Documentation Verification Report

Algebra

πŸ“ Source: Mathlib/Topology/ContinuousMap/Algebra.lean

Statistics

MetricCount
DefinitionscompLeftContinuous, compLeftContinuous, instCoeFunElemForallSetOfContinuous, compLeftContinuous, const, C, algebra, coeFnAddMonoidHom, coeFnAlgHom, coeFnLinearMap, coeFnMonoidHom, coeFnRingHom, compAddMonoidHom', compMonoidHom', compRightAlgHom, evalAlgHom, evalCLM, instAdd, instAddCommGroupContinuousMap, instAddCommMonoidOfContinuousAdd, instAddCommSemigroupOfContinuousAdd, instAddGroupOfIsTopologicalAddGroup, instAddMonoidOfContinuousAdd, instAddMonoidWithOneOfContinuousAdd, instAddSemigroupOfContinuousAdd, instAddZeroClassOfContinuousAdd, instCommGroupContinuousMap, instCommMonoidOfContinuousMul, instCommMonoidWithZeroOfContinuousMul, instCommRingOfIsTopologicalRing, instCommSemigroupOfContinuousMul, instCommSemiringOfIsTopologicalSemiring, instDistribMulActionOfContinuousConstSMul, instDivOfContinuousDiv, instGroupOfIsTopologicalGroup, instIntCast, instInvOfContinuousInv, instMonoidOfContinuousMul, instMonoidWithZeroOfContinuousMul, instMul, instMulActionOfContinuousConstSMul, instMulOneClassOfContinuousMul, instMulZeroClassOfContinuousMul, instNSMul, instNatCast, instNegOfContinuousNeg, instNonAssocRingOfIsTopologicalRing, instNonAssocSemiringOfIsTopologicalSemiring, instNonUnitalCommRingOfIsTopologicalRing, instNonUnitalCommSemiringOfIsTopologicalSemiring, instNonUnitalNonAssocRingOfIsTopologicalRing, instNonUnitalNonAssocSemiringOfIsTopologicalSemiring, instNonUnitalRingOfIsTopologicalRing, instNonUnitalSemiringOfIsTopologicalSemiring, instOne, instPow, instRing, instSMul, instSMul', instSemigroupOfContinuousMul, instSemigroupWithZeroOfContinuousMul, instSemiringOfIsTopologicalSemiring, instSubOfContinuousSub, instVAdd, instZPow, instZSMul, instZero, module', compLeftContinuous, compLeftContinuous, SeparatesPointsStrongly, SeparatesPoints, continuousAddSubgroup, continuousAddSubmonoid, continuousSubalgebra, continuousSubgroup, continuousSubmodule, continuousSubmonoid, continuousSubring, continuousSubsemiring
80
TheoremscompLeftContinuous_apply, compLeftContinuous_apply_apply, compLeftContinuous_apply, const_apply_apply, C_apply, add_apply, add_comp, coeFnAddMonoidHom_apply, coeFnAlgHom_apply, coeFnLinearMap_apply, coeFnMonoidHom_apply, coeFnRingHom_apply, coe_add, coe_div, coe_intCast, coe_inv, coe_mul, coe_natCast, coe_neg, coe_nsmul, coe_one, coe_pow, coe_prod, coe_smul, coe_smul', coe_sub, coe_sum, coe_vadd, coe_zero, coe_zpow, coe_zsmul, compAddMonoidHom'_apply, compMonoidHom'_apply, compRightAlgHom_apply, compRightAlgHom_continuous, comp_one, comp_zero, const_one, const_zero, div_apply, div_comp, evalAlgHom_apply, evalCLM_apply, hasProd_apply, hasSum_apply, instContinuousAddOfLocallyCompactSpace, instContinuousConstSMul, instContinuousConstVAdd, instContinuousMulOfLocallyCompactSpace, instContinuousSMul, instContinuousVAdd, instIsCentralScalar, instIsScalarTower, instIsScalarTower_1, instIsTopologicalAddGroup, instIsTopologicalGroup, instIsTopologicalRingOfLocallyCompactSpace, instIsTopologicalSemiringOfLocallyCompactSpace, instSMulCommClass, instSMulCommClass_1, instSMulCommClass_2, instVAddCommClass, intCast_apply, inv_apply, inv_comp, mul_apply, mul_comp, multipliable_apply, natCast_apply, neg_apply, neg_comp, nsmul_apply, nsmul_comp, one_apply, one_comp, pow_apply, pow_comp, prod_apply, smul_apply, smul_apply', smul_comp, sub_apply, sub_comp, subsingleton_subalgebra, sum_apply, summable_apply, tprod_apply, tsum_apply, vadd_apply, vadd_comp, zero_apply, zero_comp, zpow_apply, zpow_comp, zsmul_apply, zsmul_comp, compLeftContinuous_apply, compLeftContinuous_apply_apply, strongly, separatesPoints_monotone, algebraMap_apply
101
Total181

AddMonoidHom

Definitions

NameCategoryTheorems
compLeftContinuous πŸ“–CompOp
2 mathmath: ContinuousLinearMap.compLeftContinuous_apply, compLeftContinuous_apply

Theorems

NameKindAssumesProvesValidatesDepends On
compLeftContinuous_apply πŸ“–mathematicalContinuous
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
instFunLike
ContinuousMap
ContinuousMap.instAddZeroClassOfContinuousAdd
compLeftContinuous
ContinuousMap.comp
β€”β€”

AlgHom

Definitions

NameCategoryTheorems
compLeftContinuous πŸ“–CompOp
3 mathmath: compLeftContinuous_apply_apply, Subalgebra.SeparatesPoints.rclike_to_real, RCLike.restrict_toContinuousMap_eq_toContinuousMapStar_restrict

Theorems

NameKindAssumesProvesValidatesDepends On
compLeftContinuous_apply_apply πŸ“–mathematicalContinuous
DFunLike.coe
AlgHom
funLike
ContinuousMap
ContinuousMap.instFunLike
ContinuousMap.instSemiringOfIsTopologicalSemiring
ContinuousMap.algebra
compLeftContinuous
β€”β€”

ContinuousFunctions

Definitions

NameCategoryTheorems
instCoeFunElemForallSetOfContinuous πŸ“–CompOpβ€”

ContinuousLinearMap

Definitions

NameCategoryTheorems
compLeftContinuous πŸ“–CompOp
2 mathmath: compLeftContinuous_apply, ContinuousCohomology.I_map_hom
const πŸ“–CompOp
2 mathmath: const_apply_apply, ContinuousCohomology.const_app_hom

