocalHomeomorphOn.isDiscrete_image_iff, IsClosed.tendsto_coe_cofinite_iff, Set.Subsingleton.isDiscrete, SetLike.isDiscrete_iff_discreteTopology, isDiscrete_of_codiscreteWithin, discreteTopology_of_codiscreteWithin
instTopologicalSpaceAdditive πŸ“–CompOp
17 mathmath: nhds_ofMul, instCompactSpaceAdditive, isClosedMap_ofMul, instContinuousAddAdditiveOfContinuousMul, instDiscreteTopologyAdditive, instNoncompactSpaceAdditive, instIsTopologicalAddGroupAdditiveOfIsTopologicalGroup, instLocallyCompactSpaceAdditive, continuous_ofMul, isOpenMap_ofMul, instTotallyDisconnectedSpaceAdditive, instWeaklyLocallyCompactSpaceAdditive, isClosedMap_toMul, continuous_toMul, nhds_toMul, instContinuousNegAdditiveOfContinuousInv, isOpenMap_toMul
instTopologicalSpaceMultiplicative πŸ“–CompOp
17 mathmath: instWeaklyLocallyCompactSpaceMultiplicative, instIsTopologicalGroupMultiplicativeOfIsTopologicalAddGroup, instContinuousInvMultiplicativeOfContinuousNeg, continuous_toAdd, instTotallyDisconnectedSpaceMultiplicative, instCompactSpaceMultiplicative, isClosedMap_ofAdd, nhds_toAdd, isClosedMap_toAdd, isOpenMap_toAdd, instLocallyCompactSpaceMultiplicative, instNoncompactSpaceMultiplicative, isOpenMap_ofAdd, instDiscreteTopologyMultiplicative, nhds_ofAdd, instContinuousMulMultiplicativeOfContinuousAdd, continuous_ofAdd
instTopologicalSpaceQuot πŸ“–CompOp
10 mathmath: TopologicalSpace.instSeparableSpaceQuot, continuous_quot_lift, Quot.locPathConnectedSpace, Quot.isGeneratedBy, continuous_quot_mk, Quot.compactSpace, Quot.LindelofSpace, Quot.deltaGeneratedSpace, Quot.lindelofSpace, isQuotientMap_quot_mk
instTopologicalSpaceQuotient πŸ“–CompOp
43 mathmath: Quotient.compactSpace, Quotient.instPathConnectedSpace, isOpenMap_quotient_mk'_add, isQuotientCoveringMap_quotientMk_of_properlyDiscontinuousSMul, Topology.IsQuotientMap.lift_apply, isQuotientMap_quotient_mk', Topology.IsQuotientMap.homeomorph_apply, Topology.IsQuotientMap.homeomorph_symm_apply, Quotient.instSequentialSpace, ContinuousConstSMul.secondCountableTopology, continuous_quotient_mk', AddAction.isClosedMap_quotient, Quotient.locPathConnectedSpace, isAddQuotientCoveringMap_quotientMk_of_properlyDiscontinuousVAdd, Quotient.isGeneratedBy, AddAction.isOpenQuotientMap_quotientMk, DenseRange.quotient, ContinuousConstVAdd.secondCountableTopology, t2Space_quotient_addAction_of_properVAdd, isOpenMap_quotient_mk'_mul, Quotient.instAlexandrovDiscrete, t2Space_of_properlyDiscontinuousVAdd_of_t2Space, Quotient.instConnectedSpace, MulAction.isOpenQuotientMap_quotientMk, Function.RightInverse.homeomorph_symm_apply, Quotient.deltaGeneratedSpace, Continuous.quotient_map', continuous_map_sInf, t2Space_quotient_mulAction_of_properSMul, TopologicalSpace.instSeparableSpaceQuotient, isCoveringMapOn_quotientMk_of_properlyDiscontinuousVAdd, continuous_map_of_le, isCoveringMapOn_quotientMk_of_properlyDiscontinuousSMul, Quotient.lindelofSpace, Continuous.quotient_lift, Quotient.LindelofSpace, instUCompactlyGeneratedSpaceQuotient, Function.RightInverse.homeomorph_apply, MulAction.isClosedMap_quotient, Dense.quotient, Continuous.quotient_liftOn', Quotient.borelSpace, t2Space_of_properlyDiscontinuousSMul_of_t2Space
