Documentation Verification Report

Star

πŸ“ Source: Mathlib/Topology/ContinuousMap/Star.lean

Statistics

MetricCount
DefinitionscompStarAlgHom, compStarAlgHom', evalStarAlgHom, instInvolutiveStarOfContinuousStar, instStar, instStarRingOfContinuousStar, starAddMonoid, starMul, compStarAlgEquiv', Star, Star
11
Theoremscoe_star, compStarAlgHom'_apply, compStarAlgHom'_comp, compStarAlgHom'_id, compStarAlgHom_apply, compStarAlgHom_comp, compStarAlgHom_id, evalStarAlgHom_apply, instStarModule, instTrivialStar, star_apply, compStarAlgEquiv'_apply, compStarAlgEquiv'_symm_apply
13
Total24

ContinuousMap

Definitions

NameCategoryTheorems
compStarAlgHom πŸ“–CompOp
3 mathmath: compStarAlgHom_comp, compStarAlgHom_id, compStarAlgHom_apply
compStarAlgHom' πŸ“–CompOp
7 mathmath: gelfandStarTransform_naturality, WeakDual.CharacterSpace.homeoEval_naturality, compStarAlgHom'_comp, Homeomorph.compStarAlgEquiv'_apply, compStarAlgHom'_apply, Homeomorph.compStarAlgEquiv'_symm_apply, compStarAlgHom'_id
evalStarAlgHom πŸ“–CompOp
4 mathmath: evalStarAlgHom_apply, nonUnitalStarAlgebraAdjoin_id_subset_ker_evalStarAlgHom, ker_evalStarAlgHom_inter_adjoin_id, ker_evalStarAlgHom_eq_closure_adjoin_id
instInvolutiveStarOfContinuousStar πŸ“–CompOpβ€”
instStar πŸ“–CompOp
63 mathmath: Matrix.IsHermitian.isClosedEmbedding_cfcAux, IsSelfAdjoint.commute_cfcHom, BoundedContinuousFunction.mkOfCompact_star, cfcHom_continuous, cfcL_apply, cfcHom_nonneg_iff, gelfandStarTransform_naturality, gelfandStarTransform_apply_apply, cfc_apply_mkD, instStarModule, cfcHom_isClosedEmbedding, BoundedContinuousFunction.coe_toContinuousMapStarₐ, cfcHom_le_iff, cfcHom_id, StarAlgHom.realContinuousMapOfNNReal_apply, gelfandStarTransform_symm_apply, gelfandTransform_map_star, cfcHom_integral, compStarAlgHom_comp, compStarAlgHom'_comp, ContinuousFunctionalCalculus.exists_cfc_of_predicate, cfc_def, StarAlgHom.realContinuousMapOfNNReal_apply_comp_toReal, Matrix.IsHermitian.cfcAux_apply, continuous_cfcHomSuperset_left, cfcHomSuperset_apply, ContinuousMapZero.toContinuousMapHom_toNNReal, cfcHom_eq_cfc_extend, star_apply, SpectrumRestricts.starAlgHom_apply, Commute.cfcHom, evalStarAlgHom_apply, nonUnitalStarAlgebraAdjoin_id_subset_ker_evalStarAlgHom, cfc_apply, StarAlgHom.realContinuousMapOfNNReal_injective, cfcHom_isStrictlyPositive_iff, BoundedContinuousFunction.toContinuousMapStarₐ_apply_apply, Homeomorph.compStarAlgEquiv'_apply, cfc_apply_pi, ContinuousMapZero.toContinuousMapHom_apply, Matrix.IsHermitian.cfcAux_id, coe_star, cfcHomSuperset_id, compStarAlgHom_id, cfcHom_predicate, norm_cfcHom, ker_evalStarAlgHom_inter_adjoin_id, cfcHomSuperset_continuous, compStarAlgHom'_apply, Homeomorph.compStarAlgEquiv'_symm_apply, nnnorm_cfcHom, ker_evalStarAlgHom_eq_closure_adjoin_id, compStarAlgHom_apply, cfcHom_mono, IsometricContinuousFunctionalCalculus.isometric, compStarAlgHom'_id, cfcHom_eq_of_isStarNormal, ContinuousMapZero.coe_toContinuousMapHom, cfcHom_map_spectrum, continuousFunctionalCalculus_map_id, cfcHom_apply_mem_elemental, instTrivialStar, isometry_cfcHom
instStarRingOfContinuousStar πŸ“–CompOp
