Documentation Verification Report

ZeroAtInfty

πŸ“ Source: Mathlib/Topology/ContinuousMap/ZeroAtInfty.lean

Statistics

MetricCount
DefinitionsΒ«termCβ‚€(_,_)»»), Β«term_β†’Cβ‚€_Β», ZeroAtInftyContinuousMap, liftZeroAtInfty, comp, compAddMonoidHom, compLinearMap, compMulHom, compNonUnitalAlgHom, copy, instAdd, instAddCommGroup, instAddCommMonoid, instAddGroup, instAddMonoid, instAddZeroClass, instCoeTC, instFunLike, instInhabited, instMetricSpace, instModule, instMul, instMulActionWithZero, instMulZeroClass, instNeg, instNonUnitalCommRing, instNonUnitalCommSemiring, instNonUnitalNonAssocRing, instNonUnitalNonAssocSemiring, instNonUnitalNormedCommRing, instNonUnitalNormedRing, instNonUnitalRing, instNonUnitalSeminormedCommRing, instNonUnitalSeminormedRing, instNonUnitalSemiring, instNormedAddCommGroup, instNormedSpace, instPseudoMetricSpace, instSMul, instSMulWithZero, instSemigroupWithZero, instSeminormedAddCommGroup, instStar, instStarAddMonoid, instStarRing, instSub, instZero, toBCF, toContinuousMap, ZeroAtInftyContinuousMapClass
50
TheoremsliftZeroAtInfty_apply_toFun, liftZeroAtInfty_symm_apply, add_apply, bounded, coe_add, coe_comp_to_continuous_fun, coe_copy, coe_mk, coe_mul, coe_neg, coe_smul, coe_star, coe_sub, coe_toContinuousMap, coe_zero, comp_assoc, comp_id, copy_eq, dist_toBCF_eq_dist, eq_of_empty, ext, ext_iff, instBoundedContinuousMapClass, instCStarRing, instCompleteSpace, instIsCentralScalar, instIsScalarTower, instNormedStarGroup, instSMulCommClass, instStarModule, instZeroAtInftyContinuousMapClass, isBounded_image, isBounded_range, isClosed_range_toBCF, isometry_toBCF, mul_apply, neg_apply, norm_toBCF_eq_norm, smul_apply, star_apply, sub_apply, tendsto_iff_tendstoUniformly, toBCF_apply, toBCF_injective, uniformContinuous, ofCompact, zero_apply, zero_at_infty', zero_comp, toContinuousMapClass, zero_at_infty
51
Total101

ZeroAtInfty

Definitions

NameCategoryTheorems
Β«termCβ‚€(_,_)Β» πŸ“–Β» "API Documentation")CompOpβ€”
Β«term_β†’Cβ‚€_Β» πŸ“–CompOpβ€”