instTopologicalSpaceSigma πŸ“–CompOp
77 mathmath: Sigma.isPreconnected_iff, isClosedMap_sigmaMk, ContinuousMap.exists_lift_sigma, instUCompactlyGeneratedSpaceSigma, TopCat.sigmaIsoSigma_hom_ΞΉ, deltaGenerated_eq_coinduced, TopologicalSpace.instSecondCountableTopologySigmaOfCountable, AlgebraicGeometry.sigmaMk_mk, TopologicalSpace.Fiber.sigmaIsoHom_inj, continuous_sigma_map, comap_sigmaMk_nhds, isOpenMap_sigma_map, TopCat.sigmaCofan_ΞΉ_app, instCompactSpaceSigmaOfFinite, instLindelofSpaceSigmaOfCountable, Sigma.instAlexandrovDiscrete, TopCat.sigmaIsoSigma_inv_apply, Topology.isInducing_sigmaMap, inducing_sigma, Stonean.effectiveEpiFamily_tfae, continuous_sigmaMk, Topology.IsClosedEmbedding.sigmaMk, Topology.isEmbedding_sigmaMap, IsHomeomorph.sigmaMap, ContinuousMap.isEmbedding_sigmaMk_comp, TopologicalSpace.Opens.isBasis_sigma, TopCat.sigmaIsoSigma_hom_ΞΉ_assoc, IsCompactOpenCovered.iff_isCompactOpenCovered_sigmaMk, Topology.IsEmbedding.sigmaMk, Continuous.sigma_map, instCompactlyGeneratedSpaceSigma, ContinuousMap.sigmaEquiv_symm_apply, TopologicalSpace.Fiber.sigmaIsoHom_apply, isClopen_range_sigmaMk, ContinuousMap.sigma_apply, ContinuousMap.sigmaMk_apply, isClosed_range_sigmaMk, ContinuousMap.sigmaEquiv_apply, instSigmaCompactSpaceSigmaOfCountable, continuous_sigma_iff, Sigma.nhds_mk, ContinuousMap.piComparison_fac, instExtremallyDisconnected, Sigma.instSequentialSpace, Set.isCompact_sigma, Homeomorph.sigmaProdDistrib_symm_apply, TopologicalSpace.IsTopologicalBasis.sigma, Sigma.locPathConnectedSpace, isClosed_sigma_iff, ContinuousMap.sigmaCodHomeomorph_symm_apply, isOpenMap_sigmaMk, Sigma.nhds_eq, CompHausLike.isIsoSigmaComparison, Topology.IsOpenEmbedding.sigmaMk, instTotallyDisconnectedSpaceSigma, TopologicalSpace.Fiber.sigmaIsoHom_surj, isOpen_range_sigmaMk, Sigma.t2Space, PrespectralSpace.sigma, continuous_sigma, TopCat.sigmaCofan_pt, Sigma.discreteTopology, isOpenMap_sigma, Topology.isOpenEmbedding_sigmaMap, Homeomorph.toEquiv_sigmaProdDistrib, TopCat.sigmaIsoSigma_hom_ΞΉ_apply, isOpen_sigma_iff, Sigma.isConnected_iff, CompHaus.effectiveEpiFamily_tfae, isOpen_sigma_fst_preimage, Sigma.isGeneratedBy, Homeomorph.sigmaProdDistrib_apply, Profinite.effectiveEpiFamily_tfae, Sigma.deltaGeneratedSpace, TopologicalSpace.IsCompletelyMetrizableSpace.sigma, Metric.Sigma.isOpen_iff, CompHausLike.instHasPropSigma

Theorems

NameKindAssumesProvesValidatesDepends On
closure_subtype πŸ“–mathematicalβ€”Set
Set.instMembership
closure
instTopologicalSpaceSubtype
Set.image
β€”closure_induced
comap_nhdsWithin_range πŸ“–mathematicalβ€”Filter.comap
nhdsWithin
Set.range
nhds
β€”Filter.comap_inf_principal_range
comap_sigmaMk_nhds πŸ“–mathematicalβ€”Filter.comap
nhds
instTopologicalSpaceSigma
β€”Topology.IsInducing.nhds_eq_comap
Topology.IsEmbedding.toIsInducing
Topology.IsEmbedding.sigmaMk
continuousAt_apply πŸ“–mathematicalβ€”ContinuousAt
