Documentation Verification Report

BoundedCompactlySupported

πŸ“ Source: Mathlib/Topology/ContinuousMap/BoundedCompactlySupported.lean

Statistics

MetricCount
Definitions«termC_cb(_,_)»»), compactlySupported, instSMulContinuousMapSubtypeBoundedContinuousFunctionMemTwoSidedIdealCompactlySupported, ofCompactSupport
4
TheoremscompactlySupported_eq_top, compactlySupported_eq_top_iff, compactlySupported_eq_top_of_isCompact, exist_norm_eq, mem_compactlySupported, norm_lt_iff_of_compactlySupported, norm_lt_iff_of_nonempty_compactlySupported, ofCompactSupport_mem
8
Total12

BoundedContinuousFunction

Definitions

NameCategoryTheorems
Β«termC_cb(_,_)Β» πŸ“–Β» "API Documentation")CompOpβ€”

(root)

Definitions

NameCategoryTheorems
compactlySupported πŸ“–CompOp
5 mathmath: compactlySupported_eq_top_of_isCompact, compactlySupported_eq_top, compactlySupported_eq_top_iff, mem_compactlySupported, ofCompactSupport_mem
instSMulContinuousMapSubtypeBoundedContinuousFunctionMemTwoSidedIdealCompactlySupported πŸ“–CompOpβ€”
ofCompactSupport πŸ“–CompOp
1 mathmath: ofCompactSupport_mem