22 mathmath: UnitAddTorus.mFourierSubalgebra_coe, UnitAddTorus.mFourierSubalgebra_closure_eq_top, polynomialFunctions.starClosure_topologicalClosure, polynomialFunctions.starClosure_le_equalizer, WeakDual.CharacterSpace.homeoEval_naturality, polynomialFunctions.starClosure_eq_adjoin_X, instStarOrderedRingOfContinuousSqrt, fourierSubalgebra_separatesPoints, adjoin_id_eq_span_one_union, instCStarRing, range_cfc_eq_range_cfcHom, fourierSubalgebra_coe, UnitAddTorus.mFourierSubalgebra_separatesPoints, nonUnitalStarAlgebraAdjoin_id_subset_ker_evalStarAlgHom, adjoin_id_eq_span_one_add, fourierSubalgebra_closure_eq_top, ker_evalStarAlgHom_inter_adjoin_id, elemental_id_eq_top, range_cfcHom, ker_evalStarAlgHom_eq_closure_adjoin_id, BoundedContinuousFunction.separatesPoints_charPoly, RCLike.restrict_toContinuousMap_eq_toContinuousMapStar_restrict
starAddMonoid πŸ“–CompOp
6 mathmath: UnitAddTorus.mFourierSubalgebra_closure_eq_top, polynomialFunctions.starClosure_topologicalClosure, instNormedStarGroup, fourierSubalgebra_closure_eq_top, elemental_id_eq_top, starSubalgebra_topologicalClosure_eq_top_of_separatesPoints
starMul πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
coe_star πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
instFunLike
Star.star
instStar
Pi.instStarForall
β€”β€”
compStarAlgHom'_apply πŸ“–mathematicalβ€”DFunLike.coe
StarAlgHom
ContinuousMap
instSemiringOfIsTopologicalSemiring
algebra
instStar
StarAlgHom.instFunLike
compStarAlgHom'
comp
β€”β€”
compStarAlgHom'_comp πŸ“–mathematicalβ€”compStarAlgHom'
comp
StarAlgHom.comp
ContinuousMap
instSemiringOfIsTopologicalSemiring
algebra
instStar
β€”StarAlgHom.ext
ext
compStarAlgHom'_id πŸ“–mathematicalβ€”compStarAlgHom'
id
StarAlgHom.id
ContinuousMap
instSemiringOfIsTopologicalSemiring
algebra
instStar
β€”StarAlgHom.ext
ext
compStarAlgHom_apply πŸ“–mathematicalContinuous
DFunLike.coe
StarAlgHom
StarAlgHom.instFunLike
ContinuousMap
instSemiringOfIsTopologicalSemiring
algebra
instStar
compStarAlgHom
comp
β€”β€”
compStarAlgHom_comp πŸ“–mathematicalContinuous
DFunLike.coe
StarAlgHom
StarAlgHom.instFunLike
compStarAlgHom
StarAlgHom.comp
Continuous.comp
RingHom
Semiring.toNonAssocSemiring
RingHom.instFunLike
RingHomClass.toRingHom
AlgHom
AlgHom.funLike
StarAlgHom.toAlgHom
ContinuousMap
instSemiringOfIsTopologicalSemiring
algebra
instStar
β€”Continuous.comp
compStarAlgHom_id πŸ“–mathematicalβ€”compStarAlgHom
StarAlgHom.id
continuous_id
ContinuousMap
instSemiringOfIsTopologicalSemiring
algebra
instStar
β€”continuous_id
evalStarAlgHom_apply πŸ“–mathematicalβ€”DFunLike.coe
StarAlgHom
ContinuousMap
instSemiringOfIsTopologicalSemiring
CommSemiring.toSemiring
algebra
instStar
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
StarRing.toStarAddMonoid
StarAlgHom.instFunLike
evalStarAlgHom
instFunLike
β€”β€”
instStarModule πŸ“–mathematicalβ€”StarModule
ContinuousMap
instStar
instSMul
β€”ext
StarModule.star_smul
instTrivialStar πŸ“–mathematicalβ€”TrivialStar
ContinuousMap
instStar
β€”ext
TrivialStar.star_trivial
star_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
instFunLike
Star.star
instStar
β€”β€”

