| Name | Category | Theorems |
comp π | CompOp | 4 mathmath: coe_comp_to_continuous_fun, comp_assoc, zero_comp, comp_id
|
compAddMonoidHom π | CompOp | β |
compLinearMap π | CompOp | β |
compMulHom π | CompOp | β |
compNonUnitalAlgHom π | CompOp | β |
copy π | CompOp | 2 mathmath: copy_eq, coe_copy
|
instAdd π | CompOp | 2 mathmath: add_apply, coe_add
|
instAddCommGroup π | CompOp | β |
instAddCommMonoid π | CompOp | 1 mathmath: SchwartzMap.toZeroAtInftyCLM_apply
|
instAddGroup π | CompOp | β |
instAddMonoid π | CompOp | β |
instAddZeroClass π | CompOp | 2 mathmath: instIsScalarTower, instSMulCommClass
|
instCoeTC π | CompOp | β |
instFunLike π | CompOp | 29 mathmath: add_apply, coe_smul, smul_apply, coe_mk, coe_comp_to_continuous_fun, coe_zero, ContinuousMap.liftZeroAtInfty_apply_toFun, zero_apply, toBCF_apply, neg_apply, sub_apply, instZeroAtInftyContinuousMapClass, isBounded_image, coe_mul, ContinuousMap.liftZeroAtInfty_symm_apply, ext_iff, coe_toContinuousMap, PadicInt.mahlerEquiv_apply, star_apply, isBounded_range, tendsto_iff_tendstoUniformly, PadicInt.mahlerEquiv_symm_apply, coe_sub, coe_add, SchwartzMap.toZeroAtInfty_apply, coe_neg, mul_apply, SchwartzMap.toZeroAtInftyCLM_apply, coe_star
|
instInhabited π | CompOp | β |
instMetricSpace π | CompOp | β |
instModule π | CompOp | 3 mathmath: PadicInt.mahlerEquiv_apply, PadicInt.mahlerEquiv_symm_apply, SchwartzMap.toZeroAtInftyCLM_apply
|
instMul π | CompOp | 2 mathmath: coe_mul, mul_apply
|
instMulActionWithZero π | CompOp | β |
instMulZeroClass π | CompOp | β |
instNeg π | CompOp | 2 mathmath: neg_apply, coe_neg
|
instNonUnitalCommRing π | CompOp | β |
instNonUnitalCommSemiring π | CompOp | β |
instNonUnitalNonAssocRing π | CompOp | β |
instNonUnitalNonAssocSemiring π | CompOp | 2 mathmath: instIsScalarTower, instSMulCommClass
|
instNonUnitalNormedCommRing π | CompOp | β |
instNonUnitalNormedRing π | CompOp | 1 mathmath: instCStarRing
|
instNonUnitalRing π | CompOp | β |
instNonUnitalSeminormedCommRing π | CompOp | β |
instNonUnitalSeminormedRing π | CompOp | β |
instNonUnitalSemiring π | CompOp | β |
instNormedAddCommGroup π | CompOp | β |
instNormedSpace π | CompOp | β |
instPseudoMetricSpace π | CompOp | 5 mathmath: dist_toBCF_eq_dist, instCompleteSpace, isometry_toBCF, tendsto_iff_tendstoUniformly, SchwartzMap.toZeroAtInftyCLM_apply
|
instSMul π | CompOp | 6 mathmath: instIsCentralScalar, coe_smul, instIsScalarTower, smul_apply, instSMulCommClass, instStarModule
|
instSMulWithZero π | CompOp | β |
instSemigroupWithZero π | CompOp | β |
instSeminormedAddCommGroup π | CompOp | 4 mathmath: instNormedStarGroup, norm_toBCF_eq_norm, PadicInt.mahlerEquiv_apply, PadicInt.mahlerEquiv_symm_apply
|
instStar π | CompOp | 3 mathmath: instStarModule, star_apply, coe_star
|
instStarAddMonoid π | CompOp | 1 mathmath: instNormedStarGroup
|
instStarRing π | CompOp | 1 mathmath: instCStarRing
|
instSub π | CompOp | 2 mathmath: sub_apply, coe_sub
|
instZero π | CompOp | 3 mathmath: coe_zero, zero_apply, zero_comp
|
toBCF π | CompOp | 7 mathmath: toBCF_injective, isClosed_range_toBCF, dist_toBCF_eq_dist, toBCF_apply, norm_toBCF_eq_norm, isometry_toBCF, SchwartzMap.toZeroAtInfty_toBCF
|
toContinuousMap π | CompOp | 2 mathmath: zero_at_infty', coe_toContinuousMap
|