Documentation Verification Report

Ideals

πŸ“ Source: Mathlib/Topology/ContinuousMap/Ideals.lean

Statistics

MetricCount
DefinitionsidealOfSet, idealOpensGI, opensOfIdeal, setOfIdeal, continuousMapEval, homeoEval
6
Theoremscoe_opensOfIdeal, exists_mul_le_one_eqOn_ge, idealOfEmpty_eq_bot, idealOfSet_closed, idealOfSet_isMaximal_iff, idealOfSet_ofIdeal_eq_closure, idealOfSet_ofIdeal_isClosed, idealOf_compl_singleton_isMaximal, idealOpensGI_choice, ideal_gc, ideal_isMaximal_iff, mem_idealOfSet, mem_idealOfSet_compl_singleton, mem_setOfIdeal, notMem_idealOfSet, notMem_setOfIdeal, setOfIdeal_eq_compl_singleton, setOfIdeal_ofSet_eq_interior, setOfIdeal_ofSet_of_isOpen, setOfIdeal_open, setOfTop_eq_univ, continuousMapEval_apply_apply, continuousMapEval_bijective
23
Total29

ContinuousMap

Definitions

NameCategoryTheorems
idealOfSet πŸ“–CompOp
13 mathmath: setOfIdeal_ofSet_eq_interior, notMem_idealOfSet, mem_idealOfSet, setOfIdeal_ofSet_of_isOpen, idealOfSet_closed, ideal_isMaximal_iff, ideal_gc, idealOfEmpty_eq_bot, mem_idealOfSet_compl_singleton, idealOf_compl_singleton_isMaximal, idealOfSet_ofIdeal_isClosed, idealOfSet_ofIdeal_eq_closure, idealOfSet_isMaximal_iff
idealOpensGI πŸ“–CompOp
1 mathmath: idealOpensGI_choice
opensOfIdeal πŸ“–CompOp
1 mathmath: coe_opensOfIdeal
setOfIdeal πŸ“–CompOp
11 mathmath: setOfIdeal_ofSet_eq_interior, setOfIdeal_ofSet_of_isOpen, notMem_setOfIdeal, setOfIdeal_eq_compl_singleton, ideal_gc, setOfTop_eq_univ, coe_opensOfIdeal, mem_setOfIdeal, setOfIdeal_open, idealOfSet_ofIdeal_isClosed, idealOfSet_ofIdeal_eq_closure

