Documentation Verification Report

T0Sierpinski

📁 Source: Mathlib/Topology/ContinuousMap/T0Sierpinski.lean

Statistics

MetricCount
DefinitionsproductOfMemOpens
1
Theoremseq_induced_by_maps_to_sierpinski, productOfMemOpens_injective, productOfMemOpens_isEmbedding, productOfMemOpens_isInducing
4
Total5

TopologicalSpace

Definitions

NameCategoryTheorems
productOfMemOpens 📖CompOp
3 mathmath: productOfMemOpens_isEmbedding, productOfMemOpens_injective, productOfMemOpens_isInducing

Theorems

NameKindAssumesProvesValidatesDepends On
eq_induced_by_maps_to_sierpinski 📖mathematicaliInf
TopologicalSpace
Opens
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
instCompleteLattice
induced
SetLike.instMembership
Opens.instSetLike
sierpinskiSpace
le_antisymm
le_iInf_iff
Continuous.le_induced
isOpen_iff_continuous_mem
Opens.is_open'
generateFrom_iUnion_isOpen
isOpen_generateFrom_of_mem
isOpen_singleton_true
productOfMemOpens_injective 📖mathematicalDFunLike.coe
ContinuousMap
Pi.topologicalSpace
Opens
sierpinskiSpace
ContinuousMap.instFunLike
productOfMemOpens
Inseparable.eq
Topology.IsInducing.inseparable_iff
productOfMemOpens_isInducing
Inseparable.refl
productOfMemOpens_isEmbedding 📖mathematicalTopology.IsEmbedding
Pi.topologicalSpace
Opens
sierpinskiSpace
DFunLike.coe
ContinuousMap
ContinuousMap.instFunLike
productOfMemOpens
productOfMemOpens_isInducing
productOfMemOpens_injective
productOfMemOpens_isInducing 📖mathematicalTopology.IsInducing
Pi.topologicalSpace
Opens
sierpinskiSpace
DFunLike.coe
ContinuousMap
ContinuousMap.instFunLike
productOfMemOpens
eq_induced_by_maps_to_sierpinski
inducing_iInf_to_pi

---

← Back to Index