| Metric | Count |
DefinitionscompLeftContinuous, compLeftContinuous, instCoeFunElemForallSetOfContinuous, compLeftContinuous, const, C, algebra, coeFnAddMonoidHom, coeFnAlgHom, coeFnLinearMap, coeFnMonoidHom, coeFnRingHom, compAddMonoidHom', compMonoidHom', compRightAlgHom, evalAlgHom, evalCLM, instAdd, instAddCommGroupContinuousMap, instAddCommMonoidOfContinuousAdd, instAddCommSemigroupOfContinuousAdd, instAddGroupOfIsTopologicalAddGroup, instAddMonoidOfContinuousAdd, instAddMonoidWithOneOfContinuousAdd, instAddSemigroupOfContinuousAdd, instAddZeroClassOfContinuousAdd, instCommGroupContinuousMap, instCommMonoidOfContinuousMul, instCommMonoidWithZeroOfContinuousMul, instCommRingOfIsTopologicalRing, instCommSemigroupOfContinuousMul, instCommSemiringOfIsTopologicalSemiring, instDistribMulActionOfContinuousConstSMul, instDivOfContinuousDiv, instGroupOfIsTopologicalGroup, instIntCast, instInvOfContinuousInv, instMonoidOfContinuousMul, instMonoidWithZeroOfContinuousMul, instMul, instMulActionOfContinuousConstSMul, instMulOneClassOfContinuousMul, instMulZeroClassOfContinuousMul, instNSMul, instNatCast, instNegOfContinuousNeg, instNonAssocRingOfIsTopologicalRing, instNonAssocSemiringOfIsTopologicalSemiring, instNonUnitalCommRingOfIsTopologicalRing, instNonUnitalCommSemiringOfIsTopologicalSemiring, instNonUnitalNonAssocRingOfIsTopologicalRing, instNonUnitalNonAssocSemiringOfIsTopologicalSemiring, instNonUnitalRingOfIsTopologicalRing, instNonUnitalSemiringOfIsTopologicalSemiring, instOne, instPow, instRing, instSMul, instSMul', instSemigroupOfContinuousMul, instSemigroupWithZeroOfContinuousMul, instSemiringOfIsTopologicalSemiring, instSubOfContinuousSub, instVAdd, instZPow, instZSMul, instZero, module', compLeftContinuous, compLeftContinuous, SeparatesPointsStrongly, SeparatesPoints, continuousAddSubgroup, continuousAddSubmonoid, continuousSubalgebra, continuousSubgroup, continuousSubmodule, continuousSubmonoid, continuousSubring, continuousSubsemiring | 80 |
TheoremscompLeftContinuous_apply, compLeftContinuous_apply_apply, compLeftContinuous_apply, const_apply_apply, C_apply, add_apply, add_comp, coeFnAddMonoidHom_apply, coeFnAlgHom_apply, coeFnLinearMap_apply, coeFnMonoidHom_apply, coeFnRingHom_apply, coe_add, coe_div, coe_intCast, coe_inv, coe_mul, coe_natCast, coe_neg, coe_nsmul, coe_one, coe_pow, coe_prod, coe_smul, coe_smul', coe_sub, coe_sum, coe_vadd, coe_zero, coe_zpow, coe_zsmul, compAddMonoidHom'_apply, compMonoidHom'_apply, compRightAlgHom_apply, compRightAlgHom_continuous, comp_one, comp_zero, const_one, const_zero, div_apply, div_comp, evalAlgHom_apply, evalCLM_apply, hasProd_apply, hasSum_apply, instContinuousAddOfLocallyCompactSpace, instContinuousConstSMul, instContinuousConstVAdd, instContinuousMulOfLocallyCompactSpace, instContinuousSMul, instContinuousVAdd, instIsCentralScalar, instIsScalarTower, instIsScalarTower_1, instIsTopologicalAddGroup, instIsTopologicalGroup, instIsTopologicalRingOfLocallyCompactSpace, instIsTopologicalSemiringOfLocallyCompactSpace, instSMulCommClass, instSMulCommClass_1, instSMulCommClass_2, instVAddCommClass, intCast_apply, inv_apply, inv_comp, mul_apply, mul_comp, multipliable_apply, natCast_apply, neg_apply, neg_comp, nsmul_apply, nsmul_comp, one_apply, one_comp, pow_apply, pow_comp, prod_apply, smul_apply, smul_apply', smul_comp, sub_apply, sub_comp, subsingleton_subalgebra, sum_apply, summable_apply, tprod_apply, tsum_apply, vadd_apply, vadd_comp, zero_apply, zero_comp, zpow_apply, zpow_comp, zsmul_apply, zsmul_comp, compLeftContinuous_apply, compLeftContinuous_apply_apply, strongly, separatesPoints_monotone, algebraMap_apply | 101 |
| Total | 181 |
| Name | Category | Theorems |
C π | CompOp | 1 mathmath: C_apply
|
algebra π | CompOp | 119 mathmath: polynomialFunctions.eq_adjoin_X, Matrix.IsHermitian.isClosedEmbedding_cfcAux, IsSelfAdjoint.commute_cfcHom, abs_mem_subalgebra_closure, continuousMap_mem_subalgebra_closure_of_separatesPoints, UnitAddTorus.mFourierSubalgebra_coe, toNNReal_neg_algebraMap, Subalgebra.SeparatesPoints.strongly, UnitAddTorus.mFourierSubalgebra_closure_eq_top, cfcHom_continuous, polynomialFunctions.starClosure_topologicalClosure, cfcL_apply, cfcHom_nonneg_iff, gelfandStarTransform_naturality, cfc_apply_mkD, Polynomial.toAddCircle_X_pow_eq_fourier, gelfandTransform_bijective, cfcHom_isClosedEmbedding, BoundedContinuousFunction.coe_toContinuousMapStarβ, algebraMap_apply, cfcHom_le_iff, cfcHom_id, toNNReal_algebraMap, spectrum.gelfandTransform_eq, spectrum_eq_preimage_range, coeFnAlgHom_apply, continuousMap_mem_polynomialFunctions_closure, StarAlgHom.realContinuousMapOfNNReal_apply, gelfandStarTransform_symm_apply, Polynomial.toAddCircle.integrable, Subalgebra.separatesPoints_monotone, gelfandTransform_map_star, polynomialFunctions.starClosure_eq_adjoin_X, cfcHom_integral, compStarAlgHom_comp, compStarAlgHom'_comp, sup_mem_closed_subalgebra, ContinuousFunctionalCalculus.exists_cfc_of_predicate, cfc_def, fourierSubalgebra_separatesPoints, StarAlgHom.realContinuousMapOfNNReal_apply_comp_toReal, exists_mem_subalgebra_near_continuousMap_of_separatesPoints, adjoin_id_eq_span_one_union, Matrix.IsHermitian.cfcAux_apply, sup_mem_subalgebra_closure, inf_mem_subalgebra_closure, inf_mem_closed_subalgebra, exists_mem_subalgebra_near_continuous_of_isCompact_of_separatesPoints, continuous_cfcHomSuperset_left, cfcHomSuperset_apply, range_cfc_eq_range_cfcHom, fourierSubalgebra_coe, Polynomial.toAddCircle_monomial_eq_smul_fourier, subalgebra_topologicalClosure_eq_top_of_separatesPoints, cfcHom_eq_cfc_extend, SpectrumRestricts.starAlgHom_apply, UnitAddTorus.mFourierSubalgebra_separatesPoints, Commute.cfcHom, evalStarAlgHom_apply, Polynomial.aeval_continuousMap_apply, subsingleton_subalgebra, nonUnitalStarAlgebraAdjoin_id_subset_ker_evalStarAlgHom, cfc_apply, polynomialFunctions_coe, Polynomial.fourierCoeff_toAddCircle_natCast, spectrum_eq_range, Polynomial.toContinuousMapAlgHom_apply, StarAlgHom.realContinuousMapOfNNReal_injective, cfcHom_isStrictlyPositive_iff, BoundedContinuousFunction.toContinuousMapStarβ_apply_apply, Homeomorph.compStarAlgEquiv'_apply, cfc_apply_pi, comp_attachBound_mem_closure, Matrix.IsHermitian.cfcAux_id, adjoin_id_eq_span_one_add, cfcHomSuperset_id, BoundedContinuousFunction.coe_toContinuousMapβ, AlgHom.compLeftContinuous_apply_apply, WeakDual.gelfandTransform_apply_apply, compStarAlgHom_id, fourierSubalgebra_closure_eq_top, BoundedContinuousFunction.toContinuousMapβ_apply, polynomialFunctions.topologicalClosure, cfcHom_predicate, polynomial_comp_attachBound, norm_cfcHom, evalAlgHom_apply, ker_evalStarAlgHom_inter_adjoin_id, cfcHomSuperset_continuous, compRightAlgHom_continuous, elemental_id_eq_top, gelfandTransform_isometry, polynomialFunctions_closure_eq_top', compStarAlgHom'_apply, Homeomorph.compStarAlgEquiv'_symm_apply, polynomial_comp_attachBound_mem, range_cfcHom, nnnorm_cfcHom, Polynomial.toAddCircle_X_eq_fourier_one, ker_evalStarAlgHom_eq_closure_adjoin_id, exists_mem_subalgebra_near_continuous_of_separatesPoints, compStarAlgHom_apply, cfcHom_mono, IsometricContinuousFunctionalCalculus.isometric, compStarAlgHom'_id, Polynomial.toAddCircle_C_eq_smul_fourier_zero, polynomialFunctions_closure_eq_top, BoundedContinuousFunction.separatesPoints_charPoly, cfcHom_eq_of_isStarNormal, Polynomial.fourierCoeff_toAddCircle, cfcHom_map_spectrum, compRightAlgHom_apply, Polynomial.toContinuousMapOnAlgHom_apply, cfcHom_apply_mem_elemental, LocallyConstant.toContinuousMapAlgHom_apply, RCLike.restrict_toContinuousMap_eq_toContinuousMapStar_restrict, isometry_cfcHom, polynomialFunctions.comap_compRightAlgHom_iccHomeoI, Polynomial.fourierCoeff_toAddCircle_eq_zero_of_lt_zero
|
coeFnAddMonoidHom π | CompOp | 2 mathmath: coeFnAddMonoidHom_apply, coeFnLinearMap_apply
|
coeFnAlgHom π | CompOp | 1 mathmath: coeFnAlgHom_apply
|
coeFnLinearMap π | CompOp | 1 mathmath: coeFnLinearMap_apply
|
coeFnMonoidHom π | CompOp | 1 mathmath: coeFnMonoidHom_apply
|
coeFnRingHom π | CompOp | 1 mathmath: coeFnRingHom_apply
|
compAddMonoidHom' π | CompOp | 1 mathmath: compAddMonoidHom'_apply
|
compMonoidHom' π | CompOp | 1 mathmath: compMonoidHom'_apply
|
compRightAlgHom π | CompOp | 3 mathmath: compRightAlgHom_continuous, compRightAlgHom_apply, polynomialFunctions.comap_compRightAlgHom_iccHomeoI
|
evalAlgHom π | CompOp | 1 mathmath: evalAlgHom_apply
|
evalCLM π | CompOp | 1 mathmath: evalCLM_apply
|
instAdd π | CompOp | 18 mathmath: addEquivBoundedOfCompact_apply, gelfandStarTransform_naturality, gelfandStarTransform_apply_apply, BoundedContinuousFunction.mkOfCompact_add, gelfandStarTransform_symm_apply, toNNReal_mul_add_neg_mul_add_mul_neg_eq, coe_add, linearIsometryBoundedOfCompact_toAddEquiv, Homeomorph.compStarAlgEquiv'_apply, add_apply, adjoin_id_eq_span_one_add, addEquivBoundedOfCompact_symm_apply, instContinuousAddOfLocallyCompactSpace, add_comp, Homeomorph.compStarAlgEquiv'_symm_apply, toNNReal_add_add_neg_add_neg_eq, cfcHom_eq_of_isStarNormal, continuousFunctionalCalculus_map_id
|
instAddCommGroupContinuousMap π | CompOp | 4 mathmath: ContinuousCohomology.I_obj_V_isAddCommGroup, ContinuousCohomology.I_obj_Ο_apply, ContinuousCohomology.I_map_hom, ContinuousCohomology.const_app_hom
|