Theorems

NameKindAssumesProvesValidatesDepends On
coe_opensOfIdeal πŸ“–mathematicalβ€”SetLike.coe
TopologicalSpace.Opens
TopologicalSpace.Opens.instSetLike
opensOfIdeal
setOfIdeal
β€”β€”
exists_mul_le_one_eqOn_ge πŸ“–mathematicalNNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
Preorder.toLE
DFunLike.coe
ContinuousMap
NNReal.instTopologicalSpace
instFunLike
instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
IsTopologicalSemiring.toContinuousMul
NNReal.instIsTopologicalSemiring
instOneNNReal
Set.EqOn
Pi.instOne
setOf
β€”IsTopologicalSemiring.toContinuousMul
NNReal.instIsTopologicalSemiring
Continuous.invβ‚€
NNReal.instContinuousInvβ‚€
Continuous.sup
TopologicalLattice.toContinuousSup
LinearOrder.topologicalLattice
OrderTopology.to_orderClosedTopology
NNReal.instOrderTopology
ContinuousMapClass.map_continuous
instContinuousMapClass
LT.lt.ne'
LT.lt.trans_le
le_sup_right
inv_mul_le_iffβ‚€
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
le_sup_left
mul_one
sup_eq_left
Set.mem_setOf
inv_mul_cancelβ‚€
idealOfEmpty_eq_bot πŸ“–mathematicalβ€”idealOfSet
Set
Set.instEmptyCollection
Bot.bot
Ideal
ContinuousMap
instSemiringOfIsTopologicalSemiring
Submodule.instBot
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”Ideal.ext
Set.compl_empty
idealOfSet_closed πŸ“–mathematicalβ€”IsClosed
ContinuousMap
compactOpen
SetLike.coe
Ideal
instSemiringOfIsTopologicalSemiring
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
idealOfSet
β€”Set.setOf_forall
isClosed_iInter
isClosed_eq
ContinuousEvalConst.continuous_eval_const
instContinuousEvalConst
continuous_const
idealOfSet_isMaximal_iff πŸ“–mathematicalβ€”Ideal.IsMaximal
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
instSemiringOfIsTopologicalSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
IsTopologicalRing.toIsTopologicalSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
NormedDivisionRing.to_isTopologicalDivisionRing
idealOfSet
SetLike.coe
TopologicalSpace.Opens
TopologicalSpace.Opens.instSetLike
IsCoatom
PartialOrder.toPreorder
TopologicalSpace.Opens.instPartialOrder
BoundedOrder.toOrderTop
Preorder.toLE
CompleteLattice.toBoundedOrder
TopologicalSpace.Opens.instCompleteLattice
β€”IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
Ideal.isMaximal_def
GaloisInsertion.isCoatom_iff
Ideal.instIsCoatomic
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
idealOfSet_ofIdeal_isClosed
Ideal.IsMaximal.isClosed
instHasSummableGeomSeriesOfCompleteSpace
instCompleteSpaceOfCompactlyCoherentSpace
RCLike.toCompleteSpace
CompactlyCoherentSpace.of_weaklyLocallyCompactSpace
instWeaklyLocallyCompactSpaceOfCompactSpace
idealOfSet_ofIdeal_eq_closure πŸ“–mathematicalβ€”idealOfSet
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
IsTopologicalRing.toIsTopologicalSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
NormedDivisionRing.to_isTopologicalDivisionRing
setOfIdeal
Ideal.closure
ContinuousMap
compactOpen
instRing
NormedRing.toRing
NormedCommRing.toNormedRing
instIsTopologicalRingOfLocallyCompactSpace
WeaklyLocallyCompactSpace.locallyCompactSpace
T2Space.r1Space
instWeaklyLocallyCompactSpaceOfCompactSpace
NonUnitalNormedRing.toNonUnitalRing
NonUnitalNormedCommRing.toNonUnitalNormedRing
β€”IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
le_antisymm
instIsTopologicalRingOfLocallyCompactSpace
WeaklyLocallyCompactSpace.locallyCompactSpace
T2Space.r1Space
instWeaklyLocallyCompactSpaceOfCompactSpace
Metric.mem_closure_iff
CanLift.prf
NNReal.canLift
LT.lt.le
GT.gt.lt
Nat.instAtLeastTwoHAddOfNat
isClosed_le
OrderTopology.to_orderClosedTopology
NNReal.instOrderTopology
continuous_const
Continuous.nnnorm
ContinuousMapClass.map_continuous
instContinuousMapClass
Set.subset_compl_iff_disjoint_left
Eq.trans_lt
nnnorm_eq_zero
mem_idealOfSet
half_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
LinearOrderedCommMonoidWithZero.toPosMulStrictMono
NNReal.instIsStrictOrderedRing
ContinuousSemilinearMapClass.toContinuousMapClass
ContinuousLinearMap.continuousSemilinearMapClass
NNReal.instContinuousSMulOfReal
IsBoundedSMul.continuousSMul
NormedSpace.toIsBoundedSMul
IsCompact.induction_on
IsClosed.isCompact
ext
map_zero
AddMonoidHomClass.toZeroHomClass
DistribMulActionSemiHomClass.toAddMonoidHomClass
SemilinearMapClass.distribMulActionSemiHomClass
ContinuousSemilinearMapClass.toSemilinearMapClass
