Documentation Verification Report

Polynomial

πŸ“ Source: Mathlib/Topology/ContinuousMap/Polynomial.lean

Statistics

MetricCount
DefinitionstoContinuousMap, toContinuousMapAlgHom, toContinuousMapOn, toContinuousMapOnAlgHom, polynomialFunctions
5
Theoremsaeval_continuousMap_apply, toContinuousMapAlgHom_apply, toContinuousMapOnAlgHom_apply, toContinuousMapOn_X_eq_restrict_id, toContinuousMapOn_apply, toContinuousMap_X_eq_id, toContinuousMap_apply, comap_compRightAlgHom_iccHomeoI, eq_adjoin_X, le_equalizer, starClosure_eq_adjoin_X, starClosure_le_equalizer, polynomialFunctions_coe, polynomialFunctions_separatesPoints
14
Total19

Polynomial

Definitions

NameCategoryTheorems
toContinuousMap πŸ“–CompOp
4 mathmath: toContinuousMap_apply, toContinuousMap_X_eq_id, toContinuousMapAlgHom_apply, toContinuousMapOn_apply
toContinuousMapAlgHom πŸ“–CompOp
1 mathmath: toContinuousMapAlgHom_apply
toContinuousMapOn πŸ“–CompOp
6 mathmath: toContinuousMapOn_X_eq_restrict_id, exists_polynomial_near_continuousMap, ContinuousMap.polynomial_comp_attachBound, ContinuousMap.polynomial_comp_attachBound_mem, toContinuousMapOn_apply, toContinuousMapOnAlgHom_apply
toContinuousMapOnAlgHom πŸ“–CompOp
4 mathmath: polynomialFunctions.eq_adjoin_X, polynomialFunctions.starClosure_eq_adjoin_X, polynomialFunctions_coe, toContinuousMapOnAlgHom_apply

Theorems

NameKindAssumesProvesValidatesDepends On
aeval_continuousMap_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
ContinuousMap.instFunLike
AlgHom
Polynomial
CommSemiring.toSemiring
semiring
ContinuousMap.instSemiringOfIsTopologicalSemiring
algebraOfAlgebra
Algebra.id
ContinuousMap.algebra
AlgHom.funLike
aeval
eval
β€”induction_on'
IsTopologicalSemiring.toContinuousAdd
map_add
SemilinearMapClass.toAddHomClass
SMulCommClass.continuousConstSMul
Algebra.to_smulCommClass
IsTopologicalSemiring.toContinuousMul
NonUnitalAlgHomClass.instLinearMapClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AlgHom.algHomClass
eval_add
aeval_monomial
algebraMap_apply
mul_one
eval_monomial
toContinuousMapAlgHom_apply πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
ContinuousMap
semiring
ContinuousMap.instSemiringOfIsTopologicalSemiring
algebraOfAlgebra
Algebra.id
ContinuousMap.algebra
AlgHom.funLike
toContinuousMapAlgHom
toContinuousMap
β€”β€”
toContinuousMapOnAlgHom_apply πŸ“–mathematicalβ€”DFunLike.coe
AlgHom
Polynomial
CommSemiring.toSemiring
ContinuousMap
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
semiring
ContinuousMap.instSemiringOfIsTopologicalSemiring
algebraOfAlgebra
Algebra.id
ContinuousMap.algebra
AlgHom.funLike
toContinuousMapOnAlgHom
toContinuousMapOn
β€”β€”
toContinuousMapOn_X_eq_restrict_id πŸ“–mathematicalβ€”toContinuousMapOn
X
ContinuousMap.restrict
ContinuousMap.id
β€”ContinuousMap.ext
eval_X
toContinuousMapOn_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
ContinuousMap.instFunLike
toContinuousMapOn
toContinuousMap
β€”β€”
toContinuousMap_X_eq_id πŸ“–mathematicalβ€”toContinuousMap
X
ContinuousMap.id
β€”ContinuousMap.ext
eval_X
toContinuousMap_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
ContinuousMap.instFunLike
toContinuousMap
eval
β€”β€”

(root)

Definitions

NameCategoryTheorems
polynomialFunctions πŸ“–CompOp
12 mathmath: polynomialFunctions.eq_adjoin_X, polynomialFunctions.le_equalizer, polynomialFunctions_separatesPoints, polynomialFunctions.starClosure_topologicalClosure, polynomialFunctions.starClosure_le_equalizer, continuousMap_mem_polynomialFunctions_closure, polynomialFunctions.starClosure_eq_adjoin_X, polynomialFunctions_coe, polynomialFunctions.topologicalClosure, polynomialFunctions_closure_eq_top', polynomialFunctions_closure_eq_top, polynomialFunctions.comap_compRightAlgHom_iccHomeoI