ZeroAtInftyContinuousMap

Definitions

NameCategoryTheorems
comp πŸ“–CompOp
4 mathmath: coe_comp_to_continuous_fun, comp_assoc, zero_comp, comp_id
compAddMonoidHom πŸ“–CompOpβ€”
compLinearMap πŸ“–CompOpβ€”
compMulHom πŸ“–CompOpβ€”
compNonUnitalAlgHom πŸ“–CompOpβ€”
copy πŸ“–CompOp
2 mathmath: copy_eq, coe_copy
instAdd πŸ“–CompOp
2 mathmath: add_apply, coe_add
instAddCommGroup πŸ“–CompOpβ€”
instAddCommMonoid πŸ“–CompOp
1 mathmath: SchwartzMap.toZeroAtInftyCLM_apply
instAddGroup πŸ“–CompOpβ€”
instAddMonoid πŸ“–CompOpβ€”
instAddZeroClass πŸ“–CompOp
2 mathmath: instIsScalarTower, instSMulCommClass
instCoeTC πŸ“–CompOpβ€”
instFunLike πŸ“–CompOp
29 mathmath: add_apply, coe_smul, smul_apply, coe_mk, coe_comp_to_continuous_fun, coe_zero, ContinuousMap.liftZeroAtInfty_apply_toFun, zero_apply, toBCF_apply, neg_apply, sub_apply, instZeroAtInftyContinuousMapClass, isBounded_image, coe_mul, ContinuousMap.liftZeroAtInfty_symm_apply, ext_iff, coe_toContinuousMap, PadicInt.mahlerEquiv_apply, star_apply, isBounded_range, tendsto_iff_tendstoUniformly, PadicInt.mahlerEquiv_symm_apply, coe_sub, coe_add, SchwartzMap.toZeroAtInfty_apply, coe_neg, mul_apply, SchwartzMap.toZeroAtInftyCLM_apply, coe_star
instInhabited πŸ“–CompOpβ€”
instMetricSpace πŸ“–CompOpβ€”
instModule πŸ“–CompOp
3 mathmath: PadicInt.mahlerEquiv_apply, PadicInt.mahlerEquiv_symm_apply, SchwartzMap.toZeroAtInftyCLM_apply
instMul πŸ“–CompOp
2 mathmath: coe_mul, mul_apply
instMulActionWithZero πŸ“–CompOpβ€”
instMulZeroClass πŸ“–CompOpβ€”
instNeg πŸ“–CompOp
2 mathmath: neg_apply, coe_neg
instNonUnitalCommRing πŸ“–CompOpβ€”
instNonUnitalCommSemiring πŸ“–CompOpβ€”
instNonUnitalNonAssocRing πŸ“–CompOpβ€”
instNonUnitalNonAssocSemiring πŸ“–CompOp
2 mathmath: instIsScalarTower, instSMulCommClass
instNonUnitalNormedCommRing πŸ“–CompOpβ€”
instNonUnitalNormedRing πŸ“–CompOp
1 mathmath: instCStarRing
instNonUnitalRing πŸ“–CompOpβ€”
instNonUnitalSeminormedCommRing πŸ“–CompOpβ€”
instNonUnitalSeminormedRing πŸ“–CompOpβ€”
instNonUnitalSemiring πŸ“–CompOpβ€”
instNormedAddCommGroup πŸ“–CompOpβ€”
instNormedSpace πŸ“–CompOpβ€”
instPseudoMetricSpace πŸ“–CompOp
5 mathmath: dist_toBCF_eq_dist, instCompleteSpace, isometry_toBCF, tendsto_iff_tendstoUniformly, SchwartzMap.toZeroAtInftyCLM_apply
instSMul πŸ“–CompOp
6 mathmath: instIsCentralScalar, coe_smul, instIsScalarTower, smul_apply, instSMulCommClass, instStarModule
instSMulWithZero πŸ“–CompOpβ€”
instSemigroupWithZero πŸ“–CompOpβ€”
instSeminormedAddCommGroup πŸ“–CompOp
4 mathmath: instNormedStarGroup, norm_toBCF_eq_norm, PadicInt.mahlerEquiv_apply, PadicInt.mahlerEquiv_symm_apply
instStar πŸ“–CompOp
3 mathmath: instStarModule, star_apply, coe_star
instStarAddMonoid πŸ“–CompOp
1 mathmath: instNormedStarGroup
instStarRing πŸ“–CompOp
1 mathmath: instCStarRing
instSub πŸ“–CompOp
2 mathmath: sub_apply, coe_sub
instZero πŸ“–CompOp
3 mathmath: coe_zero, zero_apply, zero_comp
toBCF πŸ“–CompOp
7 mathmath: toBCF_injective, isClosed_range_toBCF, dist_toBCF_eq_dist, toBCF_apply, norm_toBCF_eq_norm, isometry_toBCF, SchwartzMap.toZeroAtInfty_toBCF
toContinuousMap πŸ“–CompOp
2 mathmath: zero_at_infty', coe_toContinuousMap

