Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Topology/ContinuousMap/Bounded/Basic.lean

Statistics

MetricCount
DefinitionscompLeftContinuousBounded, apply, codRestrict, coeFnAddHom, coeFnAddMonoidHom, coeFnMonoidHom, comp, compContinuous, const, evalCLM, extend, indicator, instAdd, instAddCommMonoid, instAddMonoid, instAddZeroClass, instCoeTC, instCommMonoid, instDist, instDistribMulAction, instFunLike, instInhabited, instIntCast, instMetricSpace, instModule, instMonoid, instMul, instMulAction, instMulOneClass, instNatCast, instOne, instPow, instPseudoMetricSpace, instSMul, instSMulNat, instSemiring, instSub, instZero, mkOfBound, mkOfCompact, mkOfDiscrete, restrict, toContinuousMap, toContinuousMapAddHom, toContinuousMapAddMonoidHom, toContinuousMapLinearMap, toContinuousMapMonoidHom, Β«term_→ᡇ_Β», BoundedContinuousMapClass, compLeftContinuousBounded
50
TheoremscompLeftContinuousBounded_apply, upper_bound, add_apply, add_compContinuous, bounded, coeFnAddMonoidHom_apply, coeFnMonoidHom_apply, coe_add, coe_compContinuous, coe_mk, coe_mul, coe_nsmul, coe_nsmulRec, coe_one, coe_pow, coe_prod, coe_restrict, coe_smul, coe_sub, coe_sum, coe_toContinuousMap, coe_zero, compContinuous_apply, comp_apply, const_apply, const_apply', continuous, continuous_coe, continuous_comp, continuous_compContinuous, continuous_eval, continuous_eval_const, dist_coe_le_dist, dist_eq, dist_eq_iSup, dist_extend_extend, dist_le, dist_le_iff_of_nonempty, dist_lt_iff_of_compact, dist_lt_iff_of_nonempty_compact, dist_lt_of_nonempty_compact, dist_set_exists, dist_zero_of_empty, edist_eq_iSup, eq_of_empty, evalCLM_apply, ext, ext_iff, extend_apply, extend_apply', extend_comp, extend_of_empty, forall_coe_one_iff_one, forall_coe_zero_iff_zero, indicator_apply, instBoundedContinuousMapClass, instCompleteSpace, instContinuousEval, instContinuousEvalConst, instIsBoundedSMul, instIsCentralScalar, instIsScalarTower, instLipschitzAdd, instSMulCommClass, intCast_apply, isBounded_image, isBounded_range, isEmbedding_coeFn, isInducing_coeFn, isometry_extend, lipschitz_comp, lipschitz_compContinuous, lipschitz_eval_const, lipschitz_evalx, map_bounded', mkOfBound_coe, mkOfCompact_add, mkOfCompact_apply, mkOfCompact_one, mkOfCompact_zero, mkOfDiscrete_apply, mul_apply, natCast_apply, nndist_coe_le_nndist, nndist_eq, nndist_eq_iSup, nndist_set_exists, nsmul_apply, one_compContinuous, pow_apply, prod_apply, restrict_apply, smul_apply, sub_apply, sum_apply, tendsto_iff_tendstoUniformly, toContinuousMapAddMonoidHom_apply, toContinuousMapLinearMap_apply, toContinuousMapMonoidHom_apply, uniformContinuous_coe, uniformContinuous_comp, zero_compContinuous, map_bounded, toContinuousMapClass, compLeftContinuousBounded_apply
105
Total155

AddMonoidHom

Definitions

NameCategoryTheorems
compLeftContinuousBounded πŸ“–CompOp
1 mathmath: compLeftContinuousBounded_apply

Theorems

NameKindAssumesProvesValidatesDepends On
compLeftContinuousBounded_apply πŸ“–mathematicalLipschitzWith
PseudoMetricSpace.toPseudoEMetricSpace
DFunLike.coe
AddMonoidHom
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
instFunLike
BoundedContinuousFunction
BoundedContinuousFunction.instAddZeroClass
compLeftContinuousBounded
BoundedContinuousFunction.comp
β€”β€”