Ideal.zero_mem
IsTopologicalSemiring.toContinuousAdd
NNReal.instIsTopologicalSemiring
map_add
SemilinearMapClass.toAddHomClass
Ideal.add_mem
zero_add
add_lt_add_of_lt_of_le
NNReal.addLeftMono
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
zero_le'
add_lt_add_of_le_of_lt
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Disjoint.subset_compl_right
mem_setOfIdeal
compl_compl
ContinuousAt.eventually_ne
T2Space.t1Space
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
Continuous.continuousAt
mem_nhdsWithin_iff_exists_mem_nhds_inter
Set.Subset.rfl
Continuous.pow
IsTopologicalSemiring.toContinuousMul
RCLike.instContinuousStar
map_pow
MonoidWithZeroHomClass.toMonoidHomClass
RingHomClass.toMonoidWithZeroHomClass
RingHom.instRingHomClass
RCLike.conj_mul
Ideal.mul_mem_left
pow_pos
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Real.instZeroLEOneClass
norm_pos_iff
Set.eq_empty_or_nonempty
zero_lt_one
LinearOrderedCommMonoidWithZero.toZeroLeOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
IsCompact.exists_isMinOn
instClosedIicTopology
Continuous.continuousOn
exists_mul_le_one_eqOn_ge
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
Set.EqOn.mono
nndist_eq_nnnorm
nnnorm_lt_iff
map_one
MonoidHomClass.toOneHomClass
mul_one
sub_self
nnnorm_zero
lt_of_le_of_lt
IsTopologicalAddGroup.to_continuousSub
SeminormedAddCommGroup.toIsTopologicalAddGroup
Algebra.algebraMap_eq_smul_one
NNReal.coe_sub
sub_smul
one_smul
Eq.trans_le
nnnorm_algebraMap_nnreal
NormedDivisionRing.to_normOneClass
tsub_le_self
NNReal.instCanonicallyOrderedAdd
NNReal.instOrderedSub
mul_sub
LE.le.trans
nnnorm_mul_le
mul_le_mul_left
covariant_swap_mul_of_covariant_mul
NNReal.mulLeftMono
not_le
mul_le_mul_right
half_lt_self
IsClosed.closure_subset_iff
idealOfSet_closed
notMem_setOfIdeal
idealOfSet_ofIdeal_isClosed πŸ“–mathematicalβ€”idealOfSet
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
IsTopologicalRing.toIsTopologicalSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
NormedDivisionRing.to_isTopologicalDivisionRing
setOfIdeal
β€”IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
instIsTopologicalRingOfLocallyCompactSpace
WeaklyLocallyCompactSpace.locallyCompactSpace
T2Space.r1Space
instWeaklyLocallyCompactSpaceOfCompactSpace
idealOfSet_ofIdeal_eq_closure
Ideal.ext
Set.ext_iff
IsClosed.closure_eq
idealOf_compl_singleton_isMaximal πŸ“–mathematicalβ€”Ideal.IsMaximal
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
instSemiringOfIsTopologicalSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
IsTopologicalRing.toIsTopologicalSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
NormedDivisionRing.to_isTopologicalDivisionRing
idealOfSet
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
β€”IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
T2Space.t1Space
idealOfSet_isMaximal_iff
TopologicalSpace.Opens.isCoatom_iff
idealOpensGI_choice πŸ“–mathematicalIdeal
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
instSemiringOfIsTopologicalSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
Preorder.toLE
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
idealOfSet
SetLike.coe
TopologicalSpace.Opens
TopologicalSpace.Opens.instSetLike
opensOfIdeal
GaloisInsertion.choice
IsTopologicalRing.toIsTopologicalSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
NormedDivisionRing.to_isTopologicalDivisionRing
TopologicalSpace.Opens.instPartialOrder
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
MetricSpace.toEMetricSpace
NormedField.toMetricSpace
idealOpensGI
Ideal.closure
compactOpen
instRing
NormedRing.toRing
NormedCommRing.toNormedRing
β€”IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
ideal_gc πŸ“–mathematicalβ€”GaloisConnection
Ideal
ContinuousMap
instSemiringOfIsTopologicalSemiring
Set
PartialOrder.toPreorder
Submodule.instPartialOrder
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
setOfIdeal
idealOfSet
β€”notMem_idealOfSet
notMem_setOfIdeal
mem_setOfIdeal
ideal_isMaximal_iff πŸ“–mathematicalβ€”Ideal.IsMaximal
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
instSemiringOfIsTopologicalSemiring
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
IsTopologicalRing.toIsTopologicalSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
NormedDivisionRing.to_isTopologicalDivisionRing
idealOfSet
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