instAddCommMonoidOfContinuousAdd π | CompOp | 43 mathmath: toLp_inj, Real.fourierCoeff_tsum_comp_add, span_fourier_closure_eq_top, toLp_denseRange, range_toLp, UnitAddTorus.mFourierSubalgebra_coe, BoundedContinuousFunction.toContinuousMapLinearMap_apply, summable_of_locally_summable_norm, LocallyConstant.toContinuousMapLinearMap_apply, cfcL_apply, toLp_norm_le, cfcL_integrable, UnitAddTorus.mFourierCoeff_toLp, ContinuousLinearMap.const_apply_apply, periodic_tsum_comp_add_zsmul, evalCLM_apply, toLp_def, coeFnLinearMap_apply, ContinuousMapZero.toContinuousMapCLM_apply, instIsOrderedAddMonoid, adjoin_id_eq_span_one_union, toLp_norm_eq_toLp_norm_coe, fourierCoeff_toLp, ContinuousLinearMap.compLeftContinuous_apply, sum_apply, cfc_eq_cfcL_mkD, PadicInt.hasSum_mahlerSeries, fourierSubalgebra_coe, toLp_injective, UnitAddTorus.hasSum_mFourier_series_of_summable, PadicInt.hasSum_mahler, coe_toLp, cfcL_integral, coeFn_toLp, linearIsometryBoundedOfCompact_toAddEquiv, toLp_comp_toContinuousMap, adjoin_id_eq_span_one_add, hasSum_fourier_series_of_summable, instLocallyConvexSpace, coe_sum, cfc_eq_cfcL, UnitAddTorus.span_mFourier_closure_eq_top, MeasureTheory.ContinuousMap.inner_toLp
|
instAddCommSemigroupOfContinuousAdd π | CompOp | β |
instAddGroupOfIsTopologicalAddGroup π | CompOp | 4 mathmath: abs_mem_subalgebra_closure, instIsTopologicalAddGroup, abs_apply, coe_abs
|
instAddMonoidOfContinuousAdd π | CompOp | 4 mathmath: addUnitsLift_apply_neg_apply, val_addUnitsLift_apply_apply, val_addUnitsLift_symm_apply_apply, addUnitsLift_symm_apply_apply_neg'
|
instAddMonoidWithOneOfContinuousAdd π | CompOp | β |
instAddSemigroupOfContinuousAdd π | CompOp | β |
instAddZeroClassOfContinuousAdd π | CompOp | 8 mathmath: coeFnAddMonoidHom_apply, BoundedContinuousFunction.toContinuousMapAddMonoidHom_apply, coeFnLinearMap_apply, LocallyConstant.toContinuousMapAddMonoidHom_apply, ContinuousLinearMap.compLeftContinuous_apply, compAddMonoidHom'_apply, AddMonoidHom.compLeftContinuous_apply, addEquivBoundedOfCompact_symm_apply
|
instCommGroupContinuousMap π | CompOp | β |
instCommMonoidOfContinuousMul π | CompOp | 5 mathmath: BumpCovering.exists_finset_toPartitionOfUnity_eventuallyEq, prod_apply, instIsOrderedMonoid, BumpCovering.exists_finset_toPOUFun_eventuallyEq, coe_prod
|
instCommMonoidWithZeroOfContinuousMul π | CompOp | β |
instCommRingOfIsTopologicalRing π | CompOp | β |
instCommSemigroupOfContinuousMul π | CompOp | β |
instCommSemiringOfIsTopologicalSemiring π | CompOp | β |
instDistribMulActionOfContinuousConstSMul π | CompOp | 4 mathmath: gelfandStarTransform_symm_apply, ContinuousMapZero.toContinuousMapHom_toNNReal, ContinuousMapZero.toContinuousMapHom_apply, ContinuousMapZero.coe_toContinuousMapHom
|
instDivOfContinuousDiv π | CompOp | 3 mathmath: div_comp, div_apply, coe_div
|
instGroupOfIsTopologicalGroup π | CompOp | 3 mathmath: instIsTopologicalGroup, coe_mabs, mabs_apply
|
instIntCast π | CompOp | 2 mathmath: coe_intCast, intCast_apply
|
instInvOfContinuousInv π | CompOp | 3 mathmath: inv_comp, inv_apply, coe_inv
|
instMonoidOfContinuousMul π | CompOp | 6 mathmath: val_unitsLift_apply_apply, isUnit_iff_forall_isUnit, val_unitsLift_symm_apply_apply, unitsLift_apply_inv_apply, unitsLift_symm_apply_apply_inv', isUnit_iff_forall_ne_zero
|
instMonoidWithZeroOfContinuousMul π | CompOp | β |