Theorems

NameKindAssumesProvesValidatesDepends On
compLeftContinuous_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousLinearMap
RingHom.id
Semiring.toNonAssocSemiring
ContinuousMap
ContinuousMap.compactOpen
ContinuousMap.instAddCommMonoidOfContinuousAdd
ContinuousMap.module
funLike
compLeftContinuous
ZeroHom.toFun
AddZero.toZero
AddZeroClass.toAddZero
ContinuousMap.instAddZeroClassOfContinuousAdd
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
AddMonoidHom.toZeroHom
AddMonoidHom.compLeftContinuous
LinearMap.toAddMonoidHom
toLinearMap
β€”β€”
const_apply_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
ContinuousMap.instFunLike
ContinuousLinearMap
RingHom.id
Semiring.toNonAssocSemiring
ContinuousMap.compactOpen
ContinuousMap.instAddCommMonoidOfContinuousAdd
ContinuousMap.module
funLike
const
β€”β€”

ContinuousMap

Definitions

NameCategoryTheorems
C πŸ“–CompOp
1 mathmath: C_apply
algebra πŸ“–CompOp
119 mathmath: polynomialFunctions.eq_adjoin_X, Matrix.IsHermitian.isClosedEmbedding_cfcAux, IsSelfAdjoint.commute_cfcHom, abs_mem_subalgebra_closure, continuousMap_mem_subalgebra_closure_of_separatesPoints, UnitAddTorus.mFourierSubalgebra_coe, toNNReal_neg_algebraMap, Subalgebra.SeparatesPoints.strongly, UnitAddTorus.mFourierSubalgebra_closure_eq_top, cfcHom_continuous, polynomialFunctions.starClosure_topologicalClosure, cfcL_apply, cfcHom_nonneg_iff, gelfandStarTransform_naturality, cfc_apply_mkD, Polynomial.toAddCircle_X_pow_eq_fourier, gelfandTransform_bijective, cfcHom_isClosedEmbedding, BoundedContinuousFunction.coe_toContinuousMapStarₐ, algebraMap_apply, cfcHom_le_iff, cfcHom_id, toNNReal_algebraMap, spectrum.gelfandTransform_eq, spectrum_eq_preimage_range, coeFnAlgHom_apply, continuousMap_mem_polynomialFunctions_closure, StarAlgHom.realContinuousMapOfNNReal_apply, gelfandStarTransform_symm_apply, Polynomial.toAddCircle.integrable, Subalgebra.separatesPoints_monotone, gelfandTransform_map_star, polynomialFunctions.starClosure_eq_adjoin_X, cfcHom_integral, compStarAlgHom_comp, compStarAlgHom'_comp, sup_mem_closed_subalgebra, ContinuousFunctionalCalculus.exists_cfc_of_predicate, cfc_def, fourierSubalgebra_separatesPoints, StarAlgHom.realContinuousMapOfNNReal_apply_comp_toReal, exists_mem_subalgebra_near_continuousMap_of_separatesPoints, adjoin_id_eq_span_one_union, Matrix.IsHermitian.cfcAux_apply, sup_mem_subalgebra_closure, inf_mem_subalgebra_closure, inf_mem_closed_subalgebra, exists_mem_subalgebra_near_continuous_of_isCompact_of_separatesPoints, continuous_cfcHomSuperset_left, cfcHomSuperset_apply, range_cfc_eq_range_cfcHom, fourierSubalgebra_coe, Polynomial.toAddCircle_monomial_eq_smul_fourier, subalgebra_topologicalClosure_eq_top_of_separatesPoints, cfcHom_eq_cfc_extend, SpectrumRestricts.starAlgHom_apply, UnitAddTorus.mFourierSubalgebra_separatesPoints, Commute.cfcHom, evalStarAlgHom_apply, Polynomial.aeval_continuousMap_apply, subsingleton_subalgebra, nonUnitalStarAlgebraAdjoin_id_subset_ker_evalStarAlgHom, cfc_apply, polynomialFunctions_coe, Polynomial.fourierCoeff_toAddCircle_natCast, spectrum_eq_range, Polynomial.toContinuousMapAlgHom_apply, StarAlgHom.realContinuousMapOfNNReal_injective, cfcHom_isStrictlyPositive_iff, BoundedContinuousFunction.toContinuousMapStarₐ_apply_apply, Homeomorph.compStarAlgEquiv'_apply, cfc_apply_pi, comp_attachBound_mem_closure, Matrix.IsHermitian.cfcAux_id, adjoin_id_eq_span_one_add, cfcHomSuperset_id, BoundedContinuousFunction.coe_toContinuousMapₐ, AlgHom.compLeftContinuous_apply_apply, WeakDual.gelfandTransform_apply_apply, compStarAlgHom_id, fourierSubalgebra_closure_eq_top, BoundedContinuousFunction.toContinuousMapₐ_apply, polynomialFunctions.topologicalClosure, cfcHom_predicate, polynomial_comp_attachBound, norm_cfcHom, evalAlgHom_apply, ker_evalStarAlgHom_inter_adjoin_id, cfcHomSuperset_continuous, compRightAlgHom_continuous, elemental_id_eq_top, gelfandTransform_isometry, polynomialFunctions_closure_eq_top', compStarAlgHom'_apply, Homeomorph.compStarAlgEquiv'_symm_apply, polynomial_comp_attachBound_mem, range_cfcHom, nnnorm_cfcHom, Polynomial.toAddCircle_X_eq_fourier_one, ker_evalStarAlgHom_eq_closure_adjoin_id, exists_mem_subalgebra_near_continuous_of_separatesPoints, compStarAlgHom_apply, cfcHom_mono, IsometricContinuousFunctionalCalculus.isometric, compStarAlgHom'_id, Polynomial.toAddCircle_C_eq_smul_fourier_zero, polynomialFunctions_closure_eq_top, BoundedContinuousFunction.separatesPoints_charPoly, cfcHom_eq_of_isStarNormal, Polynomial.fourierCoeff_toAddCircle, cfcHom_map_spectrum, compRightAlgHom_apply, Polynomial.toContinuousMapOnAlgHom_apply, cfcHom_apply_mem_elemental, LocallyConstant.toContinuousMapAlgHom_apply, RCLike.restrict_toContinuousMap_eq_toContinuousMapStar_restrict, isometry_cfcHom, polynomialFunctions.comap_compRightAlgHom_iccHomeoI, Polynomial.fourierCoeff_toAddCircle_eq_zero_of_lt_zero
coeFnAddMonoidHom πŸ“–CompOp
2 mathmath: coeFnAddMonoidHom_apply, coeFnLinearMap_apply
coeFnAlgHom πŸ“–CompOp
1 mathmath: coeFnAlgHom_apply
coeFnLinearMap πŸ“–CompOp
1 mathmath: coeFnLinearMap_apply
coeFnMonoidHom πŸ“–CompOp
1 mathmath: coeFnMonoidHom_apply
coeFnRingHom πŸ“–CompOp
1 mathmath: coeFnRingHom_apply
compAddMonoidHom' πŸ“–CompOp
1 mathmath: compAddMonoidHom'_apply
compMonoidHom' πŸ“–CompOp
1 mathmath: compMonoidHom'_apply
compRightAlgHom πŸ“–CompOp
3 mathmath: compRightAlgHom_continuous, compRightAlgHom_apply, polynomialFunctions.comap_compRightAlgHom_iccHomeoI
evalAlgHom πŸ“–CompOp
1 mathmath: evalAlgHom_apply