β€”IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
setOfIdeal_eq_compl_singleton
instIsTopologicalRingOfLocallyCompactSpace
WeaklyLocallyCompactSpace.locallyCompactSpace
T2Space.r1Space
instWeaklyLocallyCompactSpaceOfCompactSpace
idealOfSet_ofIdeal_eq_closure
Ideal.closure_eq_of_isClosed
idealOf_compl_singleton_isMaximal
mem_idealOfSet πŸ“–mathematicalβ€”ContinuousMap
Ideal
instSemiringOfIsTopologicalSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
idealOfSet
DFunLike.coe
instFunLike
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”β€”
mem_idealOfSet_compl_singleton πŸ“–mathematicalβ€”ContinuousMap
Ideal
instSemiringOfIsTopologicalSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
idealOfSet
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
DFunLike.coe
instFunLike
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
β€”compl_compl
mem_setOfIdeal πŸ“–mathematicalβ€”Set
Set.instMembership
setOfIdeal
ContinuousMap
Ideal
instSemiringOfIsTopologicalSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
β€”Mathlib.Tactic.Push.not_forall_eq
notMem_idealOfSet πŸ“–mathematicalβ€”ContinuousMap
Ideal
instSemiringOfIsTopologicalSemiring
SetLike.instMembership
Submodule.setLike
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
idealOfSet
Set
Set.instMembership
Compl.compl
Set.instCompl
β€”Mathlib.Tactic.Push.not_forall_eq
notMem_setOfIdeal πŸ“–mathematicalβ€”Set
Set.instMembership
setOfIdeal
DFunLike.coe
ContinuousMap
instFunLike
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”Set.mem_compl_iff
setOfIdeal.eq_1
compl_compl
Set.mem_setOf
setOfIdeal_eq_compl_singleton πŸ“–mathematicalβ€”setOfIdeal
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
IsTopologicalRing.toIsTopologicalSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
NormedDivisionRing.to_isTopologicalDivisionRing
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
β€”IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
idealOfSet_ofIdeal_isClosed
Ideal.IsMaximal.isClosed
instHasSummableGeomSeriesOfCompleteSpace
instCompleteSpaceOfCompactlyCoherentSpace
RCLike.toCompleteSpace
CompactlyCoherentSpace.of_weaklyLocallyCompactSpace
instWeaklyLocallyCompactSpaceOfCompactSpace
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
T2Space.t1Space
TopologicalSpace.Opens.isCoatom_iff
idealOfSet_isMaximal_iff
setOfIdeal_ofSet_eq_interior πŸ“–mathematicalβ€”setOfIdeal
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
IsTopologicalRing.toIsTopologicalSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
NormedDivisionRing.to_isTopologicalDivisionRing
idealOfSet
interior
β€”Set.Subset.antisymm
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
IsOpen.subset_interior_iff
setOfIdeal_open
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
mem_setOfIdeal
Set.notMem_compl_iff
exists_continuous_zero_one_of_isClosed
NormalSpace.of_regularSpace_lindelofSpace
instRegularSpaceOfWeaklyLocallyCompactSpaceOfR1Space
instWeaklyLocallyCompactSpaceOfCompactSpace
T2Space.r1Space
instLindelofSpaceOfSigmaCompactSpace
CompactSpace.sigmaCompact
isClosed_closure
isClosed_singleton
T2Space.t1Space
Set.disjoint_singleton_right
closure_compl
compl_compl
Continuous.comp
RCLike.continuous_ofReal
ContinuousMapClass.map_continuous
instContinuousMapClass
subset_closure
Set.mem_singleton
RCLike.ofReal_one
one_ne_zero
NeZero.charZero_one
RCLike.charZero_rclike
setOfIdeal_ofSet_of_isOpen πŸ“–mathematicalIsOpensetOfIdeal
DivisionSemiring.toSemiring
Semifield.toDivisionSemiring
Field.toSemifield
NormedField.toField
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
IsTopologicalRing.toIsTopologicalSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
NormedDivisionRing.to_isTopologicalDivisionRing
idealOfSet
β€”IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
setOfIdeal_ofSet_eq_interior
IsOpen.interior_eq
setOfIdeal_open πŸ“–mathematicalβ€”IsOpen
setOfIdeal
β€”Set.setOf_forall
isClosed_iInter
isClosed_eq
ContinuousMapClass.map_continuous
instContinuousMapClass
continuous_const
setOfTop_eq_univ πŸ“–mathematicalβ€”setOfIdeal
Top.top
Ideal
ContinuousMap
instSemiringOfIsTopologicalSemiring
Submodule.instTop
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
Semiring.toModule
Set.univ
β€”Set.univ_subset_iff
mem_setOfIdeal
Submodule.mem_top
one_ne_zero
NeZero.one