Homeomorph

Definitions

NameCategoryTheorems
compStarAlgEquiv' πŸ“–CompOp
2 mathmath: compStarAlgEquiv'_apply, compStarAlgEquiv'_symm_apply

Theorems

NameKindAssumesProvesValidatesDepends On
compStarAlgEquiv'_apply πŸ“–mathematicalβ€”DFunLike.coe
StarAlgEquiv
ContinuousMap
ContinuousMap.instAdd
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
IsTopologicalSemiring.toContinuousAdd
ContinuousMap.instMul
Distrib.toMul
IsTopologicalSemiring.toContinuousMul
ContinuousMap.instSMul
Algebra.toSMul
SMulCommClass.continuousConstSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Algebra.to_smulCommClass
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
ContinuousMap.instStar
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
StarRing.toStarAddMonoid
StarAlgEquiv.instFunLike
compStarAlgEquiv'
StarAlgHom
ContinuousMap.instSemiringOfIsTopologicalSemiring
ContinuousMap.algebra
StarAlgHom.instFunLike
ContinuousMap.compStarAlgHom'
toContinuousMap
Homeomorph
EquivLike.toFunLike
instEquivLike
instContinuousMapClass
β€”IsTopologicalSemiring.toContinuousAdd
IsTopologicalSemiring.toContinuousMul
SMulCommClass.continuousConstSMul
Algebra.to_smulCommClass
compStarAlgEquiv'_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
StarAlgEquiv
ContinuousMap
ContinuousMap.instAdd
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
IsTopologicalSemiring.toContinuousAdd
ContinuousMap.instMul
Distrib.toMul
IsTopologicalSemiring.toContinuousMul
ContinuousMap.instSMul
Algebra.toSMul
SMulCommClass.continuousConstSMul
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
Algebra.to_smulCommClass
NonUnitalSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonUnitalSemiring
ContinuousMap.instStar
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
AddCommMonoid.toAddMonoid
NonUnitalNonAssocSemiring.toAddCommMonoid
StarRing.toStarAddMonoid
StarAlgEquiv.instFunLike
StarAlgEquiv.symm
compStarAlgEquiv'
StarAlgHom
ContinuousMap.instSemiringOfIsTopologicalSemiring
ContinuousMap.algebra
StarAlgHom.instFunLike
ContinuousMap.compStarAlgHom'
toContinuousMap
Homeomorph
EquivLike.toFunLike
instEquivLike
instContinuousMapClass
symm
β€”IsTopologicalSemiring.toContinuousAdd
IsTopologicalSemiring.toContinuousMul
SMulCommClass.continuousConstSMul
Algebra.to_smulCommClass

Quiver

Definitions

NameCategoryTheorems
Star πŸ“–CompOp
12 mathmath: starEquivCostar_symm_apply_fst, starEquivCostar_apply_fst, Prefunctor.IsCovering.star_bijective, starEquivCostar_apply_snd, Prefunctor.costar_conj_star, starEquivCostar_symm_apply, Prefunctor.symmetrifyStar, starEquivCostar_apply, Prefunctor.symmetrifyCostar, starEquivCostar_symm_apply_snd, Prefunctor.star_comp, Prefunctor.bijective_costar_iff_bijective_star

(root)

Definitions

NameCategoryTheorems
Star πŸ“–CompDataβ€”

---

← Back to Index