Theorems

NameKindAssumesProvesValidatesDepends On
add_apply πŸ“–mathematicalβ€”DFunLike.coe
ZeroAtInftyContinuousMap
AddZero.toZero
AddZeroClass.toAddZero
instFunLike
instAdd
AddZero.toAdd
β€”β€”
bounded πŸ“–mathematicalβ€”Real
Real.instLE
Dist.dist
PseudoMetricSpace.toDist
DFunLike.coe
β€”Filter.mem_cocompact
Filter.tendsto_def
ZeroAtInftyContinuousMapClass.zero_at_infty
Metric.closedBall_mem_nhds
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
Bornology.IsBounded.subset_closedBall
IsCompact.isBounded
IsCompact.image
ContinuousMapClass.map_continuous
ZeroAtInftyContinuousMapClass.toContinuousMapClass
LE.le.trans
Metric.mem_closedBall
le_max_left
Set.mem_preimage
le_max_right
dist_triangle
add_le_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
Metric.mem_closedBall'
coe_add πŸ“–mathematicalβ€”DFunLike.coe
ZeroAtInftyContinuousMap
AddZero.toZero
AddZeroClass.toAddZero
instFunLike
instAdd
Pi.instAdd
AddZero.toAdd
β€”β€”
coe_comp_to_continuous_fun πŸ“–mathematicalβ€”DFunLike.coe
ZeroAtInftyContinuousMap
instFunLike
comp
CocompactMap
CocompactMap.instFunLike
β€”β€”
coe_copy πŸ“–mathematicalDFunLike.coe
ZeroAtInftyContinuousMap
instFunLike
copyβ€”β€”
coe_mk πŸ“–mathematicalContinuous
Filter.Tendsto
Filter.cocompact
nhds
DFunLike.coe
ZeroAtInftyContinuousMap
instFunLike
β€”β€”
coe_mul πŸ“–mathematicalβ€”DFunLike.coe
ZeroAtInftyContinuousMap
MulZeroClass.toZero
instFunLike
instMul
Pi.instMul
MulZeroClass.toMul
β€”β€”
coe_neg πŸ“–mathematicalβ€”DFunLike.coe
ZeroAtInftyContinuousMap
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
instFunLike
instNeg
Pi.instNeg
NegZeroClass.toNeg
β€”β€”
coe_smul πŸ“–mathematicalβ€”DFunLike.coe
ZeroAtInftyContinuousMap
instFunLike
instSMul
Function.hasSMul
SMulZeroClass.toSMul
SMulWithZero.toSMulZeroClass
β€”β€”
coe_star πŸ“–mathematicalβ€”DFunLike.coe
ZeroAtInftyContinuousMap
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
instFunLike
Star.star
instStar
Pi.instStarForall
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
β€”β€”
coe_sub πŸ“–mathematicalβ€”DFunLike.coe
ZeroAtInftyContinuousMap
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
instFunLike
instSub
Pi.instSub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
β€”β€”
coe_toContinuousMap πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
ContinuousMap.instFunLike
toContinuousMap
ZeroAtInftyContinuousMap
instFunLike
β€”β€”
coe_zero πŸ“–mathematicalβ€”DFunLike.coe
ZeroAtInftyContinuousMap
instFunLike
instZero
Pi.instZero
β€”β€”
comp_assoc πŸ“–mathematicalβ€”comp
CocompactMap.comp
β€”β€”
comp_id πŸ“–mathematicalβ€”comp
CocompactMap.id
β€”ext
copy_eq πŸ“–mathematicalDFunLike.coe
ZeroAtInftyContinuousMap
instFunLike
copyβ€”DFunLike.ext'
dist_toBCF_eq_dist πŸ“–mathematicalβ€”Dist.dist
BoundedContinuousFunction
BoundedContinuousFunction.instDist
toBCF
ZeroAtInftyContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
PseudoMetricSpace.toDist
instPseudoMetricSpace
β€”β€”
eq_of_empty πŸ“–β€”β€”β€”β€”ext
ext πŸ“–β€”DFunLike.coe
ZeroAtInftyContinuousMap
instFunLike
β€”β€”DFunLike.ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
ZeroAtInftyContinuousMap
instFunLike
β€”ext
instBoundedContinuousMapClass πŸ“–mathematicalβ€”BoundedContinuousMapClassβ€”ZeroAtInftyContinuousMapClass.toContinuousMapClass
bounded
instCStarRing πŸ“–mathematicalβ€”CStarRing
ZeroAtInftyContinuousMap
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
NonUnitalNonAssocRing.toNonUnitalNonAssocSemiring
NonUnitalRing.toNonUnitalNonAssocRing
NonUnitalNormedRing.toNonUnitalRing
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
NonUnitalSeminormedRing.toPseudoMetricSpace
NonUnitalNormedRing.toNonUnitalSeminormedRing
instNonUnitalNormedRing
instStarRing
NonUnitalRing.toNonUnitalSemiring