BoundedContinuousFunction

Definitions

NameCategoryTheorems
codRestrict πŸ“–CompOpβ€”
coeFnAddHom πŸ“–CompOpβ€”
coeFnAddMonoidHom πŸ“–CompOp
1 mathmath: coeFnAddMonoidHom_apply
coeFnMonoidHom πŸ“–CompOp
1 mathmath: coeFnMonoidHom_apply
comp πŸ“–CompOp
6 mathmath: uniformContinuous_comp, comp_apply, lipschitz_comp, AddMonoidHom.compLeftContinuousBounded_apply, MonoidHom.compLeftContinuousBounded_apply, continuous_comp
compContinuous πŸ“–CompOp
10 mathmath: tietze_extension_step, norm_compContinuous_le, continuous_compContinuous, zero_compContinuous, one_compContinuous, compContinuous_apply, lipschitz_compContinuous, coe_compContinuous, add_compContinuous, exists_extension_norm_eq_of_isClosedEmbedding'
const πŸ“–CompOp
11 mathmath: integral_const_sub, MeasureTheory.FiniteMeasure.testAgainstNN_const, nnnorm_const_eq, const_apply', nnnorm_const_le, integral_add_const, add_norm_nonneg, norm_sub_nonneg, norm_const_eq, norm_const_le, const_apply
evalCLM πŸ“–CompOp
1 mathmath: evalCLM_apply
extend πŸ“–CompOp
6 mathmath: isometry_extend, dist_extend_extend, extend_apply', extend_of_empty, extend_comp, extend_apply
indicator πŸ“–CompOp
1 mathmath: indicator_apply
instAdd πŸ“–CompOp
17 mathmath: ContinuousMap.addEquivBoundedOfCompact_apply, mkOfCompact_add, coe_nsmulRec, coe_ringEquiv_lpBCF, MeasureTheory.FiniteMeasure.testAgainstNN_add, tendsto_integral_mul_one_add_inv_smul_sq_pow, add_apply, coe_add, coe_addEquiv_lpBCF_symm, coe_zsmulRec, coe_addEquiv_lpBCF, ContinuousMap.linearIsometryBoundedOfCompact_toAddEquiv, integral_add_const, add_norm_nonneg, ContinuousMap.addEquivBoundedOfCompact_symm_apply, coe_ringEquiv_lpBCF_symm, add_compContinuous
instAddCommMonoid πŸ“–CompOp
51 mathmath: MeasureTheory.FiniteMeasure.toWeakDualBCNN_apply, ContDiffMapSupportedIn.structureMapCLM_eq_of_scalars, ContDiffMapSupportedIn.structureMapCLM_apply, TestFunction.toBoundedContinuousFunctionCLM_eq_of_scalars, evalCLM_apply, toContinuousMapLinearMap_apply, TestFunction.toBoundedContinuousFunctionCLM_apply, MeasureTheory.FiniteMeasure.injective_toWeakDualBCNN, instIsOrderedAddMonoid, MeasureTheory.FiniteMeasure.tendsto_iff_weakDual_tendsto, SchwartzMap.toBoundedContinuousFunctionCLM_apply, ContDiffMapSupportedIn.structureMapLM_eq_of_scalars, toLp_inj, toLp_injective, ContDiffMapSupportedIn.uniformSpace_eq_iInf, ContDiffMapSupportedIn.continuous_iff_comp_withOrder, ContDiffMapSupportedIn.structureMapCLM_zero_apply, ContinuousMap.toLp_def, coe_sum, ContDiffMapSupportedIn.structureMapLM_apply_withOrder, ContinuousMap.toLp_norm_eq_toLp_norm_coe, coeFn_toLp, ContDiffMapSupportedIn.isUniformEmbedding_pi_structureMapCLM, ContDiffMapSupportedIn.toBoundedContinuousFunctionLM_eq_of_scalars, MeasureTheory.ProbabilityMeasure.toWeakDualBCNN_apply, MeasureTheory.ProbabilityMeasure.coe_toWeakDualBCNN, ContDiffMapSupportedIn.structureMapCLM_apply_withOrder, ContDiffMapSupportedIn.seminorm_apply, ContDiffMapSupportedIn.toBoundedContinuousFunctionCLM_eq_of_scalars, ContinuousMap.linearIsometryBoundedOfCompact_toAddEquiv, ContinuousLinearMap.compLeftContinuousBounded_apply, ContinuousMap.toLp_comp_toContinuousMap, ContDiffMapSupportedIn.structureMapLM_zero_injective, toLp_norm_le, MeasureTheory.ProbabilityMeasure.toWeakDualBCNN_continuous, ContDiffMapSupportedIn.toBoundedContinuousFunctionLM_apply, MeasureTheory.FiniteMeasure.toWeakDualBCNN_continuous, MeasureTheory.BoundedContinuousFunction.inner_toLp, ContDiffMapSupportedIn.continuous_iff_comp, MeasureTheory.FiniteMeasure.isEmbedding_toWeakDualBCNN, sum_apply, ContDiffMapSupportedIn.structureMapCLM_zero_injective, ContDiffMapSupportedIn.toBoundedContinuousFunctionCLM_apply, ContDiffMapSupportedIn.structureMapLM_zero_apply, MeasureTheory.FiniteMeasure.coe_toWeakDualBCNN, range_toLp, TestFunction.injective_toBoundedContinuousFunctionCLM, ContDiffMapSupportedIn.structureMapLM_apply, toLp_denseRange, MeasureTheory.FiniteMeasure.tendsto_iff_forall_toWeakDualBCNN_tendsto, ContDiffMapSupportedIn.structureMapLM_eq
instAddMonoid πŸ“–CompOp
12 mathmath: mkOfCompact_star, char_neg, coe_toContinuousMapStarₐ, instStarModule, toContinuousMapAddMonoidHom_apply, coeFnAddMonoidHom_apply, toContinuousMapStarₐ_apply_apply, star_mem_range_charAlgHom, star_apply, coe_star, ContinuousMap.addEquivBoundedOfCompact_symm_apply, instLipschitzAdd
instAddZeroClass πŸ“–CompOp
4 mathmath: instSMulCommClass_1, instSMulCommClass_2, instIsScalarTower_1, AddMonoidHom.compLeftContinuousBounded_apply
instCoeTC πŸ“–CompOpβ€”
instCommMonoid πŸ“–CompOp
2 mathmath: prod_apply, coe_prod
instDist πŸ“–CompOp
17 mathmath: tietze_extension_step, dist_eq_iSup, dist_le, dist_toContinuousMap, ZeroAtInftyContinuousMap.dist_toBCF_eq_dist, dist_eq, dist_lt_iff_of_nonempty_compact, dist_coe_le_dist, dist_zero_of_empty, dist_le_iff_of_nonempty, norm_def, dist_extend_extend, abs_diff_coe_le_dist, dist_lt_of_nonempty_compact, coe_le_coe_add_dist, dist_mkOfCompact, dist_lt_iff_of_compact
instDistribMulAction πŸ“–CompOpβ€”
instFunLike πŸ“–CompOp
229 mathmath: MeasureTheory.Measure.exists_innerRegular_eq_of_isCompact, ContDiffMapSupportedIn.coe_toBoundedContinuousFunction, MeasureTheory.tendsto_integral_thickenedIndicator_of_isClosed, RingHom.compLeftContinuousBounded_apply_apply, forall_coe_zero_iff_zero, dist_eq_iSup, coe_zsmul, thickenedIndicator_mono_infEDist, coe_one, algebraMap_apply, integral_eq_integral_nnrealPart_sub, MeasureTheory.FiniteMeasure.toWeakDualBCNN_apply, thickenedIndicator_one_of_mem_closure, ContDiffMapSupportedIn.structureMapCLM_apply, dist_le, indicator_apply, exist_norm_eq, coe_neg, coe_normComp, evalCLM_apply, nsmul_apply, CompactlySupportedContinuousMap.toBoundedContinuousFunction_apply, coe_mul, MeasureTheory.ProbabilityMeasure.continuous_lintegral_boundedContinuousFunction, isEmbedding_coeFn, MeasureTheory.MemLp.exists_boundedContinuous_integral_rpow_sub_le, coe_toContinuousMapStarₐ, coe_nsmulRec, restrict_apply, thickenedIndicator_zero, integral_const_sub, HasOuterApproxClosed.tendsto_apprSeq, coe_smul, thickenedIndicator_le_one, MeasureTheory.integrable_thickenedIndicator, exists_extension_norm_eq_of_isClosedEmbedding, lintegral_nnnorm_le, mem_charPoly, charAlgHom_apply, coe_intCast, coe_posPart, lintegral_lt_top_of_nnreal, MeasureTheory.FiniteMeasure.tendsto_iff_forall_lintegral_tendsto, isBounded_range, SchwartzMap.toBoundedContinuousFunctionCLM_apply, bddAbove_range_norm_comp, sub_apply, nndist_set_exists, lipschitzWith_thickenedIndicator, coe_natCast, MeasureTheory.FiniteMeasure.testAgainstNN_coe_eq, comp_apply, integrable, pow_apply, MeasureTheory.FiniteMeasure.tendsto_iff_forall_integral_tendsto, exists_bounded_zero_one_of_closed, ContDiffMapSupportedIn.structureMapCLM_zero_apply, memLp_top, Real.abs_mulExpNegMulSq_comp_le_norm, coe_ringEquiv_lpBCF, MeasureTheory.Integrable.exists_boundedContinuous_lintegral_sub_le, ZeroAtInftyContinuousMap.toBCF_apply, norm_le, coe_lpBCFβ‚—α΅’, AlgHom.compLeftContinuousBounded_apply_apply, mkOfCompact_apply, innerProbChar_apply, MeasureTheory.FiniteMeasure.continuous_iff_forall_continuous_lintegral, neg_norm_le_apply, coe_sum, dist_lt_iff_of_nonempty_compact, MeasureTheory.Integrable.exists_boundedContinuous_integral_sub_le, HasOuterApproxClosed.measure_le_lintegral, indicator_le_thickenedIndicator, uniformContinuous_coe, abs_self_eq_nnrealPart_add_nnrealPart_neg, ContDiffMapSupportedIn.structureMapLM_apply_withOrder, nnrealPart_coeFn_eq, continuous, UniformFun.isometry_ofFun_boundedContinuousFunction, exists_extension_forall_exists_le_ge_of_isClosedEmbedding, coe_ofNormedAddCommGroupDiscrete, norm_le_of_nonempty, tendsto_integral_mul_one_add_inv_smul_sq_pow, norm_integral_le_norm, apply_le_norm, add_apply, coe_add, dist_coe_le_dist, instContinuousEvalConst, measure_le_lintegral_thickenedIndicator, coe_sup, one_le_thickenedIndicator_apply', tendsto_integral_mulExpNegMulSq_comp, SchwartzMap.toBoundedContinuousFunction_apply, MeasureTheory.integral_le_liminf_integral_of_forall_isOpen_measure_le_liminf_measure, neg_apply, coeFnAddMonoidHom_apply, exists_bounded_mem_Icc_of_closed_of_le, continuous_coe, thickenedIndicator_tendsto_indicator_closure, const_apply', norm_lt_iff_of_compactlySupported, mem_compactlySupported, coeFn_toLp, prod_apply, MeasureTheory.ProbabilityMeasure.continuous_integral_boundedContinuousFunction, MeasureTheory.ProbabilityMeasure.tendsto_iff_forall_integral_rclike_tendsto, nndist_coe_le_nndist, HasOuterApproxClosed.apprSeq_apply_eq_one, nndist_eq_iSup, coe_ofNat, instContinuousEval, MeasureTheory.ProbabilityMeasure.continuous_iff_forall_continuous_lintegral, MeasureTheory.ProbabilityMeasure.toWeakDualBCNN_apply, coe_abs, HasOuterApproxClosed.tendsto_lintegral_apprSeq, lintegral_of_real_lt_top, dist_le_iff_of_nonempty, CompletelyRegularSpace.exists_BCNN, coe_mk, forall_coe_one_iff_one, coe_addEquiv_lpBCF_symm, norm_lt_iff_of_compact, thickenedIndicator_subset, nnnorm_eq_iSup_nnnorm, nnnorm_coe_le_nnnorm, thickenedIndicator_apply, coe_restrict, ContDiffMapSupportedIn.structureMapCLM_apply_withOrder, norm_lt_iff_of_nonempty_compact, nnnorm_le, GromovHausdorff.HD_below_aux2, coeFnMonoidHom_apply, coe_lpBCFβ‚—α΅’_symm, coe_zsmulRec, MeasureTheory.tendsto_lintegral_thickenedIndicator_of_isClosed, coe_addEquiv_lpBCF, MeasureTheory.Measure.exists_regular_eq_of_compactSpace, edist_eq_iSup, thickenedIndicator_mono_infEdist, ContinuousLinearMap.compLeftContinuousBounded_apply, compContinuous_apply, toContinuousMapStarₐ_apply_apply, norm_coe_le_norm, isBounded_range_integral, integral_add_const, star_apply, nnnorm_coeFn_eq, ContinuousMap.linearIsometryBoundedOfCompact_apply_apply, dist_set_exists, natCast_apply, coe_star, toReal_lintegral_coe_eq_integral, extend_apply', coe_ofNormedAddCommGroup, coe_toContinuousMapₐ, MeasureTheory.ProbabilityMeasure.continuous_iff_forall_continuous_integral, mul_apply, intCast_apply, MeasureTheory.MemLp.exists_boundedContinuous_eLpNorm_sub_le, coe_nsmul, bounded, MeasureTheory.FiniteMeasure.continuous_integral_boundedContinuousFunction, abs_diff_coe_le_dist, HasOuterApproxClosed.indicator_le_apprSeq, measurable_coe_ennreal_comp, norm_integral_le_mul_norm, toContinuousMapₐ_apply, coe_inf, MeasureTheory.BoundedContinuousFunction.inner_toLp, mkOfBound_coe, coe_negPart, thickenedIndicator_one, coe_ringEquiv_lpBCF_symm, lipschitz_eval_const, zsmul_apply, sum_apply, TestFunction.coe_toBoundedContinuousFunction, coe_le_coe_add_dist, coe_zero, lipschitz_evalx, charMonoidHom_apply, const_apply, MeasureTheory.FiniteMeasure.continuous_iff_forall_continuous_integral, MeasureTheory.charFun_eq_integral_innerProbChar, coe_algEquiv_lpBCF_symm, coe_sub, extend_comp, norm_lt_iff_of_nonempty_compactlySupported, norm_eq_iSup_norm, enorm_eq_iSup_enorm, ContDiffMapSupportedIn.structureMapLM_zero_apply, smul_apply, mkOfDiscrete_apply, dist_le_two_norm, coe_npowRec, one_le_thickenedIndicator_apply, coe_prod, HasOuterApproxClosed.apprSeq_apply_le_one, coe_pow, tendsto_iff_tendstoUniformly, MeasureTheory.tendsto_integral_meas_thickening_le, self_eq_nnrealPart_sub_nnrealPart_neg, dist_lt_iff_of_compact, HasOuterApproxClosed.exAppr, coe_algEquiv_lpBCF, ContDiffMapSupportedIn.structureMapLM_apply, ext_iff, isBounded_image, apply_le_nndist_zero, MeasureTheory.FiniteMeasure.continuous_lintegral_boundedContinuousFunction, nndist_le_two_nnnorm, NNReal.upper_bound, coe_toContinuousMap, instBoundedContinuousMapClass, MeasureTheory.FiniteMeasure.tendsto_iff_forall_integral_rclike_tendsto, lintegral_le_edist_mul, coe_compContinuous, MeasureTheory.ProbabilityMeasure.tendsto_iff_forall_integral_tendsto, thickenedIndicator.coeFn_eq_comp, probCharDual_apply, GromovHausdorff.HD_below_aux1, char_apply, isInducing_coeFn, MeasureTheory.ProbabilityMeasure.tendsto_iff_forall_lintegral_tendsto, extend_apply, thickenedIndicator_mono, integrable_of_nnreal
instInhabited πŸ“–CompOpβ€”
instIntCast πŸ“–CompOp
1 mathmath: intCast_apply
instMetricSpace πŸ“–CompOp
3 mathmath: MeasureTheory.FiniteMeasure.testAgainstNN_lipschitz, MeasureTheory.ProbabilityMeasure.testAgainstNN_lipschitz, lintegral_le_edist_mul
instModule πŸ“–CompOp
54 mathmath: MeasureTheory.FiniteMeasure.toWeakDualBCNN_apply, ContDiffMapSupportedIn.structureMapCLM_eq_of_scalars, ContDiffMapSupportedIn.structureMapCLM_apply, TestFunction.toBoundedContinuousFunctionCLM_eq_of_scalars, evalCLM_apply, toContinuousMapLinearMap_apply, TestFunction.toBoundedContinuousFunctionCLM_apply, MeasureTheory.FiniteMeasure.injective_toWeakDualBCNN, MeasureTheory.FiniteMeasure.tendsto_iff_weakDual_tendsto, SchwartzMap.toBoundedContinuousFunctionCLM_apply, ContDiffMapSupportedIn.structureMapLM_eq_of_scalars, toLp_inj, toLp_injective, ContDiffMapSupportedIn.uniformSpace_eq_iInf, ContDiffMapSupportedIn.continuous_iff_comp_withOrder, ContDiffMapSupportedIn.structureMapCLM_zero_apply, ContinuousMap.linearIsometryBoundedOfCompact_symm_apply, coe_lpBCFβ‚—α΅’, ContinuousMap.linearIsometryBoundedOfCompact_of_compact_toEquiv, ContinuousMap.toLp_def, ContDiffMapSupportedIn.structureMapLM_apply_withOrder, ContinuousMap.toLp_norm_eq_toLp_norm_coe, coeFn_toLp, ContDiffMapSupportedIn.isUniformEmbedding_pi_structureMapCLM, ContDiffMapSupportedIn.toBoundedContinuousFunctionLM_eq_of_scalars, MeasureTheory.ProbabilityMeasure.toWeakDualBCNN_apply, MeasureTheory.ProbabilityMeasure.coe_toWeakDualBCNN, ContDiffMapSupportedIn.structureMapCLM_apply_withOrder, ContDiffMapSupportedIn.seminorm_apply, coe_lpBCFβ‚—α΅’_symm, ContDiffMapSupportedIn.toBoundedContinuousFunctionCLM_eq_of_scalars, ContinuousMap.linearIsometryBoundedOfCompact_toAddEquiv, ContinuousLinearMap.compLeftContinuousBounded_apply, ContinuousMap.toLp_comp_toContinuousMap, ContinuousMap.linearIsometryBoundedOfCompact_apply_apply, ContDiffMapSupportedIn.structureMapLM_zero_injective, toLp_norm_le, MeasureTheory.ProbabilityMeasure.toWeakDualBCNN_continuous, ContDiffMapSupportedIn.toBoundedContinuousFunctionLM_apply, MeasureTheory.FiniteMeasure.toWeakDualBCNN_continuous, MeasureTheory.BoundedContinuousFunction.inner_toLp, ContDiffMapSupportedIn.continuous_iff_comp, MeasureTheory.FiniteMeasure.isEmbedding_toWeakDualBCNN, ContDiffMapSupportedIn.structureMapCLM_zero_injective, ContDiffMapSupportedIn.toBoundedContinuousFunctionCLM_apply, ContDiffMapSupportedIn.structureMapLM_zero_apply, MeasureTheory.FiniteMeasure.coe_toWeakDualBCNN, range_toLp, ContinuousMap.linearIsometryBoundedOfCompact_toIsometryEquiv, TestFunction.injective_toBoundedContinuousFunctionCLM, ContDiffMapSupportedIn.structureMapLM_apply, toLp_denseRange, MeasureTheory.FiniteMeasure.tendsto_iff_forall_toWeakDualBCNN_tendsto, ContDiffMapSupportedIn.structureMapLM_eq