Theorems

NameKindAssumesProvesValidatesDepends On
compactlySupported_eq_top πŸ“–mathematicalβ€”compactlySupported
Top.top
TwoSidedIdeal
BoundedContinuousFunction
NonUnitalSeminormedRing.toPseudoMetricSpace
NonUnitalNormedRing.toNonUnitalSeminormedRing
NonUnitalRing.toNonUnitalNonAssocRing
BoundedContinuousFunction.instNonUnitalRing
TwoSidedIdeal.instTop
β€”compactlySupported_eq_top_of_isCompact
CompactSpace.isCompact_univ
compactlySupported_eq_top_iff πŸ“–mathematicalβ€”compactlySupported
Top.top
TwoSidedIdeal
BoundedContinuousFunction
NonUnitalSeminormedRing.toPseudoMetricSpace
NonUnitalNormedRing.toNonUnitalSeminormedRing
NonUnitalRing.toNonUnitalNonAssocRing
BoundedContinuousFunction.instNonUnitalRing
TwoSidedIdeal.instTop
IsCompact
Set.univ
β€”exists_ne
Function.support_const
IsClosed.closure_eq
HasCompactSupport.isCompact
mem_compactlySupported
compactlySupported_eq_top_of_isCompact
compactlySupported_eq_top_of_isCompact πŸ“–mathematicalIsCompact
Set.univ
compactlySupported
Top.top
TwoSidedIdeal
BoundedContinuousFunction
NonUnitalSeminormedRing.toPseudoMetricSpace
NonUnitalNormedRing.toNonUnitalSeminormedRing
NonUnitalRing.toNonUnitalNonAssocRing
BoundedContinuousFunction.instNonUnitalRing
TwoSidedIdeal.instTop
β€”eq_top_iff
IsCompact.of_isClosed_subset
isClosed_tsupport
Set.subset_univ
exist_norm_eq πŸ“–mathematicalBoundedContinuousFunction
NonUnitalSeminormedRing.toPseudoMetricSpace
NonUnitalNormedRing.toNonUnitalSeminormedRing
TwoSidedIdeal
NonUnitalRing.toNonUnitalNonAssocRing
BoundedContinuousFunction.instNonUnitalRing
SetLike.instMembership
TwoSidedIdeal.setLike
compactlySupported
Norm.norm
NonUnitalNormedRing.toNorm
DFunLike.coe
BoundedContinuousFunction.instFunLike
BoundedContinuousFunction.instNorm
NonUnitalSeminormedRing.toSeminormedAddCommGroup
β€”IsCompact.exists_isMaxOn
instClosedIciTopology
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
mem_compactlySupported
Continuous.continuousOn
Continuous.norm
ContinuousMapClass.map_continuous
BoundedContinuousMapClass.toContinuousMapClass
BoundedContinuousFunction.instBoundedContinuousMapClass
le_antisymm
BoundedContinuousFunction.norm_coe_le_norm
BoundedContinuousFunction.norm_le
norm_nonneg
image_eq_zero_of_notMem_tsupport
norm_zero
DFunLike.ext'_iff
BoundedContinuousFunction.coe_zero
tsupport_eq_empty_iff
Set.not_nonempty_iff_eq_empty
mem_compactlySupported πŸ“–mathematicalβ€”BoundedContinuousFunction
NonUnitalSeminormedRing.toPseudoMetricSpace
NonUnitalNormedRing.toNonUnitalSeminormedRing
TwoSidedIdeal
NonUnitalRing.toNonUnitalNonAssocRing
BoundedContinuousFunction.instNonUnitalRing
SetLike.instMembership
TwoSidedIdeal.setLike
compactlySupported
HasCompactSupport
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalNormedRing.toNonUnitalRing
DFunLike.coe
BoundedContinuousFunction.instFunLike
β€”TwoSidedIdeal.mem_mk'
HasCompactSupport.zero
HasCompactSupport.add
HasCompactSupport.neg
HasCompactSupport.mul_left
HasCompactSupport.mul_right
norm_lt_iff_of_compactlySupported πŸ“–mathematicalBoundedContinuousFunction
NonUnitalSeminormedRing.toPseudoMetricSpace
NonUnitalNormedRing.toNonUnitalSeminormedRing
TwoSidedIdeal
NonUnitalRing.toNonUnitalNonAssocRing
BoundedContinuousFunction.instNonUnitalRing
SetLike.instMembership
TwoSidedIdeal.setLike
compactlySupported
Real
Real.instLT
Real.instZero
Norm.norm
BoundedContinuousFunction.instNorm
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalNormedRing.toNorm
DFunLike.coe
BoundedContinuousFunction.instFunLike
β€”lt_of_le_of_lt
BoundedContinuousFunction.norm_coe_le_norm
isEmpty_or_nonempty
BoundedContinuousFunction.norm_eq_zero_of_empty
exist_norm_eq
norm_lt_iff_of_nonempty_compactlySupported πŸ“–mathematicalBoundedContinuousFunction
NonUnitalSeminormedRing.toPseudoMetricSpace
NonUnitalNormedRing.toNonUnitalSeminormedRing
TwoSidedIdeal
NonUnitalRing.toNonUnitalNonAssocRing
BoundedContinuousFunction.instNonUnitalRing
SetLike.instMembership
TwoSidedIdeal.setLike
compactlySupported
Real
Real.instLT
Norm.norm
BoundedContinuousFunction.instNorm
NonUnitalSeminormedRing.toSeminormedAddCommGroup
NonUnitalNormedRing.toNorm
DFunLike.coe
BoundedContinuousFunction.instFunLike
β€”lt_or_ge
norm_lt_iff_of_compactlySupported
LT.lt.not_ge
LT.lt.trans_le
norm_nonneg
ofCompactSupport_mem πŸ“–mathematicalContinuous
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
NonUnitalSeminormedRing.toPseudoMetricSpace
NonUnitalNormedRing.toNonUnitalSeminormedRing
HasCompactSupport
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRing.toNonUnitalNonAssocRing
NonUnitalNormedRing.toNonUnitalRing
BoundedContinuousFunction
TwoSidedIdeal
BoundedContinuousFunction.instNonUnitalRing
SetLike.instMembership
TwoSidedIdeal.setLike
compactlySupported
ofCompactSupport
β€”mem_compactlySupported

---

← Back to Index