Documentation Verification Report

ContinuousOn

πŸ“ Source: Mathlib/Topology/ContinuousOn.lean

Statistics

MetricCount
DefinitionsContinuousOn
1
Theoremscomp_continuousOn, comp_continuousOn', continuousOn, continuousWithinAt, preimage_mem_nhdsSet, preimage_mem_nhdsSetWithin, tendsto_nhdsSet, tendsto_nhdsSet_nhds, comp_continuousWithinAt, comp_continuousWithinAt_of_eq, compβ‚‚_continuousWithinAt, compβ‚‚_continuousWithinAt_of_eq, congr_of_eventuallyEq, continuousWithinAt, comp, comp', comp_continuous, comp_inter, congr_mono, continuousAt, continuousWithinAt, finCons, finInsertNth, finSnoc, fst, iUnion_of_isOpen, image_closure, image_comp_continuous, isOpen_inter_preimage, isOpen_preimage, iterate, mapsToRestrict, matrixVecCons, mono, mono_dom, mono_rng, preimage_interior_subset_interior_preimage, preimage_isClosed_of_isClosed, preimage_mem_nhdsSetWithin, preimage_mem_nhdsSetWithin_of_mem_nhdsSet, prodMap, prodMk, restrict, restrict_mapsTo, snd, tendsto_nhdsSet, uncurry_left, uncurry_right, union_continuousAt, union_of_isClosed, union_of_isOpen, comp, comp_inter, comp_inter_of_eq, comp_of_eq, comp_of_mem_nhdsWithin_image, comp_of_mem_nhdsWithin_image_of_eq, comp_of_preimage_mem_nhdsWithin, comp_of_preimage_mem_nhdsWithin_of_eq, congr_mono, congr_of_eventuallyEq, congr_of_eventuallyEq_insert, congr_of_eventuallyEq_of_mem, congr_of_insert, congr_of_mem, congr_set, continuousAt, diff_iff, finCons, finInsertNth, finSnoc, fst, image_closure, insert, matrixVecCons, mem_closure, mem_closure_image, mono, mono_of_mem_nhdsWithin, preimage_mem_nhdsWithin, preimage_mem_nhdsWithin', preimage_mem_nhdsWithin'', prodMap, prodMk, snd, tendsto, tendsto_nhdsWithin, tendsto_nhdsWithin_image, union, congr_continuousWithinAt, congr_continuousWithinAt_of_insert, congr_continuousWithinAt_of_mem, map_nhds_eq, continuousOn_iff, continuousOn_image_of_leftInvOn, continuousOn_range_of_leftInverse, map_nhdsWithin_eq, closure_of_continuousOn, closure_of_continuousWithinAt, continuousOn, continuousOn_iff, map_nhdsWithin_eq, continuousOn_iff, continuousOn_image_iff, continuousWithinAt_iff, map_nhdsWithin_eq, map_nhdsWithin_preimage_eq, continuousOn_isOpen_iff, antitone_continuousOn, continouousOn_union_iff_of_isClosed, continouousOn_union_iff_of_isOpen, continuousAt_of_not_accPt, continuousAt_of_not_accPt_top, continuousAt_prod_of_discrete_left, continuousAt_prod_of_discrete_right, continuousOn_apply, continuousOn_congr, continuousOn_const, continuousOn_empty, continuousOn_fst, continuousOn_iUnion_iff_of_isOpen, continuousOn_id, continuousOn_id', continuousOn_iff, continuousOn_iff', continuousOn_iff_continuous_restrict, continuousOn_iff_isClosed, continuousOn_isOpen_of_generateFrom, continuousOn_of_forall_continuousAt, continuousOn_of_locally_continuousOn, continuousOn_open_iff, continuousOn_pi, continuousOn_pi', continuousOn_prod_of_discrete_left, continuousOn_prod_of_discrete_right, continuousOn_singleton, continuousOn_snd, continuousOn_to_generateFrom_iff, continuousOn_univ, continuousWithinAt_compl_self, continuousWithinAt_congr, continuousWithinAt_congr_of_insert, continuousWithinAt_congr_of_mem, continuousWithinAt_congr_set, continuousWithinAt_const, continuousWithinAt_diff_self, continuousWithinAt_fst, continuousWithinAt_id, continuousWithinAt_iff_continuousAt, continuousWithinAt_iff_continuousAt_restrict, continuousWithinAt_insert_self, continuousWithinAt_inter, continuousWithinAt_inter', continuousWithinAt_of_notMem_closure, continuousWithinAt_of_not_accPt, continuousWithinAt_pi, continuousWithinAt_prod_iff, continuousWithinAt_prod_of_discrete_left, continuousWithinAt_prod_of_discrete_right, continuousWithinAt_singleton, continuousWithinAt_snd, continuousWithinAt_union, continuousWithinAt_univ, continuous_of_continuousOn_iUnion_of_isOpen, continuous_of_cover_nhds, continuous_prod_of_discrete_left, continuous_prod_of_discrete_right, isOpenMap_prod_of_discrete_left, isOpenMap_prod_of_discrete_right, nhdsWithin_le_comap
170
Total171