instMonoid πŸ“–CompOp
2 mathmath: toContinuousMapMonoidHom_apply, coeFnMonoidHom_apply
instMul πŸ“–CompOp
7 mathmath: coe_mul, coe_ringEquiv_lpBCF, tendsto_integral_mul_one_add_inv_smul_sq_pow, mul_apply, coe_ringEquiv_lpBCF_symm, coe_npowRec, char_add_eq_mul
instMulAction πŸ“–CompOpβ€”
instMulOneClass πŸ“–CompOp
2 mathmath: MonoidHom.compLeftContinuousBounded_apply, charMonoidHom_apply
instNatCast πŸ“–CompOp
1 mathmath: natCast_apply
instOne πŸ“–CompOp
11 mathmath: coe_one, char_zero_eq_one, innerProbChar_zero, probCharDual_zero, tendsto_integral_mul_one_add_inv_smul_sq_pow, one_compContinuous, forall_coe_one_iff_one, MeasureTheory.FiniteMeasure.testAgainstNN_one, mkOfCompact_one, coe_npowRec, instNormOneClass
instPow πŸ“–CompOp
2 mathmath: pow_apply, coe_pow
instPseudoMetricSpace πŸ“–CompOp
78 mathmath: ContinuousMap.isUniformInducing_equivBoundedOfCompact, arzela_ascoli₁, MeasureTheory.FiniteMeasure.toWeakDualBCNN_apply, ContDiffMapSupportedIn.structureMapCLM_eq_of_scalars, ContDiffMapSupportedIn.structureMapCLM_apply, TestFunction.toBoundedContinuousFunctionCLM_eq_of_scalars, evalCLM_apply, continuous_compContinuous, TestFunction.toBoundedContinuousFunctionCLM_apply, isEmbedding_coeFn, uniformContinuous_comp, MeasureTheory.FiniteMeasure.injective_toWeakDualBCNN, ZeroAtInftyContinuousMap.isClosed_range_toBCF, MeasureTheory.FiniteMeasure.tendsto_iff_weakDual_tendsto, SchwartzMap.toBoundedContinuousFunctionCLM_apply, nnnorm_def, toLp_inj, toLp_injective, ContDiffMapSupportedIn.uniformSpace_eq_iInf, arzela_ascoli, ContDiffMapSupportedIn.continuous_iff_comp_withOrder, ContDiffMapSupportedIn.structureMapCLM_zero_apply, lipschitz_comp, ContinuousMap.toLp_def, uniformContinuous_coe, isometry_extend, UniformFun.isometry_ofFun_boundedContinuousFunction, instContinuousEvalConst, ContinuousMap.toLp_norm_eq_toLp_norm_coe, continuous_coe, coeFn_toLp, nndist_coe_le_nndist, nndist_eq_iSup, ContDiffMapSupportedIn.isUniformEmbedding_pi_structureMapCLM, instContinuousEval, MeasureTheory.ProbabilityMeasure.toWeakDualBCNN_apply, MeasureTheory.ProbabilityMeasure.coe_toWeakDualBCNN, instIsBoundedSMul_1, ContDiffMapSupportedIn.structureMapCLM_apply_withOrder, ContDiffMapSupportedIn.seminorm_apply, TopologicalSpace.exists_isInducing_l_infty, edist_eq_iSup, ContDiffMapSupportedIn.toBoundedContinuousFunctionCLM_eq_of_scalars, ContinuousLinearMap.compLeftContinuousBounded_apply, ContinuousMap.toLp_comp_toContinuousMap, ZeroAtInftyContinuousMap.isometry_toBCF, instIsBoundedSMul, lipschitz_compContinuous, ContinuousMap.isometryEquivBoundedOfCompact_toEquiv, toLp_norm_le, MeasureTheory.ProbabilityMeasure.toWeakDualBCNN_continuous, nndist_eq, MeasureTheory.FiniteMeasure.toWeakDualBCNN_continuous, MeasureTheory.BoundedContinuousFunction.inner_toLp, TopologicalSpace.exists_embedding_l_infty, lipschitz_eval_const, ContDiffMapSupportedIn.continuous_iff_comp, MeasureTheory.FiniteMeasure.isEmbedding_toWeakDualBCNN, ContDiffMapSupportedIn.structureMapCLM_zero_injective, ContinuousMap.isometryEquivBoundedOfCompact_symm_apply, instLipschitzAdd, lipschitz_evalx, ContDiffMapSupportedIn.toBoundedContinuousFunctionCLM_apply, MeasureTheory.FiniteMeasure.testAgainstNN_lipschitz_estimate, instCompleteSpace, ContinuousMap.isometryEquivBoundedOfCompact_apply, MeasureTheory.FiniteMeasure.coe_toWeakDualBCNN, range_toLp, TestFunction.injective_toBoundedContinuousFunctionCLM, tendsto_iff_tendstoUniformly, ContinuousMap.isUniformEmbedding_equivBoundedOfCompact, apply_le_nndist_zero, toLp_denseRange, NNReal.upper_bound, MeasureTheory.FiniteMeasure.tendsto_iff_forall_toWeakDualBCNN_tendsto, continuous_comp, isInducing_coeFn, arzela_ascoliβ‚‚
instSMul πŸ“–CompOp
12 mathmath: instSMulCommClass_1, instSMulCommClass_2, instIsCentralScalar, coe_smul, instStarModule, instIsScalarTower_1, instSMulCommClass, tendsto_integral_mul_one_add_inv_smul_sq_pow, instIsBoundedSMul, instIsScalarTower, MeasureTheory.FiniteMeasure.testAgainstNN_smul, smul_apply
instSMulNat πŸ“–CompOp
3 mathmath: nsmul_apply, coe_zsmulRec, coe_nsmul
instSemiring πŸ“–CompOp
14 mathmath: RingHom.compLeftContinuousBounded_apply_apply, algebraMap_apply, coe_toContinuousMapStarₐ, mem_charPoly, charAlgHom_apply, AlgHom.compLeftContinuousBounded_apply_apply, toContinuousMapStarₐ_apply_apply, coe_toContinuousMapₐ, toContinuousMapₐ_apply, coe_algEquiv_lpBCF_symm, separatesPoints_charPoly, coe_algEquiv_lpBCF, RCLike.restrict_toContinuousMap_eq_toContinuousMapStar_restrict, char_mem_charPoly
instSub πŸ“–CompOp
5 mathmath: integral_const_sub, sub_apply, norm_sub_nonneg, coe_sub, mkOfCompact_sub
instZero πŸ“–CompOp
16 mathmath: forall_coe_zero_iff_zero, coe_nsmulRec, mkOfCompact_zero, nnnorm_def, zero_compContinuous, MeasureTheory.FiniteMeasure.testAgainstNN_zero, norm_def, instIsBoundedSMul_1, coe_zsmulRec, instIsBoundedSMul, add_norm_nonneg, norm_sub_nonneg, coe_zero, apply_le_nndist_zero, NNReal.upper_bound, lintegral_le_edist_mul
mkOfBound πŸ“–CompOp
1 mathmath: mkOfBound_coe
mkOfCompact πŸ“–CompOp
12 mathmath: ContinuousMap.addEquivBoundedOfCompact_apply, mkOfCompact_star, mkOfCompact_add, mkOfCompact_zero, mkOfCompact_apply, ContinuousMap.equivBoundedOfCompact_apply, mkOfCompact_neg, norm_mkOfCompact, mkOfCompact_one, ContinuousMap.isometryEquivBoundedOfCompact_apply, mkOfCompact_sub, dist_mkOfCompact
mkOfDiscrete πŸ“–CompOp
1 mathmath: mkOfDiscrete_apply
restrict πŸ“–CompOp
6 mathmath: restrict_apply, exists_norm_eq_restrict_eq_of_closed, exists_forall_mem_restrict_eq_of_closed, coe_restrict, dist_extend_extend, exists_norm_eq_restrict_eq
toContinuousMap πŸ“–CompOp
15 mathmath: toContinuousMapLinearMap_apply, dist_toContinuousMap, toContinuousMapMonoidHom_apply, Lp_nnnorm_le, toContinuousMapAddMonoidHom_apply, norm_toContinuousMap_eq, ContinuousMap.linearIsometryBoundedOfCompact_symm_apply, MeasureTheory.Lp.mem_boundedContinuousFunction_iff, mem_Lp, Lp_norm_le, ContinuousMap.toLp_comp_toContinuousMap, ContinuousMap.equivBoundedOfCompact_symm_apply, ContinuousMap.isometryEquivBoundedOfCompact_symm_apply, map_bounded', coe_toContinuousMap
toContinuousMapAddHom πŸ“–CompOpβ€”
toContinuousMapAddMonoidHom πŸ“–CompOp