Theorems

NameKindAssumesProvesValidatesDepends On
polynomialFunctions_coe πŸ“–mathematicalβ€”SetLike.coe
Subalgebra
ContinuousMap
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
ContinuousMap.instSemiringOfIsTopologicalSemiring
CommSemiring.toSemiring
ContinuousMap.algebra
Algebra.id
Subalgebra.instSetLike
polynomialFunctions
Set.range
Polynomial
DFunLike.coe
AlgHom
Polynomial.semiring
Polynomial.algebraOfAlgebra
AlgHom.funLike
Polynomial.toContinuousMapOnAlgHom
β€”Set.ext
Algebra.map_top
polynomialFunctions_separatesPoints πŸ“–mathematicalβ€”Subalgebra.SeparatesPoints
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
CommSemiring.toSemiring
Algebra.id
polynomialFunctions
β€”Algebra.mem_top
Polynomial.eval_X

polynomialFunctions

Theorems

NameKindAssumesProvesValidatesDepends On
comap_compRightAlgHom_iccHomeoI πŸ“–mathematicalReal
Real.instLT
Subalgebra.comap
ContinuousMap
Set.Elem
Set.Icc
Real.instPreorder
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
unitInterval
Real.instCommSemiring
ContinuousMap.instSemiringOfIsTopologicalSemiring
Real.semiring
IsTopologicalRing.toIsTopologicalSemiring
NonUnitalNonAssocCommRing.toNonUnitalNonAssocRing
NonUnitalCommRing.toNonUnitalNonAssocCommRing
NonUnitalNormedCommRing.toNonUnitalCommRing
NormedCommRing.toNonUnitalNormedCommRing
Real.normedCommRing
instIsTopologicalRingReal
ContinuousMap.algebra
Algebra.id
ContinuousMap.compRightAlgHom
toContinuousMap
Homeomorph
PartialOrder.toPreorder
SemilatticeInf.toPartialOrder
Lattice.toSemilatticeInf
DistribLattice.toLattice
instDistribLatticeOfLinearOrder
Real.linearOrder
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
CommRing.toNonUnitalCommRing
Field.toCommRing
Real.instField
AddMonoidWithOne.toOne
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
DivisionRing.toRing
Field.toDivisionRing
EquivLike.toFunLike
Homeomorph.instEquivLike
Homeomorph.instContinuousMapClass
Homeomorph.symm
iccHomeoI
Real.instIsStrictOrderedRing
polynomialFunctions
β€”Subalgebra.ext
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
Homeomorph.instContinuousMapClass
Real.instIsStrictOrderedRing
ContinuousMap.ext
neg_mul
map_neg
RingHomClass.toAddMonoidHomClass
RingHom.instRingHomClass
map_mul
NonUnitalRingHomClass.toMulHomClass
RingHomClass.toNonUnitalRingHomClass
Polynomial.eval_comp
Polynomial.eval_add
Polynomial.eval_smul
IsScalarTower.right
Polynomial.eval_X
Polynomial.eval_neg
Polynomial.eval_mul
Polynomial.eval_C
mul_comm
add_mul
Distrib.rightDistribClass
sub_eq_add_neg
inv_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
sub_pos
IsRightCancelAdd.addRightStrictMono_of_addRightMono
AddRightCancelSemigroup.toIsRightCancelAdd
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
sub_nonneg
sub_le_sub_right
mul_nonneg
IsOrderedRing.toPosMulMono
Real.instIsOrderedRing
le_of_lt
div_eq_mul_inv
div_le_one
sub_ne_zero_of_ne
LT.lt.ne
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.inv_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
mul_neg
Mathlib.Tactic.FieldSimp.NF.mul_eq_evalβ‚‚
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons_zero
Mathlib.Tactic.FieldSimp.NF.eval_cons_of_pow_eq_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
DFunLike.ext_iff
eq_adjoin_X πŸ“–mathematicalβ€”polynomialFunctions
Algebra.adjoin
ContinuousMap
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
ContinuousMap.instSemiringOfIsTopologicalSemiring
CommSemiring.toSemiring
ContinuousMap.algebra
Algebra.id