NormedStarGroup.to_continuousStar
NonUnitalSeminormedRing.toSeminormedAddCommGroup
StarRing.toStarAddMonoid
CStarRing.to_normedStarGroup
IsTopologicalRing.toIsTopologicalSemiring
NonUnitalSeminormedRing.toIsTopologicalRing
β€”NormedStarGroup.to_continuousStar
CStarRing.to_normedStarGroup
IsTopologicalRing.toIsTopologicalSemiring
NonUnitalSeminormedRing.toIsTopologicalRing
CStarRing.norm_mul_self_le
BoundedContinuousFunction.instCStarRing
instCompleteSpace πŸ“–mathematicalβ€”CompleteSpace
ZeroAtInftyContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
instPseudoMetricSpace
β€”completeSpace_iff_isComplete_range
Isometry.isUniformInducing
isometry_toBCF
IsClosed.isComplete
BoundedContinuousFunction.instCompleteSpace
isClosed_range_toBCF
instIsCentralScalar πŸ“–mathematicalβ€”IsCentralScalar
ZeroAtInftyContinuousMap
instSMul
MulOpposite
MulOpposite.instZero
ContinuousConstSMul.op
SMulZeroClass.toSMul
SMulWithZero.toSMulZeroClass
β€”ContinuousConstSMul.op
ext
IsCentralScalar.op_smul_eq_smul
instIsScalarTower πŸ“–mathematicalβ€”IsScalarTower
ZeroAtInftyContinuousMap
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
instSMul
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
MulActionWithZero.toSMulWithZero
Semiring.toMonoidWithZero
Module.toMulActionWithZero
NonUnitalNonAssocSemiring.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
instAddZeroClass
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
IsTopologicalSemiring.toContinuousAdd
DistribSMul.toSMulZeroClass
NonUnitalNonAssocSemiring.toDistribSMul
instNonUnitalNonAssocSemiring
β€”IsTopologicalSemiring.toContinuousAdd
ext
smul_eq_mul
smul_assoc
instNormedStarGroup πŸ“–mathematicalβ€”NormedStarGroup
ZeroAtInftyContinuousMap
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
NormedAddCommGroup.toAddCommGroup
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toPseudoMetricSpace
NormedAddCommGroup.toSeminormedAddCommGroup
instSeminormedAddCommGroup
instStarAddMonoid
SubNegMonoid.toAddMonoid
SubNegZeroMonoid.toSubNegMonoid
NormedStarGroup.to_continuousStar
SeminormedAddCommGroup.toAddCommGroup
SeminormedAddCommGroup.toIsTopologicalAddGroup
β€”NormedStarGroup.to_continuousStar
SeminormedAddCommGroup.toIsTopologicalAddGroup
Eq.le
norm_star
BoundedContinuousFunction.instNormedStarGroup
instSMulCommClass πŸ“–mathematicalβ€”SMulCommClass
ZeroAtInftyContinuousMap
MulZeroClass.toZero
NonUnitalNonAssocSemiring.toMulZeroClass
instSMul
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
MulActionWithZero.toSMulWithZero
Semiring.toMonoidWithZero
Module.toMulActionWithZero
NonUnitalNonAssocSemiring.toAddCommMonoid
SMulZeroClass.toSMul
AddZero.toZero
AddZeroClass.toAddZero
instAddZeroClass
AddMonoid.toAddZeroClass
AddCommMonoid.toAddMonoid
IsTopologicalSemiring.toContinuousAdd
DistribSMul.toSMulZeroClass
NonUnitalNonAssocSemiring.toDistribSMul
instNonUnitalNonAssocSemiring
β€”IsTopologicalSemiring.toContinuousAdd
ext
smul_eq_mul
SMulCommClass.smul_comm
instStarModule πŸ“–mathematicalβ€”StarModule
ZeroAtInftyContinuousMap
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
instStar
instSMul
β€”ext
StarModule.star_smul
instZeroAtInftyContinuousMapClass πŸ“–mathematicalβ€”ZeroAtInftyContinuousMapClass
ZeroAtInftyContinuousMap
instFunLike
β€”ContinuousMap.continuous_toFun
zero_at_infty'
isBounded_image πŸ“–mathematicalβ€”Bornology.IsBounded
PseudoMetricSpace.toBornology
Set.image
DFunLike.coe
ZeroAtInftyContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
instFunLike
β€”Bornology.IsBounded.subset
isBounded_range
Set.image_subset_range
isBounded_range πŸ“–mathematicalβ€”Bornology.IsBounded
PseudoMetricSpace.toBornology
Set.range
DFunLike.coe
ZeroAtInftyContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