Continuous

Theorems

NameKindAssumesProvesValidatesDepends On
comp_continuousOn πŸ“–β€”Continuous
ContinuousOn
β€”β€”ContinuousOn.comp
continuousOn
Set.mapsTo_univ
comp_continuousOn' πŸ“–β€”Continuous
ContinuousOn
β€”β€”comp_continuousOn
continuousOn πŸ“–mathematicalContinuousContinuousOnβ€”ContinuousOn.mono
continuousOn_univ
Set.subset_univ
continuousWithinAt πŸ“–mathematicalContinuousContinuousWithinAtβ€”ContinuousAt.continuousWithinAt
continuousAt
preimage_mem_nhdsSet πŸ“–mathematicalContinuous
Set
Filter
Filter.instMembership
nhdsSet
Set.preimageβ€”nhdsSetWithin_univ
preimage_mem_nhdsSetWithin
preimage_mem_nhdsSetWithin πŸ“–mathematicalContinuous
Set
Filter
Filter.instMembership
nhdsSetWithin
Set.preimageβ€”Set.univ_inter
ContinuousOn.preimage_mem_nhdsSetWithin
continuousOn
tendsto_nhdsSet πŸ“–mathematicalContinuous
Set.MapsTo
Filter.Tendsto
nhdsSet
β€”ContinuousOn.tendsto_nhdsSet
continuousOn
Filter.univ_mem
tendsto_nhdsSet_nhds πŸ“–mathematicalContinuous
Set.EqOn
Filter.Tendsto
nhdsSet
nhds
β€”nhdsSet_singleton
tendsto_nhdsSet

ContinuousAt

Theorems

NameKindAssumesProvesValidatesDepends On
comp_continuousWithinAt πŸ“–β€”ContinuousAt
ContinuousWithinAt
β€”β€”ContinuousWithinAt.comp
continuousWithinAt
Set.mapsTo_univ
comp_continuousWithinAt_of_eq πŸ“–β€”ContinuousAt
ContinuousWithinAt
β€”β€”comp_continuousWithinAt
compβ‚‚_continuousWithinAt πŸ“–β€”ContinuousAt
instTopologicalSpaceProd
ContinuousWithinAt
β€”β€”comp_continuousWithinAt
Filter.Tendsto.prodMk_nhds
compβ‚‚_continuousWithinAt_of_eq πŸ“–β€”ContinuousAt
instTopologicalSpaceProd
ContinuousWithinAt
β€”β€”compβ‚‚_continuousWithinAt
congr_of_eventuallyEq πŸ“–β€”ContinuousAt
Filter.EventuallyEq
nhds
β€”β€”congr
Filter.EventuallyEq.symm
continuousWithinAt πŸ“–mathematicalContinuousAtContinuousWithinAtβ€”ContinuousWithinAt.mono
continuousWithinAt_univ
Set.subset_univ

