Documentation Verification Report

Interval

πŸ“ Source: Mathlib/Topology/ContinuousMap/Interval.lean

Statistics

MetricCount
DefinitionsIccExtendCM, IccInclusionLeft, IccInclusionRight, concat, concatCM, projIccCM, Interval
7
TheoremsIccExtendCM_of_mem, concatCM_left, concatCM_right, concat_comp_IccInclusionLeft, concat_comp_IccInclusionRight, concat_left, concat_right, tendsto_concat
8
Total15

ContinuousMap

Definitions

NameCategoryTheorems
IccExtendCM πŸ“–CompOp
1 mathmath: IccExtendCM_of_mem
IccInclusionLeft πŸ“–CompOp
1 mathmath: concat_comp_IccInclusionLeft
IccInclusionRight πŸ“–CompOp
1 mathmath: concat_comp_IccInclusionRight
concat πŸ“–CompOp
5 mathmath: concat_right, concat_comp_IccInclusionLeft, concat_comp_IccInclusionRight, tendsto_concat, concat_left
concatCM πŸ“–CompOp
2 mathmath: concatCM_left, concatCM_right
projIccCM πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
IccExtendCM_of_mem πŸ“–mathematicalSet
Set.instMembership
Set.Icc
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
DFunLike.coe
ContinuousMap
instFunLike
Set.Elem
instTopologicalSpaceSubtype
compactOpen
IccExtendCM
β€”inf_of_le_right
sup_of_le_right
concatCM_left πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Set.instMembership
Set.Icc
DFunLike.coe
ContinuousMap
Set.Elem
instTopologicalSpaceSubtype
instFunLike
Top.top
OrderTop.toTop
Set.Icc.instOrderTopElemOfFactLe
Bot.bot
OrderBot.toBot
Set.Icc.instOrderBotElemOfFactLe
instTopologicalSpaceProd
compactOpen
concatCM
β€”concat_left
concatCM_right πŸ“–mathematicalPreorder.toLE
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Set
Set.instMembership
Set.Icc
DFunLike.coe
ContinuousMap
Set.Elem
instTopologicalSpaceSubtype
instFunLike
Top.top
OrderTop.toTop
Set.Icc.instOrderTopElemOfFactLe
Bot.bot
OrderBot.toBot
Set.Icc.instOrderBotElemOfFactLe
instTopologicalSpaceProd
compactOpen
concatCM
β€”concat_right
concat_comp_IccInclusionLeft πŸ“–mathematicalDFunLike.coe
ContinuousMap
Set.Elem
Set.Icc
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instTopologicalSpaceSubtype
Set
Set.instMembership
instFunLike
Top.top
OrderTop.toTop
Preorder.toLE
Set.Icc.instOrderTopElemOfFactLe
Bot.bot
OrderBot.toBot
Set.Icc.instOrderBotElemOfFactLe
comp
concat
IccInclusionLeft
β€”ext
continuous_inclusion
Set.projIcc_val
concat_comp_IccInclusionRight πŸ“–mathematicalDFunLike.coe
ContinuousMap
Set.Elem
Set.Icc
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instTopologicalSpaceSubtype
Set
Set.instMembership
instFunLike
Top.top
OrderTop.toTop
Preorder.toLE
Set.Icc.instOrderTopElemOfFactLe
Bot.bot
OrderBot.toBot
Set.Icc.instOrderBotElemOfFactLe
comp
concat
IccInclusionRight
β€”ext
eq_or_ne
Set.right_mem_Icc
continuous_inclusion
Set.projIcc_right
LT.lt.not_ge
lt_of_le_of_ne
inf_of_le_right
sup_of_le_right
concat_left πŸ“–mathematicalDFunLike.coe
ContinuousMap
Set.Elem
Set.Icc
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instTopologicalSpaceSubtype
Set
Set.instMembership
instFunLike
Top.top
OrderTop.toTop
Preorder.toLE
Set.Icc.instOrderTopElemOfFactLe
Bot.bot
OrderBot.toBot
Set.Icc.instOrderBotElemOfFactLe
concatβ€”concat_comp_IccInclusionLeft
concat_right πŸ“–mathematicalDFunLike.coe
ContinuousMap
Set.Elem
Set.Icc
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instTopologicalSpaceSubtype
Set
Set.instMembership
instFunLike
Top.top
OrderTop.toTop
Preorder.toLE
Set.Icc.instOrderTopElemOfFactLe
Bot.bot
OrderBot.toBot
Set.Icc.instOrderBotElemOfFactLe
concatβ€”concat_comp_IccInclusionRight
tendsto_concat πŸ“–mathematicalFilter.Eventually
DFunLike.coe
ContinuousMap
Set.Elem
Set.Icc
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
instTopologicalSpaceSubtype
Set
Set.instMembership
instFunLike
Top.top
OrderTop.toTop
Preorder.toLE
Set.Icc.instOrderTopElemOfFactLe
Bot.bot
OrderBot.toBot
Set.Icc.instOrderBotElemOfFactLe
Filter.Tendsto
nhds
compactOpen
concatβ€”tendsto_nhds_compactOpen
Fact.out
IsCompact.image
IsCompact.inter_right
isClosed_Iic
instClosedIicTopology
Subtype.instOrderClosedTopology
OrderTopology.to_orderClosedTopology
continuous_subtype_val
continuous
isClosed_Ici
instClosedIciTopology
concat_comp_IccInclusionLeft
Set.MapsTo.comp
inf_of_le_right
sup_of_le_right
concat_comp_IccInclusionRight
Filter.mp_mem
Filter.univ_mem'
concat_left
LT.lt.le
concat_right

(root)

Definitions

NameCategoryTheorems
Interval πŸ“–CompOp
48 mathmath: Interval.div_bot, Interval.coe_sInf, Interval.coe_iInfβ‚‚, Interval.bot_add, Interval.length_sub_le, Interval.mem_pure, Interval.one_mem_one, Interval.coe_dual, Interval.subset_coe_map, Interval.dual_top, Interval.bot_mul, Interval.coe_zero, Interval.pure_zero, Interval.add_eq_zero_iff, Interval.dual_bot, Interval.length_sum_le, Interval.canLift, Interval.neg_bot, Interval.coe_iInf, Interval.sub_bot, Interval.add_bot, Interval.pure_injective, Interval.coe_top, Interval.dual_pure, Interval.coe_one, Interval.mul_bot, Interval.forall, Interval.bot_div, Interval.disjoint_coe, Interval.coe_subset_coe, Interval.length_zero, Interval.coe_sSubset_coe, Interval.coe_bot, Interval.inv_bot, Interval.instNontrivialOfNonempty, Interval.bot_sub, Interval.pure_one, Interval.zero_mem_zero, Interval.mul_eq_one_iff, Interval.length_neg, Interval.length_add_le, Interval.coe_inf, Interval.dual_map, Interval.exists, Interval.bot_pow, Interval.bot_nsmul, Interval.coe_pure, Interval.mem_pure_self

---

← Back to Index