instFunLike
β€”Metric.isBounded_range_iff
bounded
instZeroAtInftyContinuousMapClass
isClosed_range_toBCF πŸ“–mathematicalβ€”IsClosed
BoundedContinuousFunction
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
BoundedContinuousFunction.instPseudoMetricSpace
Set.range
ZeroAtInftyContinuousMap
toBCF
β€”isClosed_iff_clusterPt
Metric.tendsto_nhds
Nat.instAtLeastTwoHAddOfNat
clusterPt_principal_iff
Metric.ball_mem_nhds
half_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
Real.instIsStrictOrderedRing
Filter.Eventually.mp
ZeroAtInftyContinuousMapClass.zero_at_infty
instZeroAtInftyContinuousMapClass
Filter.Eventually.of_forall
dist_triangle_left
add_lt_add_of_le_of_lt
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
BoundedContinuousFunction.dist_coe_le_dist
le_imp_le_of_le_of_le
add_le_add_left
le_of_lt
Metric.mem_ball
le_refl
add_halves
CharZero.NeZero.two
IsStrictOrderedRing.toCharZero
isometry_toBCF πŸ“–mathematicalβ€”Isometry
ZeroAtInftyContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
BoundedContinuousFunction
PseudoMetricSpace.toPseudoEMetricSpace
instPseudoMetricSpace
BoundedContinuousFunction.instPseudoMetricSpace
toBCF
β€”β€”
mul_apply πŸ“–mathematicalβ€”DFunLike.coe
ZeroAtInftyContinuousMap
MulZeroClass.toZero
instFunLike
instMul
MulZeroClass.toMul
β€”β€”
neg_apply πŸ“–mathematicalβ€”DFunLike.coe
ZeroAtInftyContinuousMap
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
instFunLike
instNeg
NegZeroClass.toNeg
β€”β€”
norm_toBCF_eq_norm πŸ“–mathematicalβ€”Norm.norm
BoundedContinuousFunction
SeminormedAddCommGroup.toPseudoMetricSpace
BoundedContinuousFunction.instNorm
toBCF
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
SubtractionCommMonoid.toSubtractionMonoid
AddCommGroup.toDivisionAddCommMonoid
SeminormedAddCommGroup.toAddCommGroup
ZeroAtInftyContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
SeminormedAddCommGroup.toNorm
instSeminormedAddCommGroup
β€”β€”
smul_apply πŸ“–mathematicalβ€”DFunLike.coe
ZeroAtInftyContinuousMap
instFunLike
instSMul
SMulZeroClass.toSMul
SMulWithZero.toSMulZeroClass
β€”β€”
star_apply πŸ“–mathematicalβ€”DFunLike.coe
ZeroAtInftyContinuousMap
AddZero.toZero
AddZeroClass.toAddZero
AddMonoid.toAddZeroClass
instFunLike
Star.star
instStar
InvolutiveStar.toStar
StarAddMonoid.toInvolutiveStar
β€”β€”
sub_apply πŸ“–mathematicalβ€”DFunLike.coe
ZeroAtInftyContinuousMap
NegZeroClass.toZero
SubNegZeroMonoid.toNegZeroClass
SubtractionMonoid.toSubNegZeroMonoid
AddGroup.toSubtractionMonoid
instFunLike
instSub
SubNegMonoid.toSub
AddGroup.toSubNegMonoid
β€”β€”
tendsto_iff_tendstoUniformly πŸ“–mathematicalβ€”Filter.Tendsto
ZeroAtInftyContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
nhds
instPseudoMetricSpace
TendstoUniformly
DFunLike.coe
instFunLike
β€”BoundedContinuousFunction.tendsto_iff_tendstoUniformly
toBCF_apply πŸ“–mathematicalβ€”DFunLike.coe
BoundedContinuousFunction
BoundedContinuousFunction.instFunLike
toBCF
ZeroAtInftyContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
instFunLike
β€”β€”
toBCF_injective πŸ“–mathematicalβ€”ZeroAtInftyContinuousMap
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
BoundedContinuousFunction
toBCF
β€”ext
DFunLike.congr_fun
uniformContinuous πŸ“–mathematicalβ€”UniformContinuous
DFunLike.coe
β€”Continuous.uniformContinuous_of_tendsto_cocompact
ContinuousMapClass.map_continuous
ZeroAtInftyContinuousMapClass.toContinuousMapClass
ZeroAtInftyContinuousMapClass.zero_at_infty
zero_apply πŸ“–mathematicalβ€”DFunLike.coe
ZeroAtInftyContinuousMap
instFunLike
instZero
β€”β€”
zero_at_infty' πŸ“–mathematicalβ€”Filter.Tendsto
ContinuousMap.toFun
toContinuousMap
Filter.cocompact
nhds
β€”β€”
zero_comp πŸ“–mathematicalβ€”comp
ZeroAtInftyContinuousMap
instZero
β€”β€”

