Documentation Verification Report

ArzelaAscoli

šŸ“ Source: Mathlib/Topology/ContinuousMap/Bounded/ArzelaAscoli.lean

Statistics

MetricCount
Definitions0
Theoremsarzela_ascoli, arzela_ascoli₁, arzela_ascoliā‚‚
3
Total3

BoundedContinuousFunction

Theorems

NameKindAssumesProvesValidatesDepends On
arzela_ascoli šŸ“–mathematicalIsCompact
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Set
Set.instMembership
DFunLike.coe
BoundedContinuousFunction
instFunLike
Equicontinuous
Set.Elem
instPseudoMetricSpace
closure
—arzela_ascoliā‚‚
isClosed_closure
Metric.mem_of_closed'
IsCompact.isClosed
Metric.mem_closure_iff
lt_of_le_of_lt
dist_coe_le_dist
Equicontinuous.closure'
continuous_coe
arzela_ascoli₁ šŸ“–mathematicalEquicontinuous
Set.Elem
BoundedContinuousFunction
PseudoMetricSpace.toUniformSpace
DFunLike.coe
instFunLike
Set
Set.instMembership
IsCompact
UniformSpace.toTopologicalSpace
instPseudoMetricSpace
—TotallyBounded.isCompact_of_isClosed
instCompleteSpace
complete_of_proper
proper_of_compact
Metric.totallyBounded_of_finite_discretization
exists_between
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Nat.instAtLeastTwoHAddOfNat
half_pos
mem_nhds_iff
IsCompact.elim_finite_subcover_image
isCompact_univ
Set.mem_biUnion
Set.mem_univ
Set.Finite.nonempty_fintype
finite_cover_balls_of_compact
lt_of_le_of_lt
dist_le
le_of_lt
Set.mem_iUnionā‚‚
dist_triangle4_right
add_lt_add
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
dist_triangle_right
add_halves
CharZero.NeZero.two
IsStrictOrderedRing.toCharZero
arzela_ascoliā‚‚ šŸ“–mathematicalIsCompact
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Set
Set.instMembership
DFunLike.coe
BoundedContinuousFunction
instFunLike
Equicontinuous
Set.Elem
instPseudoMetricSpace—LipschitzWith.subtype_val
IsCompact.of_isClosed_subset
IsCompact.image
arzela_ascoli₁
isCompact_iff_compactSpace
continuous_iff_isClosed
continuous_comp
IsUniformInducing.equicontinuous_iff
IsUniformEmbedding.isUniformInducing
isUniformEmbedding_subtype_val
Equicontinuous.comp
ext

---

← Back to Index