evalCLM πŸ“–CompOp
1 mathmath: evalCLM_apply
instAdd πŸ“–CompOp
18 mathmath: addEquivBoundedOfCompact_apply, gelfandStarTransform_naturality, gelfandStarTransform_apply_apply, BoundedContinuousFunction.mkOfCompact_add, gelfandStarTransform_symm_apply, toNNReal_mul_add_neg_mul_add_mul_neg_eq, coe_add, linearIsometryBoundedOfCompact_toAddEquiv, Homeomorph.compStarAlgEquiv'_apply, add_apply, adjoin_id_eq_span_one_add, addEquivBoundedOfCompact_symm_apply, instContinuousAddOfLocallyCompactSpace, add_comp, Homeomorph.compStarAlgEquiv'_symm_apply, toNNReal_add_add_neg_add_neg_eq, cfcHom_eq_of_isStarNormal, continuousFunctionalCalculus_map_id
instAddCommGroupContinuousMap πŸ“–CompOp
4 mathmath: ContinuousCohomology.I_obj_V_isAddCommGroup, ContinuousCohomology.I_obj_ρ_apply, ContinuousCohomology.I_map_hom, ContinuousCohomology.const_app_hom
instAddCommMonoidOfContinuousAdd πŸ“–CompOp
43 mathmath: toLp_inj, Real.fourierCoeff_tsum_comp_add, span_fourier_closure_eq_top, toLp_denseRange, range_toLp, UnitAddTorus.mFourierSubalgebra_coe, BoundedContinuousFunction.toContinuousMapLinearMap_apply, summable_of_locally_summable_norm, LocallyConstant.toContinuousMapLinearMap_apply, cfcL_apply, toLp_norm_le, cfcL_integrable, UnitAddTorus.mFourierCoeff_toLp, ContinuousLinearMap.const_apply_apply, periodic_tsum_comp_add_zsmul, evalCLM_apply, toLp_def, coeFnLinearMap_apply, ContinuousMapZero.toContinuousMapCLM_apply, instIsOrderedAddMonoid, adjoin_id_eq_span_one_union, toLp_norm_eq_toLp_norm_coe, fourierCoeff_toLp, ContinuousLinearMap.compLeftContinuous_apply, sum_apply, cfc_eq_cfcL_mkD, PadicInt.hasSum_mahlerSeries, fourierSubalgebra_coe, toLp_injective, UnitAddTorus.hasSum_mFourier_series_of_summable, PadicInt.hasSum_mahler, coe_toLp, cfcL_integral, coeFn_toLp, linearIsometryBoundedOfCompact_toAddEquiv, toLp_comp_toContinuousMap, adjoin_id_eq_span_one_add, hasSum_fourier_series_of_summable, instLocallyConvexSpace, coe_sum, cfc_eq_cfcL, UnitAddTorus.span_mFourier_closure_eq_top, MeasureTheory.ContinuousMap.inner_toLp
instAddCommSemigroupOfContinuousAdd πŸ“–CompOpβ€”
instAddGroupOfIsTopologicalAddGroup πŸ“–CompOp
4 mathmath: abs_mem_subalgebra_closure, instIsTopologicalAddGroup, abs_apply, coe_abs
instAddMonoidOfContinuousAdd πŸ“–CompOp
4 mathmath: addUnitsLift_apply_neg_apply, val_addUnitsLift_apply_apply, val_addUnitsLift_symm_apply_apply, addUnitsLift_symm_apply_apply_neg'
instAddMonoidWithOneOfContinuousAdd πŸ“–CompOpβ€”
instAddSemigroupOfContinuousAdd πŸ“–CompOpβ€”
instAddZeroClassOfContinuousAdd πŸ“–CompOp
8 mathmath: coeFnAddMonoidHom_apply, BoundedContinuousFunction.toContinuousMapAddMonoidHom_apply, coeFnLinearMap_apply, LocallyConstant.toContinuousMapAddMonoidHom_apply, ContinuousLinearMap.compLeftContinuous_apply, compAddMonoidHom'_apply, AddMonoidHom.compLeftContinuous_apply, addEquivBoundedOfCompact_symm_apply
instCommGroupContinuousMap πŸ“–CompOpβ€”
instCommMonoidOfContinuousMul πŸ“–CompOp
5 mathmath: BumpCovering.exists_finset_toPartitionOfUnity_eventuallyEq, prod_apply, instIsOrderedMonoid, BumpCovering.exists_finset_toPOUFun_eventuallyEq, coe_prod
instCommMonoidWithZeroOfContinuousMul πŸ“–CompOpβ€”
instCommRingOfIsTopologicalRing πŸ“–CompOpβ€”
instCommSemigroupOfContinuousMul πŸ“–CompOpβ€”
instCommSemiringOfIsTopologicalSemiring πŸ“–CompOpβ€”
instDistribMulActionOfContinuousConstSMul πŸ“–CompOp
4 mathmath: gelfandStarTransform_symm_apply, ContinuousMapZero.toContinuousMapHom_toNNReal, ContinuousMapZero.toContinuousMapHom_apply, ContinuousMapZero.coe_toContinuousMapHom
instDivOfContinuousDiv πŸ“–CompOp
3 mathmath: div_comp, div_apply, coe_div
instGroupOfIsTopologicalGroup πŸ“–CompOp
3 mathmath: instIsTopologicalGroup, coe_mabs, mabs_apply
instIntCast πŸ“–CompOp
2 mathmath: coe_intCast, intCast_apply
instInvOfContinuousInv πŸ“–CompOp
3 mathmath: inv_comp, inv_apply, coe_inv
instMonoidOfContinuousMul πŸ“–CompOp
6 mathmath: val_unitsLift_apply_apply, isUnit_iff_forall_isUnit, val_unitsLift_symm_apply_apply, unitsLift_apply_inv_apply, unitsLift_symm_apply_apply_inv', isUnit_iff_forall_ne_zero
instMonoidWithZeroOfContinuousMul πŸ“–CompOpβ€”
instMul πŸ“–CompOp
16 mathmath: instContinuousMulOfLocallyCompactSpace, gelfandStarTransform_naturality, gelfandStarTransform_apply_apply, gelfandStarTransform_symm_apply, instSMulCommClass_2, toNNReal_mul_add_neg_mul_add_mul_neg_eq, instSMulCommClass_1, Homeomorph.compStarAlgEquiv'_apply, Homeomorph.compStarAlgEquiv'_symm_apply, mul_comp, coe_mul, cfcHom_eq_of_isStarNormal, mul_apply, continuousFunctionalCalculus_map_id, instIsScalarTower_1, exists_mul_le_one_eqOn_ge
instMulActionOfContinuousConstSMul πŸ“–CompOpβ€”
instMulOneClassOfContinuousMul πŸ“–CompOp
5 mathmath: compMonoidHom'_apply, BoundedContinuousFunction.toContinuousMapMonoidHom_apply, LocallyConstant.toContinuousMapMonoidHom_apply, MonoidHom.compLeftContinuous_apply, coeFnMonoidHom_apply
instMulZeroClassOfContinuousMul πŸ“–CompOpβ€”
instNSMul πŸ“–CompOp
3 mathmath: nsmul_comp, coe_nsmul, nsmul_apply
instNatCast πŸ“–CompOp
2 mathmath: coe_natCast, natCast_apply
instNegOfContinuousNeg πŸ“–CompOp
9 mathmath: toNNReal_neg_algebraMap, StarAlgHom.realContinuousMapOfNNReal_apply, neg_comp, coe_neg, BoundedContinuousFunction.mkOfCompact_neg, toNNReal_mul_add_neg_mul_add_mul_neg_eq, toNNReal_neg_one, toNNReal_add_add_neg_add_neg_eq, neg_apply
instNonAssocRingOfIsTopologicalRing πŸ“–CompOpβ€”
instNonAssocSemiringOfIsTopologicalSemiring πŸ“–CompOp
3 mathmath: coeFnRingHom_apply, RingHom.compLeftContinuous_apply_apply, C_apply