ZeroAtInftyContinuousMap.ContinuousMap

Definitions

NameCategoryTheorems
liftZeroAtInfty πŸ“–CompOp
2 mathmath: liftZeroAtInfty_apply_toFun, liftZeroAtInfty_symm_apply

Theorems

NameKindAssumesProvesValidatesDepends On
liftZeroAtInfty_apply_toFun πŸ“–mathematicalβ€”DFunLike.coe
ZeroAtInftyContinuousMap
ZeroAtInftyContinuousMap.instFunLike
Equiv
ContinuousMap
EquivLike.toFunLike
Equiv.instEquivLike
liftZeroAtInfty
ContinuousMap.instFunLike
β€”β€”
liftZeroAtInfty_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Equiv
ZeroAtInftyContinuousMap
ContinuousMap
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
liftZeroAtInfty
toContinuousMap
ZeroAtInftyContinuousMap.instFunLike
β€”β€”

ZeroAtInftyContinuousMap.zeroAtInftyContinuousMapClass

Theorems

NameKindAssumesProvesValidatesDepends On
ofCompact πŸ“–mathematicalβ€”ZeroAtInftyContinuousMapClassβ€”Filter.cocompact_eq_bot

ZeroAtInftyContinuousMapClass

Theorems

NameKindAssumesProvesValidatesDepends On
toContinuousMapClass πŸ“–mathematicalβ€”ContinuousMapClassβ€”β€”
zero_at_infty πŸ“–mathematicalβ€”Filter.Tendsto
DFunLike.coe
Filter.cocompact
nhds
β€”β€”

(root)

Definitions

NameCategoryTheorems
ZeroAtInftyContinuousMap πŸ“–CompData
42 mathmath: ZeroAtInftyContinuousMap.toBCF_injective, ZeroAtInftyContinuousMap.instIsCentralScalar, ZeroAtInftyContinuousMap.add_apply, ZeroAtInftyContinuousMap.coe_smul, ZeroAtInftyContinuousMap.instIsScalarTower, ZeroAtInftyContinuousMap.smul_apply, ZeroAtInftyContinuousMap.coe_mk, ZeroAtInftyContinuousMap.coe_comp_to_continuous_fun, ZeroAtInftyContinuousMap.instNormedStarGroup, ZeroAtInftyContinuousMap.isClosed_range_toBCF, ZeroAtInftyContinuousMap.dist_toBCF_eq_dist, ZeroAtInftyContinuousMap.coe_zero, ZeroAtInftyContinuousMap.ContinuousMap.liftZeroAtInfty_apply_toFun, ZeroAtInftyContinuousMap.zero_apply, ZeroAtInftyContinuousMap.toBCF_apply, ZeroAtInftyContinuousMap.neg_apply, ZeroAtInftyContinuousMap.sub_apply, ZeroAtInftyContinuousMap.instZeroAtInftyContinuousMapClass, ZeroAtInftyContinuousMap.isBounded_image, ZeroAtInftyContinuousMap.coe_mul, ZeroAtInftyContinuousMap.ContinuousMap.liftZeroAtInfty_symm_apply, ZeroAtInftyContinuousMap.instCompleteSpace, ZeroAtInftyContinuousMap.norm_toBCF_eq_norm, ZeroAtInftyContinuousMap.instCStarRing, ZeroAtInftyContinuousMap.instSMulCommClass, ZeroAtInftyContinuousMap.instStarModule, ZeroAtInftyContinuousMap.zero_comp, ZeroAtInftyContinuousMap.ext_iff, ZeroAtInftyContinuousMap.isometry_toBCF, ZeroAtInftyContinuousMap.coe_toContinuousMap, PadicInt.mahlerEquiv_apply, ZeroAtInftyContinuousMap.star_apply, ZeroAtInftyContinuousMap.isBounded_range, ZeroAtInftyContinuousMap.tendsto_iff_tendstoUniformly, PadicInt.mahlerEquiv_symm_apply, ZeroAtInftyContinuousMap.coe_sub, ZeroAtInftyContinuousMap.coe_add, SchwartzMap.toZeroAtInfty_apply, ZeroAtInftyContinuousMap.coe_neg, ZeroAtInftyContinuousMap.mul_apply, SchwartzMap.toZeroAtInftyCLM_apply, ZeroAtInftyContinuousMap.coe_star
ZeroAtInftyContinuousMapClass πŸ“–CompData
4 mathmath: CompactlySupportedContinuousMapClass.instZeroAtInftyContinuousMapClass, ZeroAtInftyContinuousMap.instZeroAtInftyContinuousMapClass, SchwartzMap.instZeroAtInftyContinuousMapClass, ZeroAtInftyContinuousMap.zeroAtInftyContinuousMapClass.ofCompact

---

← Back to Index