Pi.topologicalSpace
β€”Continuous.continuousAt
continuous_apply
continuousAt_codRestrict_iff πŸ“–mathematicalSet
Set.instMembership
ContinuousAt
Set.Elem
instTopologicalSpaceSubtype
Set.codRestrict
β€”Topology.IsInducing.continuousAt_iff
Topology.IsInducing.subtypeVal
continuousAt_pi πŸ“–mathematicalβ€”ContinuousAt
Pi.topologicalSpace
β€”tendsto_pi_nhds
continuousAt_pi' πŸ“–mathematicalContinuousAtPi.topologicalSpaceβ€”continuousAt_pi
continuousAt_subtype_val πŸ“–mathematicalβ€”ContinuousAt
instTopologicalSpaceSubtype
β€”Continuous.continuousAt
continuous_subtype_val
continuous_apply πŸ“–mathematicalβ€”Continuous
Pi.topologicalSpace
β€”continuous_iInf_dom
continuous_induced_dom
continuous_apply_apply πŸ“–mathematicalβ€”Continuous
Pi.topologicalSpace
β€”Continuous.comp
continuous_apply
continuous_bool_rng πŸ“–mathematicalβ€”Continuous
instTopologicalSpaceBool
IsClopen
Set.preimage
Set
Set.instSingletonSet
β€”continuous_discrete_rng
instDiscreteTopologyBool
IsClopen.eq_1
isOpen_compl_iff
Set.preimage_compl
Bool.compl_singleton
continuous_inclusion πŸ“–mathematicalSet
Set.instHasSubset
Continuous
Set.Elem
instTopologicalSpaceSubtype
Set.instMembership
Set.inclusion
β€”Continuous.subtype_map
continuous_id
continuous_map_of_le πŸ“–mathematicalSetoid.instLE_mathlibContinuous
instTopologicalSpaceQuotient
Setoid.map_of_le
β€”continuous_coinduced_rng
continuous_map_sInf πŸ“–mathematicalSet
Set.instMembership
Continuous
InfSet.sInf
Setoid.instInfSet
instTopologicalSpaceQuotient
Setoid.map_sInf
β€”continuous_coinduced_rng
continuous_mulSingle πŸ“–mathematicalβ€”Continuous
Pi.topologicalSpace
Pi.mulSingle
β€”Continuous.update
continuous_const
continuous_id
continuous_ofAdd πŸ“–mathematicalβ€”Continuous
Multiplicative
instTopologicalSpaceMultiplicative
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Multiplicative.ofAdd
β€”continuous_id
continuous_ofDual πŸ“–mathematicalβ€”Continuous
OrderDual
OrderDual.instTopologicalSpace
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
β€”continuous_id
continuous_ofMul πŸ“–mathematicalβ€”Continuous
Additive
instTopologicalSpaceAdditive
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Additive.ofMul
β€”continuous_id
continuous_pi πŸ“–mathematicalContinuousPi.topologicalSpaceβ€”continuous_pi_iff
continuous_pi_iff πŸ“–mathematicalβ€”Continuous
Pi.topologicalSpace
β€”β€”
continuous_quot_lift πŸ“–mathematicalContinuousinstTopologicalSpaceQuotβ€”continuous_coinduced_dom
continuous_quot_mk πŸ“–mathematicalβ€”Continuous
instTopologicalSpaceQuot
β€”continuous_coinduced_rng
continuous_quotient_mk' πŸ“–mathematicalβ€”Continuous
instTopologicalSpaceQuotient
β€”continuous_coinduced_rng
continuous_rangeFactorization_iff πŸ“–mathematicalβ€”Continuous
Set.Elem
Set.range
instTopologicalSpaceSubtype
Set
Set.instMembership
Set.rangeFactorization
β€”Topology.IsInducing.continuous_iff
Topology.IsInducing.subtypeVal
continuous_sigma πŸ“–mathematicalContinuousinstTopologicalSpaceSigmaβ€”continuous_sigma_iff
continuous_sigmaMk πŸ“–mathematicalβ€”Continuous