2 mathmath: toContinuousMapAddMonoidHom_apply, ContinuousMap.addEquivBoundedOfCompact_symm_apply
toContinuousMapLinearMap πŸ“–CompOp
1 mathmath: toContinuousMapLinearMap_apply
toContinuousMapMonoidHom πŸ“–CompOp
1 mathmath: toContinuousMapMonoidHom_apply
Β«term_→ᡇ_Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
add_apply πŸ“–mathematicalβ€”DFunLike.coe
BoundedContinuousFunction
instFunLike
instAdd
β€”β€”
add_compContinuous πŸ“–mathematicalβ€”compContinuous
BoundedContinuousFunction
instAdd
β€”β€”
bounded πŸ“–mathematicalβ€”Real
Real.instLE
Dist.dist
PseudoMetricSpace.toDist
DFunLike.coe
BoundedContinuousFunction
instFunLike
β€”map_bounded'
coeFnAddMonoidHom_apply πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
BoundedContinuousFunction
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
instAddMonoid
Pi.addZeroClass
AddMonoidHom.instFunLike
coeFnAddMonoidHom
instFunLike
β€”β€”
coeFnMonoidHom_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
BoundedContinuousFunction
MulOneClass.toMulOne
Monoid.toMulOneClass
instMonoid
Pi.mulOneClass
MonoidHom.instFunLike
coeFnMonoidHom
instFunLike
β€”β€”
coe_add πŸ“–mathematicalβ€”DFunLike.coe
BoundedContinuousFunction
instFunLike
instAdd
Pi.instAdd
β€”β€”
coe_compContinuous πŸ“–mathematicalβ€”DFunLike.coe
BoundedContinuousFunction
instFunLike
compContinuous
ContinuousMap
ContinuousMap.instFunLike
β€”β€”
coe_mk πŸ“–mathematicalContinuous
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real
Real.instLE
Dist.dist
PseudoMetricSpace.toDist
ContinuousMap.toFun
DFunLike.coe
BoundedContinuousFunction
instFunLike
β€”β€”
coe_mul πŸ“–mathematicalβ€”DFunLike.coe
BoundedContinuousFunction
instFunLike
instMul
Pi.instMul
β€”β€”
coe_nsmul πŸ“–mathematicalβ€”DFunLike.coe
BoundedContinuousFunction
instFunLike
instSMulNat
Pi.instSMul
AddMonoid.toNatSMul
β€”β€”
coe_nsmulRec πŸ“–mathematicalβ€”DFunLike.coe
BoundedContinuousFunction
instFunLike
instZero
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
instAdd
AddSemigroup.toAdd
AddMonoid.toAddSemigroup
AddMonoid.toNatSMul
Pi.addMonoid
β€”nsmulRec.eq_1
zero_smul
coe_zero
nsmulRec.eq_2
succ_nsmul
coe_add
coe_one πŸ“–mathematicalβ€”DFunLike.coe
BoundedContinuousFunction
instFunLike
instOne
Pi.instOne
β€”β€”
coe_pow πŸ“–mathematicalβ€”DFunLike.coe
BoundedContinuousFunction
instFunLike
instPow
Pi.instPow
Monoid.toNatPow
β€”β€”
coe_prod πŸ“–mathematicalβ€”DFunLike.coe
BoundedContinuousFunction
instFunLike
Finset.prod
instCommMonoid
Pi.commMonoid
β€”map_prod
MonoidHom.instMonoidHomClass
coe_restrict πŸ“–mathematicalβ€”DFunLike.coe
BoundedContinuousFunction
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
instFunLike
restrict
β€”β€”
coe_smul πŸ“–mathematicalβ€”DFunLike.coe
BoundedContinuousFunction
instFunLike
instSMul
β€”β€”
coe_sub πŸ“–mathematicalβ€”DFunLike.coe
BoundedContinuousFunction
instFunLike
instSub
Pi.instSub
β€”β€”
coe_sum πŸ“–mathematicalβ€”DFunLike.coe
BoundedContinuousFunction
instFunLike
Finset.sum
instAddCommMonoid
Pi.addCommMonoid
β€”map_sum
AddMonoidHom.instAddMonoidHomClass
coe_toContinuousMap πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
ContinuousMap.instFunLike
toContinuousMap
BoundedContinuousFunction
instFunLike
β€”β€”
coe_zero πŸ“–mathematicalβ€”DFunLike.coe
BoundedContinuousFunction
instFunLike
instZero
Pi.instZero
β€”β€”
compContinuous_apply πŸ“–mathematicalβ€”DFunLike.coe
BoundedContinuousFunction
instFunLike
compContinuous
ContinuousMap
ContinuousMap.instFunLike
β€”β€”
comp_apply πŸ“–mathematicalLipschitzWith
PseudoMetricSpace.toPseudoEMetricSpace
DFunLike.coe
BoundedContinuousFunction
instFunLike
comp
β€”β€”
const_apply πŸ“–mathematicalβ€”DFunLike.coe
BoundedContinuousFunction
instFunLike
const
β€”β€”
const_apply' πŸ“–mathematicalβ€”DFunLike.coe
BoundedContinuousFunction
instFunLike
const
β€”β€”
continuous πŸ“–mathematicalβ€”Continuous
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
DFunLike.coe
BoundedContinuousFunction
instFunLike
β€”ContinuousMap.continuous
continuous_coe πŸ“–mathematicalβ€”Continuous
BoundedContinuousFunction
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
instPseudoMetricSpace
Pi.topologicalSpace
DFunLike.coe
instFunLike
β€”UniformContinuous.continuous
uniformContinuous_coe
continuous_comp πŸ“–mathematicalLipschitzWith
PseudoMetricSpace.toPseudoEMetricSpace
Continuous
BoundedContinuousFunction
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
instPseudoMetricSpace
comp
β€”LipschitzWith.continuous
lipschitz_comp
continuous_compContinuous πŸ“–mathematicalβ€”Continuous
BoundedContinuousFunction
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
instPseudoMetricSpace
compContinuous
β€”LipschitzWith.continuous
lipschitz_compContinuous
continuous_eval πŸ“–mathematicalβ€”Continuous
instTopologicalSpaceProd
DFunLike.coe
β€”ContinuousEval.continuous_eval
continuous_eval_const πŸ“–mathematicalβ€”Continuous
DFunLike.coe
β€”ContinuousEvalConst.continuous_eval_const
dist_coe_le_dist πŸ“–mathematicalβ€”Real
Real.instLE
Dist.dist
PseudoMetricSpace.toDist
DFunLike.coe
BoundedContinuousFunction
instFunLike
instDist
β€”le_csInf
dist_set_exists
dist_eq πŸ“–mathematicalβ€”Dist.dist
BoundedContinuousFunction
instDist
InfSet.sInf
Real
Real.instInfSet
setOf
Real.instLE
Real.instZero
β€”β€”
dist_eq_iSup πŸ“–mathematicalβ€”Dist.dist
BoundedContinuousFunction
instDist
iSup
Real
Real.instSupSet
PseudoMetricSpace.toDist
DFunLike.coe
instFunLike
β€”isEmpty_or_nonempty
iSup_of_empty'
Real.sSup_empty
dist_zero_of_empty
LE.le.antisymm
dist_le_iff_of_nonempty
le_ciSup
Set.forall_mem_range
dist_set_exists
ciSup_le
dist_coe_le_dist
dist_extend_extend πŸ“–mathematicalβ€”Dist.dist
BoundedContinuousFunction
instDist
extend
Real
Real.instMax
Set.Elem
Compl.compl
Set
Set.instCompl
Set.range
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
instTopologicalSpaceSubtype
Set.instMembership
restrict
β€”le_antisymm
dist_le
le_max_iff
dist_nonneg
em
extend_apply
LE.le.trans
dist_coe_le_dist
le_max_left
extend_apply'
CanLift.prf
Subtype.canLift
le_max_right
max_le
Subtype.coe_prop
dist_le πŸ“–mathematicalReal
Real.instLE
Real.instZero
Dist.dist
BoundedContinuousFunction
instDist
PseudoMetricSpace.toDist
DFunLike.coe
instFunLike
β€”le_trans
dist_coe_le_dist
csInf_le
dist_le_iff_of_nonempty πŸ“–mathematicalβ€”Real
Real.instLE
Dist.dist
BoundedContinuousFunction
instDist
PseudoMetricSpace.toDist
DFunLike.coe
instFunLike
β€”le_trans
dist_coe_le_dist
dist_le
dist_nonneg
dist_lt_iff_of_compact πŸ“–mathematicalReal
Real.instLT
Real.instZero
Dist.dist
BoundedContinuousFunction
instDist
PseudoMetricSpace.toDist
DFunLike.coe
instFunLike
β€”lt_of_le_of_lt
dist_coe_le_dist
dist_lt_of_nonempty_compact
le_antisymm
dist_eq
csInf_le
le_rfl
dist_lt_iff_of_nonempty_compact πŸ“–mathematicalβ€”Real
Real.instLT
Dist.dist
BoundedContinuousFunction
instDist
PseudoMetricSpace.toDist
DFunLike.coe
instFunLike
β€”lt_of_le_of_lt
dist_coe_le_dist
dist_lt_of_nonempty_compact