instMul π | CompOp | 16 mathmath: instContinuousMulOfLocallyCompactSpace, gelfandStarTransform_naturality, gelfandStarTransform_apply_apply, gelfandStarTransform_symm_apply, instSMulCommClass_2, toNNReal_mul_add_neg_mul_add_mul_neg_eq, instSMulCommClass_1, Homeomorph.compStarAlgEquiv'_apply, Homeomorph.compStarAlgEquiv'_symm_apply, mul_comp, coe_mul, cfcHom_eq_of_isStarNormal, mul_apply, continuousFunctionalCalculus_map_id, instIsScalarTower_1, exists_mul_le_one_eqOn_ge
|
instMulActionOfContinuousConstSMul π | CompOp | β |
instMulOneClassOfContinuousMul π | CompOp | 5 mathmath: compMonoidHom'_apply, BoundedContinuousFunction.toContinuousMapMonoidHom_apply, LocallyConstant.toContinuousMapMonoidHom_apply, MonoidHom.compLeftContinuous_apply, coeFnMonoidHom_apply
|
instMulZeroClassOfContinuousMul π | CompOp | β |
instNSMul π | CompOp | 3 mathmath: nsmul_comp, coe_nsmul, nsmul_apply
|
instNatCast π | CompOp | 2 mathmath: coe_natCast, natCast_apply
|
instNegOfContinuousNeg π | CompOp | 9 mathmath: toNNReal_neg_algebraMap, StarAlgHom.realContinuousMapOfNNReal_apply, neg_comp, coe_neg, BoundedContinuousFunction.mkOfCompact_neg, toNNReal_mul_add_neg_mul_add_mul_neg_eq, toNNReal_neg_one, toNNReal_add_add_neg_add_neg_eq, neg_apply
|
instNonAssocRingOfIsTopologicalRing π | CompOp | β |
instNonAssocSemiringOfIsTopologicalSemiring π | CompOp | 3 mathmath: coeFnRingHom_apply, RingHom.compLeftContinuous_apply_apply, C_apply
|
instNonUnitalCommRingOfIsTopologicalRing π | CompOp | β |
instNonUnitalCommSemiringOfIsTopologicalSemiring π | CompOp | β |
instNonUnitalNonAssocRingOfIsTopologicalRing π | CompOp | 8 mathmath: abs_mem_subalgebra_closure, continuousMap_mem_subalgebra_closure_of_separatesPoints, sup_mem_subalgebra_closure, inf_mem_subalgebra_closure, subalgebra_topologicalClosure_eq_top_of_separatesPoints, instIsTopologicalRingOfLocallyCompactSpace, comp_attachBound_mem_closure, starSubalgebra_topologicalClosure_eq_top_of_separatesPoints
|
instNonUnitalNonAssocSemiringOfIsTopologicalSemiring π | CompOp | 10 mathmath: gelfandStarTransform_naturality, WeakDual.CharacterSpace.continuousMapEval_bijective, gelfandStarTransform_symm_apply, WeakDual.CharacterSpace.homeoEval_naturality, instIsTopologicalSemiringOfLocallyCompactSpace, ContinuousMapZero.toContinuousMapHom_toNNReal, ContinuousMapZero.toContinuousMapHom_apply, WeakDual.CharacterSpace.continuousMapEval_apply_apply, cfcHom_eq_of_isStarNormal, ContinuousMapZero.coe_toContinuousMapHom
|
instNonUnitalRingOfIsTopologicalRing π | CompOp | β |
instNonUnitalSemiringOfIsTopologicalSemiring π | CompOp | 6 mathmath: instStarOrderedRingOfContinuousSqrt, adjoin_id_eq_span_one_union, nonUnitalStarAlgebraAdjoin_id_subset_ker_evalStarAlgHom, adjoin_id_eq_span_one_add, ker_evalStarAlgHom_inter_adjoin_id, ker_evalStarAlgHom_eq_closure_adjoin_id
|
instOne π | CompOp | 16 mathmath: one_apply, UnitAddTorus.mFourier_zero, adjoin_id_eq_span_one_union, toNNReal_one, BumpCovering.exists_finset_toPartitionOfUnity_eventuallyEq, comp_one, one_comp, adjoin_id_eq_span_one_add, BoundedContinuousFunction.mkOfCompact_one, BumpCovering.exists_finset_toPOUFun_eventuallyEq, toNNReal_neg_one, coe_one, BumpCovering.le_one', instNormOneClassOfNonempty, BumpCovering.coe_single, const_one