instTopologicalSpaceSigma
β€”continuous_iSup_rng
continuous_coinduced_rng
continuous_sigma_iff πŸ“–mathematicalβ€”Continuous
instTopologicalSpaceSigma
β€”continuous_iSup_dom
continuous_coinduced_dom
continuous_sigma_map πŸ“–mathematicalβ€”Continuous
instTopologicalSpaceSigma
Sigma.map
β€”continuous_sigma_iff
Topology.IsEmbedding.continuous_iff
Topology.IsEmbedding.sigmaMk
continuous_single πŸ“–mathematicalβ€”Continuous
Pi.topologicalSpace
Pi.single
β€”Continuous.update
continuous_const
continuous_id
continuous_subtype_val πŸ“–mathematicalβ€”Continuous
instTopologicalSpaceSubtype
β€”continuous_induced_dom
continuous_toAdd πŸ“–mathematicalβ€”Continuous
Multiplicative
instTopologicalSpaceMultiplicative
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Multiplicative.toAdd
β€”continuous_id
continuous_toDual πŸ“–mathematicalβ€”Continuous
OrderDual
OrderDual.instTopologicalSpace
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
β€”continuous_id
continuous_toMul πŸ“–mathematicalβ€”Continuous
Additive
instTopologicalSpaceAdditive
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Additive.toMul
β€”continuous_id
continuous_uliftDown πŸ“–mathematicalβ€”Continuous
ULift.topologicalSpace
β€”continuous_induced_dom
continuous_uliftMap πŸ“–mathematicalContinuousULift.topologicalSpace
ULift.map
β€”Continuous.comp'
continuous_uliftUp
continuous_uliftDown
continuous_uliftUp πŸ“–mathematicalβ€”Continuous
ULift.topologicalSpace
β€”continuous_induced_rng
continuous_id
continuous_update πŸ“–mathematicalβ€”Continuous
instTopologicalSpaceProd
Pi.topologicalSpace
Function.update
β€”Continuous.update
continuous_fst
continuous_snd
denseRange_inclusion_iff πŸ“–mathematicalSet
Set.instHasSubset
DenseRange
Set.Elem
instTopologicalSpaceSubtype
Set.instMembership
Set.inclusion
closure
β€”DenseRange.eq_1
Subtype.dense_iff
Set.range_comp
Set.val_comp_inclusion
Subtype.range_coe
exists_finset_piecewise_mem_of_mem_nhds πŸ“–mathematicalSet
Filter
Filter.instMembership
nhds
Pi.topologicalSpace
Set.instMembership
Finset.piecewise
Finset.decidableMem
β€”nhds_pi
Finset.piecewise_eq_of_mem
Finset.mem_coe
mem_of_mem_nhds
exists_open_dense_of_open_dense_subtype πŸ“–mathematicalDense
IsOpen
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
Set.preimageβ€”dense_iff_inter_open
Set.nonempty_of_nonempty_preimage
IsOpen.preimage_val
frontier_inter_open_inter πŸ“–mathematicalIsOpenSet
Set.instInter
frontier
β€”Set.inter_comm
IsOpenMap.preimage_frontier_eq_frontier_preimage
IsOpen.isOpenMap_subtype_val
continuous_subtype_val
Subtype.preimage_coe_self_inter
induced_to_pi πŸ“–mathematicalβ€”TopologicalSpace.induced
Pi.topologicalSpace
iInf
TopologicalSpace
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
β€”induced_iInf
induced_compose
inducing_iInf_to_pi πŸ“–mathematicalβ€”Topology.IsInducing
iInf
TopologicalSpace
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
TopologicalSpace.induced
Pi.topologicalSpace
β€”induced_to_pi
inducing_sigma πŸ“–mathematicalβ€”Topology.IsInducing