dist_lt_of_nonempty_compact πŸ“–mathematicalReal
Real.instLT
Dist.dist
PseudoMetricSpace.toDist
DFunLike.coe
BoundedContinuousFunction
instFunLike
instDistβ€”Continuous.dist
ContinuousMapClass.map_continuous
BoundedContinuousMapClass.toContinuousMapClass
instBoundedContinuousMapClass
IsCompact.exists_isMaxOn
instClosedIciTopology
OrderTopology.to_orderClosedTopology
instOrderTopologyReal
isCompact_univ
Set.univ_nonempty
Continuous.continuousOn
lt_of_le_of_lt
dist_le_iff_of_nonempty
dist_set_exists πŸ“–mathematicalβ€”Real
Real.instLE
Real.instZero
Dist.dist
PseudoMetricSpace.toDist
DFunLike.coe
BoundedContinuousFunction
instFunLike
β€”Metric.isBounded_iff
Bornology.IsBounded.union
isBounded_range
le_max_left
LE.le.trans
Set.mem_range_self
le_max_right
dist_zero_of_empty πŸ“–mathematicalβ€”Dist.dist
BoundedContinuousFunction
instDist
Real
Real.instZero
β€”ext
dist_self
edist_eq_iSup πŸ“–mathematicalβ€”EDist.edist
BoundedContinuousFunction
PseudoEMetricSpace.toEDist
PseudoMetricSpace.toPseudoEMetricSpace
instPseudoMetricSpace
iSup
ENNReal
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
ENNReal.instCompleteLinearOrder
DFunLike.coe
instFunLike
β€”edist_nndist
nndist_eq_iSup
ENNReal.coe_iSup
nndist_coe_le_nndist
eq_of_empty πŸ“–β€”β€”β€”β€”ext
evalCLM_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousLinearMap
RingHom.id
Semiring.toNonAssocSemiring
BoundedContinuousFunction
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
instPseudoMetricSpace
instAddCommMonoid
instModule
ContinuousLinearMap.funLike
evalCLM
instFunLike
β€”β€”
ext πŸ“–β€”DFunLike.coe
BoundedContinuousFunction
instFunLike
β€”β€”DFunLike.ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
BoundedContinuousFunction
instFunLike
β€”ext
extend_apply πŸ“–mathematicalβ€”DFunLike.coe
BoundedContinuousFunction
instFunLike
extend
Function.Embedding
Function.instFunLikeEmbedding
β€”Function.Injective.extend_apply
Function.Embedding.injective
extend_apply' πŸ“–mathematicalSet
Set.instMembership
Set.range
DFunLike.coe
Function.Embedding
Function.instFunLikeEmbedding
BoundedContinuousFunction
instFunLike
extend
β€”Function.extend_apply'
extend_comp πŸ“–mathematicalβ€”DFunLike.coe
BoundedContinuousFunction
instFunLike
extend
Function.Embedding
Function.instFunLikeEmbedding
β€”Function.extend_comp
Function.Embedding.injective
extend_of_empty πŸ“–mathematicalβ€”extendβ€”DFunLike.coe_injective
Function.extend_of_isEmpty
forall_coe_one_iff_one πŸ“–mathematicalβ€”DFunLike.coe
BoundedContinuousFunction
instFunLike
instOne
β€”DFunLike.ext_iff
forall_coe_zero_iff_zero πŸ“–mathematicalβ€”DFunLike.coe
BoundedContinuousFunction
instFunLike
instZero
β€”DFunLike.ext_iff
indicator_apply πŸ“–mathematicalIsClopenDFunLike.coe
BoundedContinuousFunction
Real
Real.pseudoMetricSpace
instFunLike
indicator
Set.indicator
Real.instZero
Pi.instOne
Real.instOne
β€”β€”
instBoundedContinuousMapClass πŸ“–mathematicalβ€”BoundedContinuousMapClass
BoundedContinuousFunction
instFunLike
β€”ContinuousMap.continuous_toFun
map_bounded'
instCompleteSpace πŸ“–mathematicalβ€”CompleteSpace
BoundedContinuousFunction
PseudoMetricSpace.toUniformSpace
instPseudoMetricSpace
β€”Metric.complete_of_cauchySeq_tendsto
cauchySeq_iff_le_tendsto_0
le_trans
dist_coe_le_dist
le_of_tendsto
instClosedIicTopology
OrderTopology.to_orderClosedTopology
instOrderTopologyReal
Filter.atTop_neBot
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
Filter.Tendsto.dist
tendsto_const_nhds
Filter.eventually_atTop
le_refl
Metric.tendstoUniformly_iff
Filter.Eventually.mono
tendsto_order
dist_comm
lt_of_le_of_lt
TendstoUniformly.continuous
Filter.Frequently.of_forall
continuous
bounded
dist_triangle4_left
add_le_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
tendsto_iff_dist_tendsto_zero
squeeze_zero
dist_nonneg
dist_le
cauchySeq_tendsto_of_complete
instContinuousEval πŸ“–mathematicalβ€”ContinuousEval
BoundedContinuousFunction
instFunLike
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
instPseudoMetricSpace
β€”continuous_prod_of_continuous_lipschitzWith
continuous
lipschitz_eval_const
instContinuousEvalConst πŸ“–mathematicalβ€”ContinuousEvalConst
BoundedContinuousFunction
instFunLike
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
instPseudoMetricSpace
β€”ContinuousEval.toContinuousEvalConst
instContinuousEval
instIsBoundedSMul πŸ“–mathematicalβ€”IsBoundedSMul
BoundedContinuousFunction
instPseudoMetricSpace
instZero
instSMul
β€”dist_le
mul_nonneg
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
dist_nonneg
LE.le.trans
dist_smul_pair
mul_le_mul_of_nonneg_left
dist_coe_le_dist
dist_pair_smul
instIsCentralScalar πŸ“–mathematicalβ€”IsCentralScalar
BoundedContinuousFunction
instSMul
MulOpposite
MulOpposite.instPseudoMetricSpace
MulOpposite.instZero
IsBoundedSMul.op
β€”IsBoundedSMul.op
ext
IsCentralScalar.op_smul_eq_smul
instIsScalarTower πŸ“–mathematicalβ€”IsScalarTower
BoundedContinuousFunction
instSMul
β€”ext
smul_assoc
instLipschitzAdd πŸ“–mathematicalβ€”LipschitzAdd
BoundedContinuousFunction
instPseudoMetricSpace
instAddMonoid
instBoundedAddOfLipschitzAdd
LipschitzAdd.continuousAdd
β€”instBoundedAddOfLipschitzAdd
LipschitzAdd.continuousAdd
NNReal.coe_nonneg
lipschitzWith_iff_dist_le_mul
dist_le
mul_nonneg
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
dist_nonneg
le_trans
lipschitz_with_lipschitz_const_add
mul_le_mul_of_nonneg_left
max_le_max
dist_coe_le_dist
instSMulCommClass πŸ“–mathematicalβ€”SMulCommClass
BoundedContinuousFunction
instSMul
β€”ext
SMulCommClass.smul_comm
intCast_apply πŸ“–mathematicalβ€”DFunLike.coe
BoundedContinuousFunction
instFunLike
instIntCast
β€”β€”
isBounded_image πŸ“–mathematicalβ€”Bornology.IsBounded
PseudoMetricSpace.toBornology
Set.image
DFunLike.coe
BoundedContinuousFunction
instFunLike
β€”Bornology.IsBounded.subset
isBounded_range
Set.image_subset_range
isBounded_range πŸ“–mathematicalβ€”Bornology.IsBounded
PseudoMetricSpace.toBornology
Set.range
DFunLike.coe
BoundedContinuousFunction
instFunLike
β€”Metric.isBounded_range_iff
bounded
isEmbedding_coeFn πŸ“–mathematicalβ€”Topology.IsEmbedding
BoundedContinuousFunction
UniformFun
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
instPseudoMetricSpace
UniformFun.topologicalSpace
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
UniformFun.ofFun
instFunLike
β€”isInducing_coeFn
ext
isInducing_coeFn πŸ“–mathematicalβ€”Topology.IsInducing
BoundedContinuousFunction
UniformFun
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
instPseudoMetricSpace
UniformFun.topologicalSpace
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
UniformFun.ofFun
instFunLike
β€”Topology.isInducing_iff_nhds
eq_of_forall_le_iff
Filter.tendsto_iff_comap
Filter.tendsto_id'
tendsto_iff_tendstoUniformly
UniformFun.tendsto_iff_tendstoUniformly
isometry_extend πŸ“–mathematicalβ€”Isometry
BoundedContinuousFunction
PseudoMetricSpace.toPseudoEMetricSpace
instPseudoMetricSpace
extend