ContinuousOn

Theorems

NameKindAssumesProvesValidatesDepends On
comp πŸ“–β€”ContinuousOn
Set.MapsTo
β€”β€”ContinuousWithinAt.comp
comp' πŸ“–β€”ContinuousOn
Set.MapsTo
β€”β€”comp
comp_continuous πŸ“–β€”ContinuousOn
Continuous
Set
Set.instMembership
β€”β€”continuousOn_univ
comp
comp_inter πŸ“–mathematicalContinuousOnSet
Set.instInter
Set.preimage
β€”comp
mono
Set.inter_subset_left
Set.inter_subset_right
congr_mono πŸ“–β€”ContinuousOn
Set.EqOn
Set
Set.instHasSubset
β€”β€”ContinuousWithinAt.mono
Filter.Tendsto.congr'
Filter.EventuallyEq.symm
Set.EqOn.eventuallyEq_nhdsWithin
continuousAt πŸ“–mathematicalContinuousOn
Set
Filter
Filter.instMembership
nhds
ContinuousAtβ€”ContinuousWithinAt.continuousAt
mem_of_mem_nhds
continuousWithinAt πŸ“–mathematicalContinuousOn
Set
Set.instMembership
ContinuousWithinAtβ€”β€”
finCons πŸ“–mathematicalContinuousOn
Pi.topologicalSpace
Fin.consβ€”ContinuousWithinAt.finCons
finInsertNth πŸ“–mathematicalContinuousOn
Pi.topologicalSpace
Fin.succAbove
Fin.insertNthβ€”ContinuousWithinAt.finInsertNth
finSnoc πŸ“–mathematicalContinuousOn
Pi.topologicalSpace
Fin.snocβ€”ContinuousWithinAt.finSnoc
fst πŸ“–β€”ContinuousOn
instTopologicalSpaceProd
β€”β€”Continuous.comp_continuousOn
continuous_fst
iUnion_of_isOpen πŸ“–mathematicalContinuousOn
IsOpen
Set.iUnionβ€”ContinuousAt.continuousWithinAt
continuousAt
IsOpen.mem_nhds
image_closure πŸ“–mathematicalContinuousOn
closure
Set
Set.instHasSubset
Set.image
β€”ContinuousWithinAt.image_closure
ContinuousWithinAt.mono
subset_closure
image_comp_continuous πŸ“–β€”ContinuousOn
Set.image
Continuous
β€”β€”comp
Continuous.continuousOn
Set.mapsTo_image
isOpen_inter_preimage πŸ“–mathematicalContinuousOn
IsOpen
Set
Set.instInter
Set.preimage
β€”continuousOn_open_iff
isOpen_preimage πŸ“–β€”ContinuousOn
IsOpen
Set
Set.instHasSubset
Set.preimage
β€”β€”Set.inter_comm
Set.inter_eq_self_of_subset_left
continuousOn_open_iff
iterate πŸ“–mathematicalContinuousOn
Set.MapsTo
Nat.iterateβ€”continuousOn_id
comp
mapsToRestrict πŸ“–mathematicalContinuousOn
Set.MapsTo
Continuous
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
Set.MapsTo.restrict
β€”Continuous.codRestrict
restrict
matrixVecCons πŸ“–mathematicalContinuousOn
Pi.topologicalSpace
Matrix.vecConsβ€”ContinuousWithinAt.matrixVecCons
mono πŸ“–β€”ContinuousOn
Set
Set.instHasSubset
β€”β€”Filter.Tendsto.mono_left
nhdsWithin_mono
mono_dom πŸ“–β€”TopologicalSpace
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.instPartialOrder
ContinuousOn
β€”β€”Filter.map_mono
inf_le_inf_right
nhds_mono
mono_rng πŸ“–β€”TopologicalSpace
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.instPartialOrder
ContinuousOn
β€”β€”nhds_mono
preimage_interior_subset_interior_preimage πŸ“–mathematicalContinuousOn
IsOpen
Set