instNonUnitalCommRingOfIsTopologicalRing πŸ“–CompOpβ€”
instNonUnitalCommSemiringOfIsTopologicalSemiring πŸ“–CompOpβ€”
instNonUnitalNonAssocRingOfIsTopologicalRing πŸ“–CompOp
8 mathmath: abs_mem_subalgebra_closure, continuousMap_mem_subalgebra_closure_of_separatesPoints, sup_mem_subalgebra_closure, inf_mem_subalgebra_closure, subalgebra_topologicalClosure_eq_top_of_separatesPoints, instIsTopologicalRingOfLocallyCompactSpace, comp_attachBound_mem_closure, starSubalgebra_topologicalClosure_eq_top_of_separatesPoints
instNonUnitalNonAssocSemiringOfIsTopologicalSemiring πŸ“–CompOp
10 mathmath: gelfandStarTransform_naturality, WeakDual.CharacterSpace.continuousMapEval_bijective, gelfandStarTransform_symm_apply, WeakDual.CharacterSpace.homeoEval_naturality, instIsTopologicalSemiringOfLocallyCompactSpace, ContinuousMapZero.toContinuousMapHom_toNNReal, ContinuousMapZero.toContinuousMapHom_apply, WeakDual.CharacterSpace.continuousMapEval_apply_apply, cfcHom_eq_of_isStarNormal, ContinuousMapZero.coe_toContinuousMapHom
instNonUnitalRingOfIsTopologicalRing πŸ“–CompOpβ€”
instNonUnitalSemiringOfIsTopologicalSemiring πŸ“–CompOp
6 mathmath: instStarOrderedRingOfContinuousSqrt, adjoin_id_eq_span_one_union, nonUnitalStarAlgebraAdjoin_id_subset_ker_evalStarAlgHom, adjoin_id_eq_span_one_add, ker_evalStarAlgHom_inter_adjoin_id, ker_evalStarAlgHom_eq_closure_adjoin_id
instOne πŸ“–CompOp
16 mathmath: one_apply, UnitAddTorus.mFourier_zero, adjoin_id_eq_span_one_union, toNNReal_one, BumpCovering.exists_finset_toPartitionOfUnity_eventuallyEq, comp_one, one_comp, adjoin_id_eq_span_one_add, BoundedContinuousFunction.mkOfCompact_one, BumpCovering.exists_finset_toPOUFun_eventuallyEq, toNNReal_neg_one, coe_one, BumpCovering.le_one', instNormOneClassOfNonempty, BumpCovering.coe_single, const_one
instPow πŸ“–CompOp
3 mathmath: pow_apply, pow_comp, coe_pow
instRing πŸ“–CompOp
6 mathmath: spectrum.gelfandTransform_eq, spectrum_eq_preimage_range, NormedSpace.exp_continuousMap_eq, spectrum_eq_range, idealOfSet_ofIdeal_eq_closure, idealOpensGI_choice
instSMul πŸ“–CompOp
24 mathmath: instIsScalarTower, gelfandStarTransform_naturality, gelfandStarTransform_apply_apply, instStarModule, gelfandStarTransform_symm_apply, smul_apply, smul_comp, instSMulCommClass_2, instContinuousSMul, Polynomial.toAddCircle_monomial_eq_smul_fourier, instIsBoundedSMul, UnitAddTorus.hasSum_mFourier_series_of_summable, instSMulCommClass_1, Homeomorph.compStarAlgEquiv'_apply, hasSum_fourier_series_of_summable, instIsCentralScalar, instContinuousConstSMul, Homeomorph.compStarAlgEquiv'_symm_apply, coe_smul, Polynomial.toAddCircle_C_eq_smul_fourier_zero, cfcHom_eq_of_isStarNormal, continuousFunctionalCalculus_map_id, instSMulCommClass, instIsScalarTower_1
instSMul' πŸ“–CompOp
4 mathmath: coe_smul', nnnorm_smul_const, smul_apply', norm_smul_const
instSemigroupOfContinuousMul πŸ“–CompOpβ€”
instSemigroupWithZeroOfContinuousMul πŸ“–CompOpβ€”
instSemiringOfIsTopologicalSemiring πŸ“–CompOp
128 mathmath: polynomialFunctions.eq_adjoin_X, Matrix.IsHermitian.isClosedEmbedding_cfcAux, IsSelfAdjoint.commute_cfcHom, abs_mem_subalgebra_closure, notMem_idealOfSet, continuousMap_mem_subalgebra_closure_of_separatesPoints, UnitAddTorus.mFourierSubalgebra_coe, toNNReal_neg_algebraMap, Subalgebra.SeparatesPoints.strongly, UnitAddTorus.mFourierSubalgebra_closure_eq_top, cfcHom_continuous, polynomialFunctions.starClosure_topologicalClosure, cfcL_apply, cfcHom_nonneg_iff, gelfandStarTransform_naturality, cfc_apply_mkD, mem_idealOfSet, Polynomial.toAddCircle_X_pow_eq_fourier, gelfandTransform_bijective, cfcHom_isClosedEmbedding, BoundedContinuousFunction.coe_toContinuousMapStarₐ, algebraMap_apply, cfcHom_le_iff, cfcHom_id, toNNReal_algebraMap, spectrum.gelfandTransform_eq, coeFnAlgHom_apply, continuousMap_mem_polynomialFunctions_closure, StarAlgHom.realContinuousMapOfNNReal_apply, idealOfSet_closed, gelfandStarTransform_symm_apply, Polynomial.toAddCircle.integrable, Subalgebra.separatesPoints_monotone, gelfandTransform_map_star, polynomialFunctions.starClosure_eq_adjoin_X, cfcHom_integral, compStarAlgHom_comp, compStarAlgHom'_comp, ideal_isMaximal_iff, sup_mem_closed_subalgebra, ContinuousFunctionalCalculus.exists_cfc_of_predicate, cfc_def, fourierSubalgebra_separatesPoints, StarAlgHom.realContinuousMapOfNNReal_apply_comp_toReal, exists_mem_subalgebra_near_continuousMap_of_separatesPoints, adjoin_id_eq_span_one_union, Matrix.IsHermitian.cfcAux_apply, sup_mem_subalgebra_closure, inf_mem_subalgebra_closure, inf_mem_closed_subalgebra, exists_mem_subalgebra_near_continuous_of_isCompact_of_separatesPoints, continuous_cfcHomSuperset_left, cfcHomSuperset_apply, range_cfc_eq_range_cfcHom, fourierSubalgebra_coe, Polynomial.toAddCircle_monomial_eq_smul_fourier, subalgebra_topologicalClosure_eq_top_of_separatesPoints, cfcHom_eq_cfc_extend, SpectrumRestricts.starAlgHom_apply, UnitAddTorus.mFourierSubalgebra_separatesPoints, Commute.cfcHom, evalStarAlgHom_apply, ideal_gc, Polynomial.aeval_continuousMap_apply, subsingleton_subalgebra, nonUnitalStarAlgebraAdjoin_id_subset_ker_evalStarAlgHom, cfc_apply, setOfTop_eq_univ, polynomialFunctions_coe, Polynomial.fourierCoeff_toAddCircle_natCast, Polynomial.toContinuousMapAlgHom_apply, StarAlgHom.realContinuousMapOfNNReal_injective, cfcHom_isStrictlyPositive_iff, BoundedContinuousFunction.toContinuousMapStarₐ_apply_apply, Homeomorph.compStarAlgEquiv'_apply, cfc_apply_pi, comp_attachBound_mem_closure, Matrix.IsHermitian.cfcAux_id, adjoin_id_eq_span_one_add, cfcHomSuperset_id, BoundedContinuousFunction.coe_toContinuousMapₐ, AlgHom.compLeftContinuous_apply_apply, WeakDual.gelfandTransform_apply_apply, compStarAlgHom_id, fourierSubalgebra_closure_eq_top, BoundedContinuousFunction.toContinuousMapₐ_apply, mem_setOfIdeal, polynomialFunctions.topologicalClosure, cfcHom_predicate, idealOfEmpty_eq_bot, polynomial_comp_attachBound, norm_cfcHom, evalAlgHom_apply, ker_evalStarAlgHom_inter_adjoin_id, cfcHomSuperset_continuous, compRightAlgHom_continuous, elemental_id_eq_top, gelfandTransform_isometry, polynomialFunctions_closure_eq_top', mem_idealOfSet_compl_singleton, compStarAlgHom'_apply, Homeomorph.compStarAlgEquiv'_symm_apply, polynomial_comp_attachBound_mem, range_cfcHom, nnnorm_cfcHom, Polynomial.toAddCircle_X_eq_fourier_one, ker_evalStarAlgHom_eq_closure_adjoin_id, idealOf_compl_singleton_isMaximal, exists_mem_subalgebra_near_continuous_of_separatesPoints, compStarAlgHom_apply, cfcHom_mono, IsometricContinuousFunctionalCalculus.isometric, compStarAlgHom'_id, Polynomial.toAddCircle_C_eq_smul_fourier_zero, polynomialFunctions_closure_eq_top, BoundedContinuousFunction.separatesPoints_charPoly, cfcHom_eq_of_isStarNormal, Polynomial.fourierCoeff_toAddCircle, cfcHom_map_spectrum, compRightAlgHom_apply, idealOfSet_isMaximal_iff, Polynomial.toContinuousMapOnAlgHom_apply, cfcHom_apply_mem_elemental, LocallyConstant.toContinuousMapAlgHom_apply, RCLike.restrict_toContinuousMap_eq_toContinuousMapStar_restrict, isometry_cfcHom, polynomialFunctions.comap_compRightAlgHom_iccHomeoI, Polynomial.fourierCoeff_toAddCircle_eq_zero_of_lt_zero
instSubOfContinuousSub πŸ“–CompOp
8 mathmath: coe_sub, exists_mem_subalgebra_near_continuousMap_of_separatesPoints, exists_polynomial_near_continuousMap, BumpCovering.exists_finset_toPartitionOfUnity_eventuallyEq, sub_comp, BumpCovering.exists_finset_toPOUFun_eventuallyEq, BoundedContinuousFunction.mkOfCompact_sub, sub_apply
instVAdd πŸ“–CompOp
6 mathmath: instContinuousVAdd, vadd_comp, coe_vadd, instVAddCommClass, vadd_apply, instContinuousConstVAdd
instZPow πŸ“–CompOp
3 mathmath: zpow_apply, zpow_comp, coe_zpow
instZSMul πŸ“–CompOp
3 mathmath: coe_zsmul, zsmul_comp, zsmul_apply
instZero πŸ“–CompOp
15 mathmath: toNNReal_neg_algebraMap, cfcHom_nonneg_iff, PartitionOfUnity.nonneg', cfc_apply_mkD, BoundedContinuousFunction.mkOfCompact_zero, coe_zero, BumpCovering.nonneg', cfc_eq_cfcL_mkD, comp_zero, zero_apply, instIsBoundedSMul, toNNReal_neg_one, zero_comp, const_zero, BumpCovering.coe_single
module' πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
C_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
instFunLike
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instNonAssocSemiringOfIsTopologicalSemiring
RingHom.instFunLike
C
algebraMap
β€”β€”
add_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
instFunLike
instAdd
β€”β€”
add_comp πŸ“–mathematicalβ€”comp
ContinuousMap
instAdd
β€”β€”
coeFnAddMonoidHom_apply πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
ContinuousMap
AddZeroClass.toAddZero
instAddZeroClassOfContinuousAdd
AddMonoid.toAddZeroClass
Pi.addZeroClass
AddMonoidHom.instFunLike
coeFnAddMonoidHom
instFunLike
β€”β€”
coeFnAlgHom_apply πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
ContinuousMap
instSemiringOfIsTopologicalSemiring
Pi.semiring
algebra
Function.algebra
AlgHom.funLike
coeFnAlgHom
instFunLike
β€”β€”
coeFnLinearMap_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
ContinuousMap
instAddCommMonoidOfContinuousAdd
Pi.addCommMonoid
module
Pi.Function.module
LinearMap.instFunLike
coeFnLinearMap
ZeroHom.toFun
AddZero.toZero
AddZeroClass.toAddZero
instAddZeroClassOfContinuousAdd
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
Pi.addZeroClass
AddMonoidHom.toZeroHom
coeFnAddMonoidHom
β€”β€”
coeFnMonoidHom_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
ContinuousMap
MulOneClass.toMulOne
instMulOneClassOfContinuousMul
Monoid.toMulOneClass
Pi.mulOneClass
MonoidHom.instFunLike
coeFnMonoidHom
instFunLike
β€”β€”
coeFnRingHom_apply πŸ“–mathematicalβ€”DFunLike.coe
RingHom
ContinuousMap
instNonAssocSemiringOfIsTopologicalSemiring
Semiring.toNonAssocSemiring
Pi.nonAssocSemiring
RingHom.instFunLike
coeFnRingHom
instFunLike
β€”β€”
coe_add πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
instFunLike
instAdd
Pi.instAdd
β€”β€”
coe_div πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
instFunLike
instDivOfContinuousDiv
Pi.instDiv
β€”β€”
coe_intCast πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
instFunLike
instIntCast
Pi.instIntCast
β€”β€”
coe_inv πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
instFunLike
instInvOfContinuousInv
Pi.instInv
β€”β€”
coe_mul πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
instFunLike
instMul
Pi.instMul
β€”β€”
coe_natCast πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
instFunLike
instNatCast
Pi.instNatCast
β€”β€”
coe_neg πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
instFunLike
instNegOfContinuousNeg
Pi.instNeg
β€”β€”
coe_nsmul πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
instFunLike
instNSMul
Pi.instSMul
AddMonoid.toNatSMul
β€”β€”
coe_one πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
instFunLike
instOne
Pi.instOne
β€”β€”
coe_pow πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
instFunLike
instPow
Pi.instPow
Monoid.toNatPow
β€”β€”
coe_prod πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
instFunLike
Finset.prod
instCommMonoidOfContinuousMul