instTopologicalSpaceSigma
IsOpen
Set
Set.instMembership
β€”Topology.IsInducing.comp
Topology.IsEmbedding.toIsInducing
Topology.IsEmbedding.sigmaMk
Topology.IsInducing.isOpen_iff
isOpen_range_sigmaMk
Set.range_sigmaMk
Topology.isInducing_iff_nhds
Topology.IsInducing.nhds_eq_comap
Filter.comap_comap
Filter.map_comap_of_mem
Filter.mp_mem
Filter.preimage_mem_comap
IsOpen.mem_nhds
Filter.univ_mem'
instCompactSpaceAdditive πŸ“–mathematicalβ€”CompactSpace
Additive
instTopologicalSpaceAdditive
β€”β€”
instCompactSpaceMultiplicative πŸ“–mathematicalβ€”CompactSpace
Multiplicative
instTopologicalSpaceMultiplicative
β€”β€”
instDiscreteTopologyAdditive πŸ“–mathematicalβ€”DiscreteTopology
Additive
instTopologicalSpaceAdditive
β€”β€”
instDiscreteTopologyMultiplicative πŸ“–mathematicalβ€”DiscreteTopology
Multiplicative
instTopologicalSpaceMultiplicative
β€”β€”
instDiscreteTopologySubtype πŸ“–mathematicalβ€”DiscreteTopology
instTopologicalSpaceSubtype
β€”bot_unique
isOpen_discrete
Set.preimage_image_eq
Subtype.val_injective
instDiscreteTopologyULift πŸ“–mathematicalβ€”DiscreteTopology
ULift.topologicalSpace
β€”Topology.IsEmbedding.discreteTopology
Topology.IsEmbedding.uliftDown
instLocallyCompactSpaceAdditive πŸ“–mathematicalβ€”LocallyCompactSpace
Additive
instTopologicalSpaceAdditive
β€”β€”
instLocallyCompactSpaceMultiplicative πŸ“–mathematicalβ€”LocallyCompactSpace
Multiplicative
instTopologicalSpaceMultiplicative
β€”β€”
instNoncompactSpaceAdditive πŸ“–mathematicalβ€”NoncompactSpace
Additive
instTopologicalSpaceAdditive
β€”β€”
instNoncompactSpaceMultiplicative πŸ“–mathematicalβ€”NoncompactSpace
Multiplicative
instTopologicalSpaceMultiplicative
β€”β€”
instWeaklyLocallyCompactSpaceAdditive πŸ“–mathematicalβ€”WeaklyLocallyCompactSpace
Additive
instTopologicalSpaceAdditive
β€”β€”
instWeaklyLocallyCompactSpaceMultiplicative πŸ“–mathematicalβ€”WeaklyLocallyCompactSpace
Multiplicative
instTopologicalSpaceMultiplicative
β€”β€”
interior_pi_set πŸ“–mathematicalβ€”interior
Pi.topologicalSpace
Set.pi
β€”Set.ext
set_pi_mem_nhds_iff
isClosedMap_ofAdd πŸ“–mathematicalβ€”IsClosedMap
Multiplicative
instTopologicalSpaceMultiplicative
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Multiplicative.ofAdd
β€”IsClosedMap.id
isClosedMap_ofDual πŸ“–mathematicalβ€”IsClosedMap
OrderDual
OrderDual.instTopologicalSpace
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
β€”IsClosedMap.id
isClosedMap_ofMul πŸ“–mathematicalβ€”IsClosedMap
Additive
instTopologicalSpaceAdditive
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Additive.ofMul
β€”IsClosedMap.id
isClosedMap_sigmaMk πŸ“–mathematicalβ€”IsClosedMap
instTopologicalSpaceSigma
β€”isClosed_sigma_iff
eq_or_ne
Set.preimage_image_eq
sigma_mk_injective
Set.preimage_image_sigmaMk_of_ne
isClosed_empty
isClosedMap_toAdd πŸ“–mathematicalβ€”IsClosedMap
Multiplicative
instTopologicalSpaceMultiplicative
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Multiplicative.toAdd
β€”IsClosedMap.id
isClosedMap_toDual πŸ“–mathematicalβ€”IsClosedMap
OrderDual