Set.instHasSubset
Set.instInter
Set.preimage
interior
β€”interior_maximal
Set.inter_subset_inter
Set.Subset.refl
Set.preimage_mono
interior_subset
isOpen_inter_preimage
isOpen_interior
interior_inter
IsOpen.interior_eq
preimage_isClosed_of_isClosed πŸ“–mathematicalContinuousOnIsClosed
Set
Set.instInter
Set.preimage
β€”continuousOn_iff_isClosed
Set.inter_comm
IsClosed.inter
preimage_mem_nhdsSetWithin πŸ“–mathematicalContinuousOn
Set
Filter
Filter.instMembership
nhdsSetWithin
Set.instInter
Set.preimage
β€”mem_nhdsSetWithin
continuousOn_iff'
Eq.trans_subset
Set.inter_comm
HasSubset.Subset.trans
Set.instIsTransSubset
Set.inter_subset_inter_left
Set.preimage_mono
Set.inter_subset_left
Set.inter_assoc
Set.preimage_inter
Set.inter_subset_right
preimage_mem_nhdsSetWithin_of_mem_nhdsSet πŸ“–mathematicalContinuousOn
Set
Filter
Filter.instMembership
nhdsSet
nhdsSetWithin
Set.instInter
Set.preimage
β€”nhdsSetWithin_univ
Set.inter_univ
preimage_mem_nhdsSetWithin
prodMap πŸ“–mathematicalContinuousOninstTopologicalSpaceProd
SProd.sprod
Set
Set.instSProd
β€”ContinuousWithinAt.prodMap
prodMk πŸ“–mathematicalContinuousOninstTopologicalSpaceProdβ€”ContinuousWithinAt.prodMk
restrict πŸ“–mathematicalContinuousOnContinuous
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
Set.restrict
β€”continuousOn_iff_continuous_restrict
restrict_mapsTo πŸ“–mathematicalContinuousOn
Set.MapsTo
Continuous
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
Set.MapsTo.restrict
β€”mapsToRestrict
snd πŸ“–β€”ContinuousOn
instTopologicalSpaceProd
β€”β€”Continuous.comp_continuousOn
continuous_snd
tendsto_nhdsSet πŸ“–mathematicalContinuousOn
Set
Filter
Filter.instMembership
nhdsSet
Set.MapsTo
Filter.Tendstoβ€”mem_nhdsSet_iff_exists
Filter.HasBasis.tendsto_iff
hasBasis_nhdsSet
isOpen_inter_preimage
mono
Set.subset_inter
Set.MapsTo.mono
Set.Subset.rfl
Set.mem_preimage
Set.mem_of_mem_inter_right
uncurry_left πŸ“–β€”Set
Set.instMembership
ContinuousOn
instTopologicalSpaceProd
SProd.sprod
Set.instSProd
β€”β€”congr
comp
Continuous.continuousOn
Continuous.prodMk
continuous_const
continuous_id'
uncurry_right πŸ“–β€”Set
Set.instMembership
ContinuousOn
instTopologicalSpaceProd
SProd.sprod
Set.instSProd
β€”β€”congr
comp
Continuous.continuousOn
Continuous.prodMk
continuous_id'
continuous_const
union_continuousAt πŸ“–mathematicalIsOpen
ContinuousOn
ContinuousAt
Set
Set.instUnion
β€”continuousOn_of_forall_continuousAt
ContinuousWithinAt.continuousAt
continuousWithinAt
IsOpen.mem_nhds
union_of_isClosed πŸ“–mathematicalContinuousOnSet
Set.instUnion
β€”ContinuousWithinAt.union
continuousWithinAt_of_notMem_closure
IsClosed.closure_eq
union_of_isOpen πŸ“–mathematicalContinuousOn
IsOpen
Set
Set.instUnion
β€”union_continuousAt
IsOpen.continuousOn_iff