Pi.commMonoid
β€”map_prod
MonoidHom.instMonoidHomClass
coe_smul πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
instFunLike
instSMul
Function.hasSMul
β€”β€”
coe_smul' πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
instFunLike
instSMul'
Pi.smul'
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”β€”
coe_sub πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
instFunLike
instSubOfContinuousSub
Pi.instSub
β€”β€”
coe_sum πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
instFunLike
Finset.sum
instAddCommMonoidOfContinuousAdd
Pi.addCommMonoid
β€”map_sum
AddMonoidHom.instAddMonoidHomClass
coe_vadd πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
instFunLike
HVAdd.hVAdd
instHVAdd
instVAdd
Function.hasVAdd
β€”β€”
coe_zero πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
instFunLike
instZero
Pi.instZero
β€”β€”
coe_zpow πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
instFunLike
instZPow
Pi.instPow
DivInvMonoid.toZPow
Group.toDivInvMonoid
β€”β€”
coe_zsmul πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
instFunLike
instZSMul
Pi.instSMul
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
β€”β€”
compAddMonoidHom'_apply πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
ContinuousMap
AddZeroClass.toAddZero
instAddZeroClassOfContinuousAdd
AddMonoidHom.instFunLike
compAddMonoidHom'
comp
β€”β€”
compMonoidHom'_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
ContinuousMap
MulOneClass.toMulOne
instMulOneClassOfContinuousMul
MonoidHom.instFunLike
compMonoidHom'
comp
β€”β€”
compRightAlgHom_apply πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
ContinuousMap
instSemiringOfIsTopologicalSemiring
algebra
AlgHom.funLike
compRightAlgHom
comp
β€”β€”
compRightAlgHom_continuous πŸ“–mathematicalβ€”Continuous
ContinuousMap
compactOpen
DFunLike.coe
AlgHom
instSemiringOfIsTopologicalSemiring
algebra
AlgHom.funLike
compRightAlgHom
β€”continuous_precomp
comp_one πŸ“–mathematicalβ€”comp
ContinuousMap
instOne
const
DFunLike.coe
instFunLike
β€”β€”
comp_zero πŸ“–mathematicalβ€”comp
ContinuousMap
instZero
const
DFunLike.coe
instFunLike
β€”β€”
const_one πŸ“–mathematicalβ€”const
ContinuousMap
instOne
β€”β€”
const_zero πŸ“–mathematicalβ€”const
ContinuousMap
instZero
β€”β€”
div_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
instFunLike
instDivOfContinuousDiv
β€”β€”
div_comp πŸ“–mathematicalβ€”comp
ContinuousMap
instDivOfContinuousDiv
β€”β€”
evalAlgHom_apply πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
ContinuousMap
instSemiringOfIsTopologicalSemiring
CommSemiring.toSemiring
algebra
AlgHom.funLike
evalAlgHom
instFunLike
β€”β€”
evalCLM_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousLinearMap
RingHom.id
Semiring.toNonAssocSemiring
ContinuousMap
compactOpen
instAddCommMonoidOfContinuousAdd
module
ContinuousLinearMap.funLike
evalCLM
instFunLike
β€”β€”
hasProd_apply πŸ“–mathematicalHasProd
ContinuousMap
instCommMonoidOfContinuousMul
compactOpen
DFunLike.coe
instFunLike
β€”HasProd.map
MonoidHom.instMonoidHomClass
ContinuousEvalConst.continuous_eval_const
instContinuousEvalConst
hasSum_apply πŸ“–mathematicalHasSum
ContinuousMap
instAddCommMonoidOfContinuousAdd
compactOpen
DFunLike.coe
instFunLike
β€”HasSum.map
AddMonoidHom.instAddMonoidHomClass
ContinuousEvalConst.continuous_eval_const
instContinuousEvalConst
instContinuousAddOfLocallyCompactSpace πŸ“–mathematicalβ€”ContinuousAdd
ContinuousMap
compactOpen
instAdd
β€”continuous_of_continuous_uncurry
Continuous.comp
ContinuousEval.continuous_eval
instContinuousEvalOfLocallyCompactPair
instLocallyCompactPairOfLocallyCompactSpace
Continuous.prodMap
continuous_fst
continuous_id
continuous_snd
Continuous.add
instContinuousConstSMul πŸ“–mathematicalβ€”ContinuousConstSMul
ContinuousMap
compactOpen
instSMul
β€”continuous_postcomp
ContinuousConstSMul.continuous_const_smul
instContinuousConstVAdd πŸ“–mathematicalβ€”ContinuousConstVAdd
ContinuousMap
compactOpen
instVAdd
β€”continuous_postcomp
ContinuousConstVAdd.continuous_const_vadd
instContinuousMulOfLocallyCompactSpace πŸ“–mathematicalβ€”ContinuousMul
ContinuousMap
compactOpen
instMul
β€”continuous_of_continuous_uncurry
Continuous.comp
ContinuousEval.continuous_eval
instContinuousEvalOfLocallyCompactPair
instLocallyCompactPairOfLocallyCompactSpace
Continuous.prodMap
continuous_fst
continuous_id
continuous_snd
Continuous.mul
instContinuousSMul πŸ“–mathematicalβ€”ContinuousSMul
ContinuousMap
instSMul
ContinuousSMul.continuousConstSMul
compactOpen
β€”ContinuousSMul.continuousConstSMul
Continuous.comp
ContinuousSMul.continuous_smul
continuous_postcomp
continuous_prodMk_const
instContinuousVAdd πŸ“–mathematicalβ€”ContinuousVAdd
ContinuousMap
instVAdd
ContinuousVAdd.continuousConstVAdd
compactOpen
β€”ContinuousVAdd.continuousConstVAdd
Continuous.comp
ContinuousVAdd.continuous_vadd
continuous_postcomp
continuous_prodMk_const
instIsCentralScalar πŸ“–mathematicalβ€”IsCentralScalar
ContinuousMap
instSMul
MulOpposite
ContinuousConstSMul.op
β€”ContinuousConstSMul.op
ext
IsCentralScalar.op_smul_eq_smul
instIsScalarTower πŸ“–mathematicalβ€”IsScalarTower
ContinuousMap
instSMul
β€”ext
smul_assoc
instIsScalarTower_1 πŸ“–mathematicalβ€”IsScalarTower
ContinuousMap
instSMul
instMul
β€”ext
smul_mul_assoc
instIsTopologicalAddGroup πŸ“–mathematicalβ€”IsTopologicalAddGroup
ContinuousMap
compactOpen
instAddGroupOfIsTopologicalAddGroup
AddCommGroup.toAddGroup
β€”isUniformAddGroup_of_addCommGroup
continuous_iff_continuousAt
ContinuousAt.eq_1