Set.instSingletonSet
DFunLike.coe
AlgHom
Polynomial
Polynomial.semiring
Polynomial.algebraOfAlgebra
AlgHom.funLike
Polynomial.toContinuousMapOnAlgHom
Polynomial.X
β€”le_antisymm
AlgHomClass.toRingHomClass
AlgHom.algHomClass
AlgHom.coe_toRingHom
Polynomial.induction_on
Polynomial.C_eq_algebraMap
AlgHomClass.commutes
Subalgebra.algebraMap_mem
IsTopologicalSemiring.toContinuousAdd
map_add
SemilinearMapClass.toAddHomClass
SMulCommClass.continuousConstSMul
Algebra.to_smulCommClass
IsTopologicalSemiring.toContinuousMul
NonUnitalAlgHomClass.instLinearMapClass
AlgHom.instNonUnitalAlgHomClassOfAlgHomClass
AddMemClass.add_mem
AddSubmonoidClass.toAddMemClass
SubsemiringClass.toAddSubmonoidClass
Subalgebra.instSubsemiringClass
pow_succ
mul_assoc
map_mul
NonUnitalAlgSemiHomClass.toMulHomClass
MulMemClass.mul_mem
SubmonoidClass.toMulMemClass
SubsemiringClass.toSubmonoidClass
Algebra.subset_adjoin
Set.mem_singleton
Algebra.adjoin_le
Set.mem_singleton_iff
le_equalizer πŸ“–mathematicalDFunLike.coe
AlgHom
ContinuousMap
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
ContinuousMap.instSemiringOfIsTopologicalSemiring
CommSemiring.toSemiring
ContinuousMap.algebra
Algebra.id
AlgHom.funLike
Polynomial
Polynomial.semiring
Polynomial.algebraOfAlgebra
Polynomial.toContinuousMapOnAlgHom
Polynomial.X
Subalgebra
Preorder.toLE
PartialOrder.toPreorder
Subalgebra.instPartialOrder
polynomialFunctions
AlgHom.equalizer
AlgHom.algHomClass
β€”AlgHom.algHomClass
eq_adjoin_X
AlgHom.adjoin_le_equalizer
Set.mem_singleton_iff
starClosure_eq_adjoin_X πŸ“–mathematicalβ€”Subalgebra.starClosure
ContinuousMap
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
ContinuousMap.instSemiringOfIsTopologicalSemiring
CommSemiring.toSemiring
ContinuousMap.algebra
Algebra.id
ContinuousMap.instStarRingOfContinuousStar
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
ContinuousMap.instStarModule
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
StarRing.toStarAddMonoid
Algebra.toSMul
StarMul.toStarModule
CommSemiring.toCommMonoid
StarRing.toStarMul
polynomialFunctions
StarAlgebra.adjoin
Set.instSingletonSet
DFunLike.coe
AlgHom
Polynomial
Polynomial.semiring
Polynomial.algebraOfAlgebra
AlgHom.funLike
Polynomial.toContinuousMapOnAlgHom
Polynomial.X
β€”ContinuousMap.instStarModule
StarMul.toStarModule
eq_adjoin_X
StarAlgebra.adjoin_eq_starClosure_adjoin
starClosure_le_equalizer πŸ“–mathematicalDFunLike.coe
StarAlgHom
ContinuousMap
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
ContinuousMap.instSemiringOfIsTopologicalSemiring
CommSemiring.toSemiring
ContinuousMap.algebra
Algebra.id
ContinuousMap.instStar
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
StarRing.toStarAddMonoid
StarAlgHom.instFunLike
AlgHom
Polynomial
Polynomial.semiring
Polynomial.algebraOfAlgebra
AlgHom.funLike
Polynomial.toContinuousMapOnAlgHom
Polynomial.X
StarSubalgebra
ContinuousMap.instStarRingOfContinuousStar
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
ContinuousMap.instStarModule
Algebra.toSMul
StarMul.toStarModule
CommSemiring.toCommMonoid
StarRing.toStarMul
Preorder.toLE
PartialOrder.toPreorder
StarSubalgebra.instPartialOrder
Subalgebra.starClosure
polynomialFunctions
StarAlgHom.equalizer
StarAlgHom.instAlgHomClass
StarAlgHom.instStarHomClass
β€”ContinuousMap.instStarModule
StarMul.toStarModule
StarAlgHom.instAlgHomClass
StarAlgHom.instStarHomClass
starClosure_eq_adjoin_X
StarAlgHom.adjoin_le_equalizer
Set.mem_singleton_iff

---

← Back to Index