WeakDual.CharacterSpace

Definitions

NameCategoryTheorems
continuousMapEval πŸ“–CompOp
2 mathmath: continuousMapEval_bijective, continuousMapEval_apply_apply
homeoEval πŸ“–CompOp
1 mathmath: homeoEval_naturality

Theorems

NameKindAssumesProvesValidatesDepends On
continuousMapEval_apply_apply πŸ“–mathematicalβ€”DFunLike.coe
Set.Elem
WeakDual
ContinuousMap
CommRing.toCommSemiring
IsTopologicalSemiring.toContinuousAdd
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
IsTopologicalRing.toIsTopologicalSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
SMulCommClass.continuousConstSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Algebra.toSMul
Algebra.id
Algebra.to_smulCommClass
IsTopologicalSemiring.toContinuousMul
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
ContinuousMap.instNonUnitalNonAssocSemiringOfIsTopologicalSemiring
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
ContinuousMap.module
Semiring.toModule
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Module.toDistribMulAction
ContinuousMap.compactOpen
WeakDual.characterSpace
instFunLike
instTopologicalSpaceSubtype
Set
Set.instMembership
instTopologicalSpaceWeakDual
ContinuousMap.instFunLike
continuousMapEval
β€”IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
SMulCommClass.continuousConstSMul
Algebra.to_smulCommClass
IsTopologicalSemiring.toContinuousMul
continuousMapEval_bijective πŸ“–mathematicalβ€”Function.Bijective
Set.Elem
WeakDual
ContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedRing.toPseudoMetricSpace
SeminormedCommRing.toSeminormedRing
NormedCommRing.toSeminormedCommRing
NormedField.toNormedCommRing
DenselyNormedField.toNormedField
RCLike.toDenselyNormedField
CommRing.toCommSemiring
Field.toCommRing
NormedField.toField
IsTopologicalSemiring.toContinuousAdd
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
IsTopologicalRing.toIsTopologicalSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
CommRing.toNonUnitalCommRing
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.toDivisionRing
NormedField.toNormedDivisionRing
NormedDivisionRing.to_isTopologicalDivisionRing
SMulCommClass.continuousConstSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Algebra.toSMul
Algebra.id
Algebra.to_smulCommClass
IsTopologicalSemiring.toContinuousMul
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
NonUnitalNonAssocSemiring.toAddCommMonoid
ContinuousMap.instNonUnitalNonAssocSemiringOfIsTopologicalSemiring
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
ContinuousMap.module
Semiring.toModule
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
DistribSMul.toSMulZeroClass
DistribMulAction.toDistribSMul
Module.toDistribMulAction
ContinuousMap.compactOpen
WeakDual.characterSpace
DFunLike.coe
instTopologicalSpaceSubtype
Set
Set.instMembership
instTopologicalSpaceWeakDual
ContinuousMap.instFunLike
continuousMapEval
IsSimpleRing.instNontrivial
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
DivisionRing.isSimpleRing
NormMulClass.toNoZeroDivisors
NormedCommRing.toNormedRing
NormedDivisionRing.toNormMulClass
β€”IsTopologicalSemiring.toContinuousAdd
IsTopologicalRing.toIsTopologicalSemiring
IsTopologicalDivisionRing.toIsTopologicalRing
NormedDivisionRing.to_isTopologicalDivisionRing
SMulCommClass.continuousConstSMul
Algebra.to_smulCommClass
IsTopologicalSemiring.toContinuousMul
IsSimpleRing.instNontrivial
DivisionRing.isSimpleRing
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
Mathlib.Tactic.Contrapose.contrapose₁
exists_continuous_zero_one_of_isClosed
NormalSpace.of_regularSpace_lindelofSpace
instRegularSpaceOfWeaklyLocallyCompactSpaceOfR1Space
instWeaklyLocallyCompactSpaceOfCompactSpace
T2Space.r1Space
instLindelofSpaceOfSigmaCompactSpace
CompactSpace.sigmaCompact
isClosed_singleton
T2Space.t1Space
Set.disjoint_singleton
DFunLike.ne_iff
RCLike.continuous_ofReal
zero_ne_one
NeZero.charZero_one
RCLike.charZero_rclike
Set.mem_singleton
AlgHomClass.toRingHomClass
instAlgHomClass
ContinuousMap.ideal_isMaximal_iff
Ideal.IsMaximal.isClosed
instHasSummableGeomSeriesOfCompleteSpace
ContinuousMap.instCompleteSpaceOfCompactlyCoherentSpace
RCLike.toCompleteSpace
CompactlyCoherentSpace.of_weaklyLocallyCompactSpace
WeakDual.ker_isMaximal
ext_ker
Ideal.ext
SetLike.ext_iff

---

← Back to Index