tendsto_iff_forall_isCompact_tendstoUniformlyOn
nhds_prod_eq
UniformContinuous.comp_tendstoUniformlyOn
uniformContinuous_add
TendstoUniformlyOn.prodMk
Filter.tendsto_id
uniformContinuous_neg
instIsTopologicalGroup πŸ“–mathematicalβ€”IsTopologicalGroup
ContinuousMap
compactOpen
instGroupOfIsTopologicalGroup
CommGroup.toGroup
β€”isUniformGroup_of_commGroup
continuous_iff_continuousAt
ContinuousAt.eq_1
tendsto_iff_forall_isCompact_tendstoUniformlyOn
nhds_prod_eq
UniformContinuous.comp_tendstoUniformlyOn
uniformContinuous_mul
TendstoUniformlyOn.prodMk
Filter.tendsto_id
uniformContinuous_inv
instIsTopologicalRingOfLocallyCompactSpace πŸ“–mathematicalβ€”IsTopologicalRing
ContinuousMap
compactOpen
instNonUnitalNonAssocRingOfIsTopologicalRing
NonUnitalRing.toNonUnitalNonAssocRing
β€”instIsTopologicalSemiringOfLocallyCompactSpace
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalAddGroup.toContinuousNeg
IsTopologicalRing.to_topologicalAddGroup
instIsTopologicalAddGroup
instIsTopologicalSemiringOfLocallyCompactSpace πŸ“–mathematicalβ€”IsTopologicalSemiring
ContinuousMap
compactOpen
instNonUnitalNonAssocSemiringOfIsTopologicalSemiring
NonUnitalSemiring.toNonUnitalNonAssocSemiring
β€”instContinuousAddOfLocallyCompactSpace
IsTopologicalSemiring.toContinuousAdd
instContinuousMulOfLocallyCompactSpace
IsTopologicalSemiring.toContinuousMul
instSMulCommClass πŸ“–mathematicalβ€”SMulCommClass
ContinuousMap
instSMul
β€”ext
SMulCommClass.smul_comm
instSMulCommClass_1 πŸ“–mathematicalβ€”SMulCommClass
ContinuousMap
instSMul
instMul
β€”ext
mul_smul_comm
instSMulCommClass_2 πŸ“–mathematicalβ€”SMulCommClass
ContinuousMap
instMul
instSMul
β€”ext
SMulCommClass.smul_comm
instVAddCommClass πŸ“–mathematicalβ€”VAddCommClass
ContinuousMap
instVAdd
β€”ext
VAddCommClass.vadd_comm
intCast_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
instFunLike
instIntCast
β€”β€”
inv_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
instFunLike
instInvOfContinuousInv
β€”β€”
inv_comp πŸ“–mathematicalβ€”comp
ContinuousMap
instInvOfContinuousInv
β€”β€”
mul_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
instFunLike
instMul
β€”β€”
mul_comp πŸ“–mathematicalβ€”comp
ContinuousMap
instMul
β€”β€”
multipliable_apply πŸ“–mathematicalMultipliable
ContinuousMap
instCommMonoidOfContinuousMul
compactOpen
DFunLike.coe
instFunLike
β€”HasProd.multipliable
hasProd_apply
Multipliable.hasProd
natCast_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
instFunLike
instNatCast
β€”β€”
neg_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
instFunLike
instNegOfContinuousNeg
β€”β€”
neg_comp πŸ“–mathematicalβ€”comp
ContinuousMap
instNegOfContinuousNeg
β€”β€”
nsmul_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
instFunLike
instNSMul
AddMonoid.toNatSMul
β€”β€”
nsmul_comp πŸ“–mathematicalβ€”comp
ContinuousMap
instNSMul
β€”β€”
one_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
instFunLike
instOne
β€”β€”
one_comp πŸ“–mathematicalβ€”comp
ContinuousMap
instOne
β€”β€”
pow_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
instFunLike
instPow
Monoid.toNatPow
β€”β€”
pow_comp πŸ“–mathematicalβ€”comp
ContinuousMap
instPow
β€”β€”
prod_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
instFunLike
Finset.prod
instCommMonoidOfContinuousMul
β€”coe_prod
Finset.prod_apply
smul_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
instFunLike
instSMul
β€”β€”
smul_apply' πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
instFunLike
instSMul'
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
β€”β€”
smul_comp πŸ“–mathematicalβ€”comp
ContinuousMap
instSMul
β€”β€”
sub_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
instFunLike
instSubOfContinuousSub
β€”β€”
sub_comp πŸ“–mathematicalβ€”comp
ContinuousMap
instSubOfContinuousSub
β€”β€”
subsingleton_subalgebra πŸ“–mathematicalβ€”Subalgebra
ContinuousMap
instSemiringOfIsTopologicalSemiring
CommSemiring.toSemiring
algebra
Algebra.id
β€”isEmpty_or_nonempty
Function.Injective.subsingleton
DFunLike.coe_injective
Unique.instSubsingleton
Subalgebra.subsingleton_of_subsingleton
Subalgebra.ext
ext
algebraMap_apply
mul_one
sum_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
instFunLike
Finset.sum
instAddCommMonoidOfContinuousAdd
β€”coe_sum
Finset.sum_apply
summable_apply πŸ“–mathematicalSummable
ContinuousMap
instAddCommMonoidOfContinuousAdd
compactOpen
DFunLike.coe
instFunLike
β€”HasSum.summable
hasSum_apply
Summable.hasSum
tprod_apply πŸ“–mathematicalMultipliable
ContinuousMap
instCommMonoidOfContinuousMul
compactOpen
tprod
DFunLike.coe
instFunLike
β€”HasProd.tprod_eq
hasProd_apply
Multipliable.hasProd
tsum_apply πŸ“–mathematicalSummable
ContinuousMap
instAddCommMonoidOfContinuousAdd
compactOpen
tsum
DFunLike.coe
instFunLike
β€”HasSum.tsum_eq
hasSum_apply
Summable.hasSum
vadd_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
instFunLike
HVAdd.hVAdd
instHVAdd
instVAdd
β€”β€”
vadd_comp πŸ“–mathematicalβ€”comp
HVAdd.hVAdd
ContinuousMap
instHVAdd
instVAdd
β€”β€”
zero_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
instFunLike
instZero
β€”β€”
zero_comp πŸ“–mathematicalβ€”comp
ContinuousMap
instZero
β€”β€”
zpow_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
instFunLike
instZPow
DivInvMonoid.toZPow
Group.toDivInvMonoid
β€”β€”
zpow_comp πŸ“–mathematicalβ€”comp
ContinuousMap
instZPow
β€”β€”
zsmul_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
instFunLike
instZSMul
SubNegMonoid.toZSMul
AddGroup.toSubNegMonoid
β€”β€”
zsmul_comp πŸ“–mathematicalβ€”comp
ContinuousMap
instZSMul
β€”β€”