ContinuousWithinAt

Theorems

NameKindAssumesProvesValidatesDepends On
comp πŸ“–β€”ContinuousWithinAt
Set.MapsTo
β€”β€”Filter.Tendsto.comp
tendsto
tendsto_nhdsWithin
comp_inter πŸ“–mathematicalContinuousWithinAtSet
Set.instInter
Set.preimage
β€”comp
mono
Set.inter_subset_left
Set.inter_subset_right
comp_inter_of_eq πŸ“–mathematicalContinuousWithinAtSet
Set.instInter
Set.preimage
β€”comp_inter
comp_of_eq πŸ“–β€”ContinuousWithinAt
Set.MapsTo
β€”β€”comp
comp_of_mem_nhdsWithin_image πŸ“–β€”ContinuousWithinAt
Set
Filter
Filter.instMembership
nhdsWithin
Set.image
β€”β€”comp
mono_of_mem_nhdsWithin
Set.mapsTo_image
comp_of_mem_nhdsWithin_image_of_eq πŸ“–β€”ContinuousWithinAt
Set
Filter
Filter.instMembership
nhdsWithin
Set.image
β€”β€”comp_of_mem_nhdsWithin_image
comp_of_preimage_mem_nhdsWithin πŸ“–β€”ContinuousWithinAt
Set
Filter
Filter.instMembership
nhdsWithin
Set.preimage
β€”β€”Filter.Tendsto.comp
tendsto
tendsto_nhdsWithin_of_tendsto_nhds_of_eventually_within
comp_of_preimage_mem_nhdsWithin_of_eq πŸ“–β€”ContinuousWithinAt
Set
Filter
Filter.instMembership
nhdsWithin
Set.preimage
β€”β€”comp_of_preimage_mem_nhdsWithin
congr_mono πŸ“–β€”ContinuousWithinAt
Set.EqOn
Set
Set.instHasSubset
β€”β€”congr
mono
congr_of_eventuallyEq πŸ“–β€”ContinuousWithinAt
Filter.EventuallyEq
nhdsWithin
β€”β€”Filter.EventuallyEq.congr_continuousWithinAt
congr_of_eventuallyEq_insert πŸ“–β€”ContinuousWithinAt
Filter.EventuallyEq
nhdsWithin
Set
Set.instInsert
β€”β€”congr_of_eventuallyEq
nhdsWithin_mono
Set.subset_insert
mem_of_mem_nhdsWithin
Set.mem_insert
congr_of_eventuallyEq_of_mem πŸ“–β€”ContinuousWithinAt
Filter.EventuallyEq
nhdsWithin
Set
Set.instMembership
β€”β€”congr_of_eventuallyEq
mem_of_mem_nhdsWithin
congr_of_insert πŸ“–β€”ContinuousWithinAtβ€”β€”congr
Set.mem_insert_of_mem
Set.mem_insert
congr_of_mem πŸ“–β€”ContinuousWithinAt
Set
Set.instMembership
β€”β€”congr
congr_set πŸ“–β€”ContinuousWithinAt
Filter.EventuallyEq
nhds
β€”β€”continuousWithinAt_congr_set
continuousAt πŸ“–mathematicalContinuousWithinAt
Set
Filter
Filter.instMembership
nhds
ContinuousAtβ€”continuousWithinAt_iff_continuousAt
diff_iff πŸ“–mathematicalContinuousWithinAtSet
Set.instSDiff
β€”mono
union
Set.diff_union_self
Set.diff_subset
finCons πŸ“–mathematicalContinuousWithinAt
Pi.topologicalSpace
Fin.consβ€”Filter.Tendsto.finCons
tendsto
finInsertNth πŸ“–mathematicalContinuousWithinAt
Pi.topologicalSpace
Fin.succAbove
Fin.insertNthβ€”Filter.Tendsto.finInsertNth
tendsto
finSnoc πŸ“–mathematicalContinuousWithinAt
Pi.topologicalSpace
Fin.snocβ€”Filter.Tendsto.finSnoc
tendsto
fst πŸ“–β€”ContinuousWithinAt
instTopologicalSpaceProd
β€”β€”ContinuousAt.comp_continuousWithinAt
continuousAt_fst
image_closure πŸ“–mathematicalContinuousWithinAtSet
Set.instHasSubset
Set.image
closure
β€”Set.MapsTo.image_subset
Set.MapsTo.closure_of_continuousWithinAt
Set.mapsTo_image
insert πŸ“–mathematicalContinuousWithinAtSet
Set.instInsert
β€”continuousWithinAt_insert_self
matrixVecCons πŸ“–mathematicalContinuousWithinAt
Pi.topologicalSpace
Matrix.vecConsβ€”Filter.Tendsto.matrixVecCons
tendsto
mem_closure πŸ“–β€”ContinuousWithinAt
Set
Set.instMembership
closure
Set.MapsTo
β€”β€”closure_mono
Set.image_subset_iff
mem_closure_image
mem_closure_image πŸ“–mathematicalContinuousWithinAt
Set
Set.instMembership
closure
Set.imageβ€”mem_closure_of_tendsto
mem_closure_iff_nhdsWithin_neBot
Filter.mem_of_superset
self_mem_nhdsWithin
Set.subset_preimage_image
mono πŸ“–β€”ContinuousWithinAt
Set
Set.instHasSubset
β€”β€”Filter.Tendsto.mono_left
nhdsWithin_mono
mono_of_mem_nhdsWithin πŸ“–β€”ContinuousWithinAt
Set
Filter
Filter.instMembership
nhdsWithin
β€”β€”Filter.Tendsto.mono_left
nhdsWithin_le_of_mem
preimage_mem_nhdsWithin πŸ“–mathematicalContinuousWithinAt
Set
Filter
Filter.instMembership
nhds
nhdsWithin
Set.preimage
β€”β€”
preimage_mem_nhdsWithin' πŸ“–mathematicalContinuousWithinAt
Set
Filter
Filter.instMembership
nhdsWithin
Set.image
Set.preimageβ€”tendsto_nhdsWithin
Set.mapsTo_image
preimage_mem_nhdsWithin'' πŸ“–β€”ContinuousWithinAt
Set.preimage
Set
Filter
Filter.instMembership
nhdsWithin
β€”β€”preimage_mem_nhdsWithin'
nhdsWithin_mono
Set.image_preimage_subset
prodMap πŸ“–mathematicalContinuousWithinAtinstTopologicalSpaceProd
SProd.sprod
Set
Set.instSProd
β€”prodMk
comp
continuousWithinAt_fst
Set.mapsTo_fst_prod
continuousWithinAt_snd
Set.mapsTo_snd_prod
prodMk πŸ“–mathematicalContinuousWithinAtinstTopologicalSpaceProdβ€”Filter.Tendsto.prodMk_nhds
snd πŸ“–β€”ContinuousWithinAt
instTopologicalSpaceProd
β€”β€”ContinuousAt.comp_continuousWithinAt
continuousAt_snd
tendsto πŸ“–mathematicalContinuousWithinAtFilter.Tendsto
nhdsWithin
nhds
β€”β€”
tendsto_nhdsWithin πŸ“–mathematicalContinuousWithinAt
Set.MapsTo
Filter.Tendsto
nhdsWithin
β€”Filter.tendsto_inf
Filter.tendsto_principal
Filter.mem_inf_of_right
Filter.mem_principal
tendsto_nhdsWithin_image πŸ“–mathematicalContinuousWithinAtFilter.Tendsto
nhdsWithin
Set.image
β€”tendsto_nhdsWithin
Set.mapsTo_image
union πŸ“–mathematicalContinuousWithinAtSet
Set.instUnion
β€”continuousWithinAt_union