OrderDual.instTopologicalSpace
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
β€”IsClosedMap.id
isClosedMap_toMul πŸ“–mathematicalβ€”IsClosedMap
Additive
instTopologicalSpaceAdditive
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Additive.toMul
β€”IsClosedMap.id
isClosed_preimage_val πŸ“–mathematicalβ€”IsClosed
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
Set.preimage
Set.instHasSubset
Set.instInter
closure
β€”closure_eq_iff_isClosed
Topology.IsEmbedding.closure_eq_preimage_closure_image
Topology.IsEmbedding.subtypeVal
Function.Injective.image_injective
Subtype.val_injective
Subtype.image_preimage_coe
subset_antisymm_iff
Set.instReflSubset
Set.instAntisymmSubset
Set.subset_inter
Set.inter_subset_left
subset_closure
Set.subset_inter_iff
isClosed_range_sigmaMk πŸ“–mathematicalβ€”IsClosed
instTopologicalSpaceSigma
Set.range
β€”IsClosedMap.isClosed_range
isClosedMap_sigmaMk
isClosed_set_pi πŸ“–mathematicalIsClosedPi.topologicalSpace
Set.pi
β€”Set.pi_def
isClosed_biInter
IsClosed.preimage
continuous_apply
isClosed_sigma_iff πŸ“–mathematicalβ€”IsClosed
instTopologicalSpaceSigma
Set.preimage
β€”β€”
isDiscrete_iff_discreteTopology πŸ“–mathematicalβ€”IsDiscrete
DiscreteTopology
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
β€”IsDiscrete.to_subtype
isOpenMap_ofAdd πŸ“–mathematicalβ€”IsOpenMap
Multiplicative
instTopologicalSpaceMultiplicative
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Multiplicative.ofAdd
β€”IsOpenMap.id
isOpenMap_ofDual πŸ“–mathematicalβ€”IsOpenMap
OrderDual
OrderDual.instTopologicalSpace
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
β€”IsOpenMap.id
isOpenMap_ofMul πŸ“–mathematicalβ€”IsOpenMap
Additive
instTopologicalSpaceAdditive
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Additive.ofMul
β€”IsOpenMap.id
isOpenMap_sigma πŸ“–mathematicalβ€”IsOpenMap
instTopologicalSpaceSigma
β€”Sigma.nhds_eq
Filter.map_map
isOpenMap_sigmaMk πŸ“–mathematicalβ€”IsOpenMap
instTopologicalSpaceSigma
β€”isOpen_sigma_iff
eq_or_ne
Set.preimage_image_eq
sigma_mk_injective
Set.preimage_image_sigmaMk_of_ne
isOpen_empty
isOpenMap_sigma_map πŸ“–mathematicalβ€”IsOpenMap
instTopologicalSpaceSigma
Sigma.map
β€”isOpenMap_sigma
Topology.IsOpenEmbedding.isOpenMap_iff
Topology.IsOpenEmbedding.sigmaMk
isOpenMap_toAdd πŸ“–mathematicalβ€”IsOpenMap
Multiplicative
instTopologicalSpaceMultiplicative
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Multiplicative.toAdd
β€”IsOpenMap.id
isOpenMap_toDual πŸ“–mathematicalβ€”IsOpenMap
OrderDual
OrderDual.instTopologicalSpace
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
β€”IsOpenMap.id
isOpenMap_toMul πŸ“–mathematicalβ€”IsOpenMap
Additive
instTopologicalSpaceAdditive
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Additive.toMul
β€”IsOpenMap.id
isOpen_pi_iff πŸ“–mathematicalβ€”IsOpen
Pi.topologicalSpace
Set
Set.instMembership
Set.instHasSubset
Set.pi
SetLike.coe
Finset
Finset.instSetLike
β€”isOpen_iff_nhds
nhds_pi
Set.eval_image_pi
Finset.mem_coe
Set.pi_nonempty_iff
Set.Subset.trans
Set.pi_mono