MonoidHom

Definitions

NameCategoryTheorems
compLeftContinuous πŸ“–CompOp
1 mathmath: compLeftContinuous_apply

Theorems

NameKindAssumesProvesValidatesDepends On
compLeftContinuous_apply πŸ“–mathematicalContinuous
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
instFunLike
ContinuousMap
ContinuousMap.instMulOneClassOfContinuousMul
compLeftContinuous
ContinuousMap.comp
β€”β€”

RingHom

Definitions

NameCategoryTheorems
compLeftContinuous πŸ“–CompOp
1 mathmath: compLeftContinuous_apply_apply

Theorems

NameKindAssumesProvesValidatesDepends On
compLeftContinuous_apply_apply πŸ“–mathematicalContinuous
DFunLike.coe
RingHom
Semiring.toNonAssocSemiring
instFunLike
ContinuousMap
ContinuousMap.instFunLike
ContinuousMap.instNonAssocSemiringOfIsTopologicalSemiring
compLeftContinuous
β€”β€”

Set

Definitions

NameCategoryTheorems
SeparatesPointsStrongly πŸ“–MathDef
1 mathmath: Subalgebra.SeparatesPoints.strongly

Subalgebra

Definitions

NameCategoryTheorems
SeparatesPoints πŸ“–MathDef
5 mathmath: polynomialFunctions_separatesPoints, separatesPoints_monotone, fourierSubalgebra_separatesPoints, UnitAddTorus.mFourierSubalgebra_separatesPoints, BoundedContinuousFunction.separatesPoints_charPoly

Theorems

NameKindAssumesProvesValidatesDepends On
separatesPoints_monotone πŸ“–mathematicalβ€”Monotone
Subalgebra
ContinuousMap
ContinuousMap.instSemiringOfIsTopologicalSemiring
ContinuousMap.algebra
PartialOrder.toPreorder
instPartialOrder
Prop.partialOrder
SeparatesPoints
β€”β€”

Subalgebra.SeparatesPoints

Theorems

NameKindAssumesProvesValidatesDepends On
strongly πŸ“–mathematicalSubalgebra.SeparatesPoints
Semifield.toCommSemiring
Field.toSemifield
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Algebra.id
IsTopologicalRing.toIsTopologicalSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
Field.toCommRing
Set.SeparatesPointsStrongly
SetLike.coe
Subalgebra
ContinuousMap
ContinuousMap.instSemiringOfIsTopologicalSemiring
ContinuousMap.algebra
Subalgebra.instSetLike
β€”IsTopologicalRing.toIsTopologicalSemiring
AddSubmonoidWithOneClass.toOneMemClass
IsTopologicalSemiring.toContinuousAdd
SubsemiringClass.addSubmonoidWithOneClass
Subalgebra.instSubsemiringClass
Subtype.prop
mul_one
sub_ne_zero_of_ne
IsTopologicalRing.to_topologicalAddGroup
SubringClass.addSubgroupClass
Subalgebra.instSubringClass
algebraMap_apply
sub_self
MulZeroClass.mul_zero
zero_add
inv_mul_cancel_rightβ‚€
sub_add_cancel

(root)

Definitions

NameCategoryTheorems
continuousAddSubgroup πŸ“–CompOpβ€”
continuousAddSubmonoid πŸ“–CompOpβ€”
continuousSubalgebra πŸ“–CompOpβ€”
continuousSubgroup πŸ“–CompOpβ€”
continuousSubmodule πŸ“–CompOpβ€”
continuousSubmonoid πŸ“–CompOpβ€”
continuousSubring πŸ“–CompOpβ€”
continuousSubsemiring πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
algebraMap_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
ContinuousMap.instFunLike
RingHom
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ContinuousMap.instSemiringOfIsTopologicalSemiring
RingHom.instFunLike
algebraMap
ContinuousMap.algebra
Algebra.toSMul
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
NonAssocSemiring.toAddCommMonoidWithOne
β€”Algebra.algebraMap_eq_smul_one

---

← Back to Index