|
instPow π | CompOp | 3 mathmath: pow_apply, pow_comp, coe_pow
|
instRing π | CompOp | 6 mathmath: spectrum.gelfandTransform_eq, spectrum_eq_preimage_range, NormedSpace.exp_continuousMap_eq, spectrum_eq_range, idealOfSet_ofIdeal_eq_closure, idealOpensGI_choice
|
instSMul π | CompOp | 24 mathmath: instIsScalarTower, gelfandStarTransform_naturality, gelfandStarTransform_apply_apply, instStarModule, gelfandStarTransform_symm_apply, smul_apply, smul_comp, instSMulCommClass_2, instContinuousSMul, Polynomial.toAddCircle_monomial_eq_smul_fourier, instIsBoundedSMul, UnitAddTorus.hasSum_mFourier_series_of_summable, instSMulCommClass_1, Homeomorph.compStarAlgEquiv'_apply, hasSum_fourier_series_of_summable, instIsCentralScalar, instContinuousConstSMul, Homeomorph.compStarAlgEquiv'_symm_apply, coe_smul, Polynomial.toAddCircle_C_eq_smul_fourier_zero, cfcHom_eq_of_isStarNormal, continuousFunctionalCalculus_map_id, instSMulCommClass, instIsScalarTower_1
|
instSMul' π | CompOp | 4 mathmath: coe_smul', nnnorm_smul_const, smul_apply', norm_smul_const
|
instSemigroupOfContinuousMul π | CompOp | β |
instSemigroupWithZeroOfContinuousMul π | CompOp | β |
instSemiringOfIsTopologicalSemiring π | CompOp | 128 mathmath: polynomialFunctions.eq_adjoin_X, Matrix.IsHermitian.isClosedEmbedding_cfcAux, IsSelfAdjoint.commute_cfcHom, abs_mem_subalgebra_closure, notMem_idealOfSet, continuousMap_mem_subalgebra_closure_of_separatesPoints, UnitAddTorus.mFourierSubalgebra_coe, toNNReal_neg_algebraMap, Subalgebra.SeparatesPoints.strongly, UnitAddTorus.mFourierSubalgebra_closure_eq_top, cfcHom_continuous, polynomialFunctions.starClosure_topologicalClosure, cfcL_apply, cfcHom_nonneg_iff, gelfandStarTransform_naturality, cfc_apply_mkD, mem_idealOfSet, Polynomial.toAddCircle_X_pow_eq_fourier, gelfandTransform_bijective, cfcHom_isClosedEmbedding, BoundedContinuousFunction.coe_toContinuousMapStarβ, algebraMap_apply, cfcHom_le_iff, cfcHom_id, toNNReal_algebraMap, spectrum.gelfandTransform_eq, coeFnAlgHom_apply, continuousMap_mem_polynomialFunctions_closure, StarAlgHom.realContinuousMapOfNNReal_apply, idealOfSet_closed, gelfandStarTransform_symm_apply, Polynomial.toAddCircle.integrable, Subalgebra.separatesPoints_monotone, gelfandTransform_map_star, polynomialFunctions.starClosure_eq_adjoin_X, cfcHom_integral, compStarAlgHom_comp, compStarAlgHom'_comp, ideal_isMaximal_iff, sup_mem_closed_subalgebra, ContinuousFunctionalCalculus.exists_cfc_of_predicate, cfc_def, fourierSubalgebra_separatesPoints, StarAlgHom.realContinuousMapOfNNReal_apply_comp_toReal, exists_mem_subalgebra_near_continuousMap_of_separatesPoints, adjoin_id_eq_span_one_union, Matrix.IsHermitian.cfcAux_apply, sup_mem_subalgebra_closure, inf_mem_subalgebra_closure, inf_mem_closed_subalgebra, exists_mem_subalgebra_near_continuous_of_isCompact_of_separatesPoints, continuous_cfcHomSuperset_left, cfcHomSuperset_apply, range_cfc_eq_range_cfcHom, fourierSubalgebra_coe, Polynomial.toAddCircle_monomial_eq_smul_fourier, subalgebra_topologicalClosure_eq_top_of_separatesPoints, cfcHom_eq_cfc_extend, SpectrumRestricts.starAlgHom_apply, UnitAddTorus.mFourierSubalgebra_separatesPoints, Commute.cfcHom, evalStarAlgHom_apply, ideal_gc, Polynomial.aeval_continuousMap_apply, subsingleton_subalgebra, nonUnitalStarAlgebraAdjoin_id_subset_ker_evalStarAlgHom, cfc_apply, setOfTop_eq_univ, polynomialFunctions_coe, Polynomial.fourierCoeff_toAddCircle_natCast, Polynomial.toContinuousMapAlgHom_apply, StarAlgHom.realContinuousMapOfNNReal_injective, cfcHom_isStrictlyPositive_iff, BoundedContinuousFunction.toContinuousMapStarβ_apply_apply, Homeomorph.compStarAlgEquiv'_apply, cfc_apply_pi, comp_attachBound_mem_closure, Matrix.IsHermitian.cfcAux_id, adjoin_id_eq_span_one_add, cfcHomSuperset_id, BoundedContinuousFunction.coe_toContinuousMapβ, AlgHom.compLeftContinuous_apply_apply, WeakDual.gelfandTransform_apply_apply, compStarAlgHom_id, fourierSubalgebra_closure_eq_top, BoundedContinuousFunction.toContinuousMapβ_apply, mem_setOfIdeal, polynomialFunctions.topologicalClosure, cfcHom_predicate, idealOfEmpty_eq_bot, polynomial_comp_attachBound, norm_cfcHom, evalAlgHom_apply, ker_evalStarAlgHom_inter_adjoin_id, cfcHomSuperset_continuous, compRightAlgHom_continuous, elemental_id_eq_top, gelfandTransform_isometry, polynomialFunctions_closure_eq_top', mem_idealOfSet_compl_singleton, compStarAlgHom'_apply, Homeomorph.compStarAlgEquiv'_symm_apply, polynomial_comp_attachBound_mem, range_cfcHom, nnnorm_cfcHom, Polynomial.toAddCircle_X_eq_fourier_one, ker_evalStarAlgHom_eq_closure_adjoin_id, idealOf_compl_singleton_isMaximal, exists_mem_subalgebra_near_continuous_of_separatesPoints, compStarAlgHom_apply, cfcHom_mono, IsometricContinuousFunctionalCalculus.isometric, compStarAlgHom'_id, Polynomial.toAddCircle_C_eq_smul_fourier_zero, polynomialFunctions_closure_eq_top, BoundedContinuousFunction.separatesPoints_charPoly, cfcHom_eq_of_isStarNormal, Polynomial.fourierCoeff_toAddCircle, cfcHom_map_spectrum, compRightAlgHom_apply, idealOfSet_isMaximal_iff, Polynomial.toContinuousMapOnAlgHom_apply, cfcHom_apply_mem_elemental, LocallyConstant.toContinuousMapAlgHom_apply, RCLike.restrict_toContinuousMap_eq_toContinuousMapStar_restrict, isometry_cfcHom, polynomialFunctions.comap_compRightAlgHom_iccHomeoI, Polynomial.fourierCoeff_toAddCircle_eq_zero_of_lt_zero
|
instSubOfContinuousSub π | CompOp | 8 mathmath: coe_sub, exists_mem_subalgebra_near_continuousMap_of_separatesPoints, exists_polynomial_near_continuousMap, BumpCovering.exists_finset_toPartitionOfUnity_eventuallyEq, sub_comp, BumpCovering.exists_finset_toPOUFun_eventuallyEq, BoundedContinuousFunction.mkOfCompact_sub, sub_apply
|
instVAdd π | CompOp | 6 mathmath: instContinuousVAdd, vadd_comp, coe_vadd, instVAddCommClass, vadd_apply, instContinuousConstVAdd
|
instZPow π | CompOp | 3 mathmath: zpow_apply, zpow_comp, coe_zpow
|
instZSMul π | CompOp | 3 mathmath: coe_zsmul, zsmul_comp, zsmul_apply
|
instZero π | CompOp | 15 mathmath: toNNReal_neg_algebraMap, cfcHom_nonneg_iff, PartitionOfUnity.nonneg', cfc_apply_mkD, BoundedContinuousFunction.mkOfCompact_zero, coe_zero, BumpCovering.nonneg', cfc_eq_cfcL_mkD, comp_zero, zero_apply, instIsBoundedSMul, toNNReal_neg_one, zero_comp, const_zero, BumpCovering.coe_single
|
module' π | CompOp | β |