β€”Isometry.of_dist_eq
dist_extend_extend
dist_self
sup_of_le_left
lipschitz_comp πŸ“–mathematicalLipschitzWith
PseudoMetricSpace.toPseudoEMetricSpace
BoundedContinuousFunction
instPseudoMetricSpace
comp
β€”LipschitzWith.of_dist_le_mul
dist_le
mul_nonneg
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
dist_nonneg
LipschitzWith.dist_le_mul
mul_le_mul_of_nonneg_left
dist_coe_le_dist
NNReal.coe_nonneg
lipschitz_compContinuous πŸ“–mathematicalβ€”LipschitzWith
BoundedContinuousFunction
PseudoMetricSpace.toPseudoEMetricSpace
instPseudoMetricSpace
NNReal
instOneNNReal
compContinuous
β€”LipschitzWith.mk_one
dist_le
dist_nonneg
dist_coe_le_dist
lipschitz_eval_const πŸ“–mathematicalβ€”LipschitzWith
BoundedContinuousFunction
PseudoMetricSpace.toPseudoEMetricSpace
instPseudoMetricSpace
NNReal
instOneNNReal
DFunLike.coe
instFunLike
β€”LipschitzWith.mk_one
dist_coe_le_dist
lipschitz_evalx πŸ“–mathematicalβ€”LipschitzWith
BoundedContinuousFunction
PseudoMetricSpace.toPseudoEMetricSpace
instPseudoMetricSpace
NNReal
instOneNNReal
DFunLike.coe
instFunLike
β€”lipschitz_eval_const
map_bounded' πŸ“–mathematicalβ€”Real
Real.instLE
Dist.dist
PseudoMetricSpace.toDist
ContinuousMap.toFun
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
toContinuousMap
β€”β€”
mkOfBound_coe πŸ“–mathematicalReal
Real.instLE
Dist.dist
PseudoMetricSpace.toDist
DFunLike.coe
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
ContinuousMap.instFunLike
BoundedContinuousFunction
instFunLike
mkOfBound
β€”β€”
mkOfCompact_add πŸ“–mathematicalβ€”mkOfCompact
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
ContinuousMap.instAdd
BoundedContinuousFunction
instAdd
β€”β€”
mkOfCompact_apply πŸ“–mathematicalβ€”DFunLike.coe
BoundedContinuousFunction
instFunLike
mkOfCompact
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
ContinuousMap.instFunLike
β€”β€”
mkOfCompact_one πŸ“–mathematicalβ€”mkOfCompact
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
ContinuousMap.instOne
BoundedContinuousFunction
instOne
β€”β€”
mkOfCompact_zero πŸ“–mathematicalβ€”mkOfCompact
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
ContinuousMap.instZero
BoundedContinuousFunction
instZero
β€”β€”
mkOfDiscrete_apply πŸ“–mathematicalReal
Real.instLE
Dist.dist
PseudoMetricSpace.toDist
DFunLike.coe
BoundedContinuousFunction
instFunLike
mkOfDiscrete
β€”β€”
mul_apply πŸ“–mathematicalβ€”DFunLike.coe
BoundedContinuousFunction
instFunLike
instMul
β€”β€”
natCast_apply πŸ“–mathematicalβ€”DFunLike.coe
BoundedContinuousFunction
instFunLike
instNatCast
β€”β€”
nndist_coe_le_nndist πŸ“–mathematicalβ€”NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
NNDist.nndist
PseudoMetricSpace.toNNDist
DFunLike.coe
BoundedContinuousFunction
instFunLike
instPseudoMetricSpace
β€”dist_coe_le_dist
nndist_eq πŸ“–mathematicalβ€”NNDist.nndist
BoundedContinuousFunction
PseudoMetricSpace.toNNDist
instPseudoMetricSpace
InfSet.sInf
NNReal
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
NNReal.instConditionallyCompleteLinearOrderBot
setOf
β€”dist_eq
NNReal.val_eq_coe
NNReal.coe_sInf
NNReal.coe_image
nndist_eq_iSup πŸ“–mathematicalβ€”NNDist.nndist
BoundedContinuousFunction
PseudoMetricSpace.toNNDist
instPseudoMetricSpace
iSup
NNReal
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
NNReal.instConditionallyCompleteLinearOrderBot
DFunLike.coe
instFunLike
β€”dist_eq_iSup
NNReal.coe_iSup
nndist_set_exists πŸ“–mathematicalβ€”NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
NNDist.nndist
PseudoMetricSpace.toNNDist
DFunLike.coe
BoundedContinuousFunction
instFunLike
β€”dist_set_exists
nsmul_apply πŸ“–mathematicalβ€”DFunLike.coe
BoundedContinuousFunction
instFunLike
instSMulNat
AddMonoid.toNatSMul
β€”β€”
one_compContinuous πŸ“–mathematicalβ€”compContinuous
BoundedContinuousFunction
instOne
β€”β€”
pow_apply πŸ“–mathematicalβ€”DFunLike.coe
BoundedContinuousFunction
instFunLike
instPow
Monoid.toNatPow
β€”β€”
prod_apply πŸ“–mathematicalβ€”DFunLike.coe
BoundedContinuousFunction
instFunLike
Finset.prod
instCommMonoid
β€”coe_prod
Finset.prod_apply
restrict_apply πŸ“–mathematicalβ€”DFunLike.coe
BoundedContinuousFunction
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
instFunLike
restrict
β€”β€”
smul_apply πŸ“–mathematicalβ€”DFunLike.coe
BoundedContinuousFunction
instFunLike
instSMul
β€”β€”
sub_apply πŸ“–mathematicalβ€”DFunLike.coe
BoundedContinuousFunction
instFunLike
instSub
β€”β€”
sum_apply πŸ“–mathematicalβ€”DFunLike.coe
BoundedContinuousFunction
instFunLike
Finset.sum
instAddCommMonoid
β€”coe_sum
Finset.sum_apply
tendsto_iff_tendstoUniformly πŸ“–mathematicalβ€”Filter.Tendsto
BoundedContinuousFunction
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
instPseudoMetricSpace
TendstoUniformly
DFunLike.coe
instFunLike
β€”Metric.tendstoUniformly_iff
Filter.Eventually.mp
Metric.tendsto_nhds
Filter.Eventually.of_forall
lt_of_le_of_lt
dist_coe_le_dist
dist_comm
Nat.instAtLeastTwoHAddOfNat
Metric.dist_mem_uniformity
half_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
dist_le
LT.lt.le
le_of_lt
half_lt_self
toContinuousMapAddMonoidHom_apply πŸ“–mathematicalβ€”DFunLike.coe
AddMonoidHom
BoundedContinuousFunction
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
instAddMonoid
ContinuousMap.instAddZeroClassOfContinuousAdd
AddMonoidHom.instFunLike
toContinuousMapAddMonoidHom
toContinuousMap
β€”β€”
toContinuousMapLinearMap_apply πŸ“–mathematicalβ€”DFunLike.coe
LinearMap
RingHom.id
Semiring.toNonAssocSemiring
BoundedContinuousFunction
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
instAddCommMonoid
ContinuousMap.instAddCommMonoidOfContinuousAdd
instModule
ContinuousMap.module
UniformContinuousConstSMul.to_continuousConstSMul
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Module.toDistribMulAction
IsBoundedSMul.toUniformContinuousConstSMul
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
LinearMap.instFunLike
toContinuousMapLinearMap
toContinuousMap
β€”UniformContinuousConstSMul.to_continuousConstSMul
IsBoundedSMul.toUniformContinuousConstSMul
toContinuousMapMonoidHom_apply πŸ“–mathematicalβ€”DFunLike.coe
MonoidHom
BoundedContinuousFunction
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
MulOneClass.toMulOne
Monoid.toMulOneClass
instMonoid
ContinuousMap.instMulOneClassOfContinuousMul
MonoidHom.instFunLike
toContinuousMapMonoidHom
toContinuousMap
β€”β€”
uniformContinuous_coe πŸ“–mathematicalβ€”UniformContinuous
BoundedContinuousFunction
PseudoMetricSpace.toUniformSpace
instPseudoMetricSpace
Pi.uniformSpace
DFunLike.coe
instFunLike
β€”uniformContinuous_pi
LipschitzWith.uniformContinuous
lipschitz_eval_const
uniformContinuous_comp πŸ“–mathematicalLipschitzWith
PseudoMetricSpace.toPseudoEMetricSpace
UniformContinuous
BoundedContinuousFunction
PseudoMetricSpace.toUniformSpace
instPseudoMetricSpace
comp
β€”LipschitzWith.uniformContinuous
lipschitz_comp
zero_compContinuous πŸ“–mathematicalβ€”compContinuous
BoundedContinuousFunction
instZero
β€”β€”

BoundedContinuousFunction.NNReal

Theorems

NameKindAssumesProvesValidatesDepends On
upper_bound πŸ“–mathematicalβ€”NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
DFunLike.coe
BoundedContinuousFunction
instPseudoMetricSpaceNNReal
BoundedContinuousFunction.instFunLike
NNDist.nndist
PseudoMetricSpace.toNNDist
BoundedContinuousFunction.instPseudoMetricSpace
BoundedContinuousFunction.instZero
instZeroNNReal
β€”BoundedContinuousFunction.dist_coe_le_dist
NNReal.nndist_zero_eq_val'

BoundedContinuousFunction.Simps

Definitions

NameCategoryTheorems
apply πŸ“–CompOpβ€”

BoundedContinuousMapClass

Theorems

NameKindAssumesProvesValidatesDepends On
map_bounded πŸ“–mathematicalβ€”Real
Real.instLE
Dist.dist
PseudoMetricSpace.toDist
DFunLike.coe
β€”β€”
toContinuousMapClass πŸ“–mathematicalβ€”ContinuousMapClass
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
β€”β€”

MonoidHom

Definitions

NameCategoryTheorems
compLeftContinuousBounded πŸ“–CompOp
1 mathmath: compLeftContinuousBounded_apply

Theorems

NameKindAssumesProvesValidatesDepends On
compLeftContinuousBounded_apply πŸ“–mathematicalLipschitzWith
PseudoMetricSpace.toPseudoEMetricSpace
DFunLike.coe
MonoidHom
MulOneClass.toMulOne
Monoid.toMulOneClass
instFunLike
BoundedContinuousFunction
BoundedContinuousFunction.instMulOneClass
compLeftContinuousBounded
BoundedContinuousFunction.comp
β€”β€”

(root)

Definitions

NameCategoryTheorems
BoundedContinuousMapClass πŸ“–CompData
5 mathmath: TestFunctionClass.instBoundedContinuousMapClass, SchwartzMap.instBoundedContinuousMapClass, ZeroAtInftyContinuousMap.instBoundedContinuousMapClass, ContDiffMapSupportedInClass.instBoundedContinuousMapClass, BoundedContinuousFunction.instBoundedContinuousMapClass

---

← Back to Index