HasSubset.Subset.trans
Set.instIsTransSubset
Set.eval_image_pi_subset
Set.Subset.rfl
isOpen_univ
Set.mem_univ
Set.univ_pi_ite
isOpen_pi_iff' πŸ“–mathematicalβ€”IsOpen
Pi.topologicalSpace
Set
Set.instMembership
Set.instHasSubset
Set.pi
Set.univ
β€”nonempty_fintype
isOpen_iff_nhds
nhds_pi
HasSubset.Subset.trans
Set.instIsTransSubset
Set.pi_mono
Set.Subset.trans
Set.pi_inter_compl
Set.inter_subset_left
Eq.subset
Set.instReflSubset
Finset.coe_univ
isOpen_range_sigmaMk πŸ“–mathematicalβ€”IsOpen
instTopologicalSpaceSigma
Set.range
β€”IsOpenMap.isOpen_range
isOpenMap_sigmaMk
isOpen_set_pi πŸ“–mathematicalIsOpenPi.topologicalSpace
Set.pi
β€”Set.pi_def
Set.Finite.isOpen_biInter
IsOpen.preimage
continuous_apply
isOpen_sigma_fst_preimage πŸ“–mathematicalβ€”IsOpen
instTopologicalSpaceSigma
Set.preimage
β€”Set.biUnion_of_singleton
Set.preimage_iUnionβ‚‚
Set.iUnion_congr_Prop
isOpen_biUnion
isOpen_range_sigmaMk
isOpen_sigma_iff πŸ“–mathematicalβ€”IsOpen
instTopologicalSpaceSigma
Set.preimage
β€”isOpen_iSup_iff
isQuotientMap_quot_mk πŸ“–mathematicalβ€”Topology.IsQuotientMap
instTopologicalSpaceQuot
β€”β€”
isQuotientMap_quotient_mk' πŸ“–mathematicalβ€”Topology.IsQuotientMap
instTopologicalSpaceQuotient
β€”β€”
map_nhds_subtype_coe_eq_nhds πŸ“–mathematicalFilter.Eventually
nhds
Filter.map
instTopologicalSpaceSubtype
β€”map_nhds_induced_of_mem
Subtype.range_val
map_nhds_subtype_val πŸ“–mathematicalβ€”Filter.map
Set
Set.instMembership
nhds
instTopologicalSpaceSubtype
nhdsWithin
β€”Topology.IsInducing.map_nhds_eq
Topology.IsInducing.subtypeVal
Subtype.range_val
mem_nhds_of_pi_mem_nhds πŸ“–β€”Set
Filter
Filter.instMembership
nhds
Pi.topologicalSpace
Set.pi
Set.instMembership
β€”β€”Filter.mem_of_pi_mem_pi
nhds_neBot
nhds_pi
mem_nhds_subtype πŸ“–mathematicalβ€”Set
Set.instMembership
Filter
Filter.instMembership
nhds
instTopologicalSpaceSubtype
Set.instHasSubset
Set.preimage
β€”mem_nhds_induced
nhdsSet_prod_le πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
nhdsSet
instTopologicalSpaceProd
SProd.sprod
Set
Set.instSProd
Filter.instSProd
β€”Filter.HasBasis.ge_iff
Filter.HasBasis.prod
hasBasis_nhdsSet
IsOpen.mem_nhdsSet
IsOpen.prod
Set.prod_mono
nhdsWithin_subtype_eq_bot_iff πŸ“–mathematicalβ€”nhdsWithin
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
Set.preimage
Bot.bot
Filter
Filter.instBot
Filter.instInf
Filter.principal
β€”Filter.inf_principal_eq_bot_iff_comap
nhdsWithin.eq_1
Filter.comap_inf
Filter.comap_principal
nhds_induced
nhds_ne_subtype_eq_bot_iff πŸ“–mathematicalβ€”nhdsWithin
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
Compl.compl
Set.instCompl
Set.instSingletonSet
Bot.bot
Filter
Filter.instBot
Filter.instInf
Filter.principal
β€”nhdsWithin_subtype_eq_bot_iff
Set.preimage_compl
Set.image_singleton
Function.Injective.preimage_image
Subtype.coe_injective
nhds_ne_subtype_neBot_iff πŸ“–mathematicalβ€”Filter.NeBot
Set.Elem
nhdsWithin
instTopologicalSpaceSubtype
Set
Set.instMembership
Compl.compl
Set.instCompl
Set.instSingletonSet
Filter
Filter.instInf
Filter.principal
β€”Filter.neBot_iff
not_iff_not
nhds_ne_subtype_eq_bot_iff
nhds_ofAdd πŸ“–mathematicalβ€”nhds
Multiplicative
instTopologicalSpaceMultiplicative
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Multiplicative.ofAdd
Filter.map
β€”β€”
nhds_ofDual πŸ“–mathematicalβ€”nhds
DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
Filter.map
OrderDual.instTopologicalSpace
β€”β€”
nhds_ofMul πŸ“–mathematicalβ€”nhds
Additive
instTopologicalSpaceAdditive
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Additive.ofMul
Filter.map
β€”β€”
nhds_pi πŸ“–mathematicalβ€”nhds
Pi.topologicalSpace
Filter.pi
β€”nhds_iInf
nhds_induced
nhds_subtype πŸ“–mathematicalβ€”nhds
Set
Set.instMembership
instTopologicalSpaceSubtype
Filter.comap
β€”nhds_induced
nhds_subtype_eq_comap πŸ“–mathematicalβ€”nhds
instTopologicalSpaceSubtype
Filter.comap
β€”nhds_induced
nhds_subtype_eq_comap_nhdsWithin πŸ“–mathematicalβ€”nhds
Set
Set.instMembership
instTopologicalSpaceSubtype
Filter.comap
nhdsWithin
β€”nhds_subtype
comap_nhdsWithin_range
Subtype.range_val
nhds_toAdd πŸ“–mathematicalβ€”nhds
DFunLike.coe
Equiv
Multiplicative
EquivLike.toFunLike
Equiv.instEquivLike
Multiplicative.toAdd
Filter.map
instTopologicalSpaceMultiplicative
β€”β€”
nhds_toDual πŸ“–mathematicalβ€”nhds
OrderDual
OrderDual.instTopologicalSpace
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
Filter.map
β€”β€”
nhds_toMul πŸ“–mathematicalβ€”nhds
DFunLike.coe
Equiv
Additive
EquivLike.toFunLike
Equiv.instEquivLike
Additive.toMul
Filter.map
instTopologicalSpaceAdditive
β€”β€”
pi_eq_generateFrom πŸ“–mathematicalβ€”Pi.topologicalSpace
TopologicalSpace.generateFrom
setOf
Set
Finset
Set.pi
SetLike.coe
Finset.instSetLike
β€”TopologicalSpace.generateFrom_setOf_isOpen
pi_generateFrom_eq
pi_generateFrom_eq πŸ“–mathematicalβ€”Pi.topologicalSpace
TopologicalSpace.generateFrom
setOf
Set
Finset
Set.pi
SetLike.coe
Finset.instSetLike
β€”le_antisymm
le_generateFrom
isOpen_set_pi
Finset.finite_toSet
le_iInf
coinduced_le_iff_le_induced
Function.update_self
Finset.coe_singleton
Set.singleton_pi
pi_generateFrom_eq_finite πŸ“–mathematicalSet.sUnion
Set.univ
Pi.topologicalSpace
TopologicalSpace.generateFrom
setOf
Set
Set.pi
β€”nonempty_fintype
pi_generateFrom_eq
le_antisymm
TopologicalSpace.generateFrom_anti
Finset.coe_univ
le_generateFrom
isOpen_iff_forall_mem_open
Set.inter_subset_left
Set.univ_pi_piecewise
Set.piecewise_eq_of_mem
Set.piecewise_eq_of_notMem
Set.sUnion_eq_univ_iff
set_pi_mem_nhds πŸ“–mathematicalSet
Filter
Filter.instMembership
nhds
Pi.topologicalSpace
Set.pi
β€”Set.pi_def
Filter.biInter_mem
Continuous.continuousAt
continuous_apply
set_pi_mem_nhds_iff πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
nhds
Pi.topologicalSpace
Set.pi
β€”nhds_pi
Filter.pi_mem_pi_iff
nhds_neBot
tendsto_pi_nhds πŸ“–mathematicalβ€”Filter.Tendsto
nhds
Pi.topologicalSpace
β€”nhds_pi
Filter.tendsto_pi
tendsto_subtype_rng πŸ“–mathematicalβ€”Filter.Tendsto
nhds
instTopologicalSpaceSubtype
β€”nhds_subtype_eq_comap
Filter.tendsto_comap_iff

---

← Back to Index