Filter.EventuallyEq

Theorems

NameKindAssumesProvesValidatesDepends On
congr_continuousWithinAt πŸ“–mathematicalFilter.EventuallyEq
nhdsWithin
ContinuousWithinAtβ€”ContinuousWithinAt.eq_1
Filter.tendsto_congr'
congr_continuousWithinAt_of_insert πŸ“–mathematicalFilter.EventuallyEq
nhdsWithin
Set
Set.instInsert
ContinuousWithinAtβ€”ContinuousWithinAt.congr_of_eventuallyEq_insert
symm
congr_continuousWithinAt_of_mem πŸ“–mathematicalFilter.EventuallyEq
nhdsWithin
Set
Set.instMembership
ContinuousWithinAtβ€”ContinuousWithinAt.congr_of_eventuallyEq_of_mem
symm

Function.LeftInverse

Theorems

NameKindAssumesProvesValidatesDepends On
map_nhds_eq πŸ“–mathematicalContinuousWithinAt
Set.range
ContinuousAt
Filter.map
nhds
nhdsWithin
β€”nhdsWithin_univ
Set.image_univ
Set.LeftInvOn.map_nhdsWithin_eq
leftInvOn
ContinuousAt.continuousWithinAt

IsOpen

Theorems

NameKindAssumesProvesValidatesDepends On
continuousOn_iff πŸ“–mathematicalIsOpenContinuousOn
ContinuousAt
β€”continuousWithinAt_iff_continuousAt
mem_nhds

IsOpenMap

Theorems

NameKindAssumesProvesValidatesDepends On
continuousOn_image_of_leftInvOn πŸ“–mathematicalIsOpenMap
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
Set.restrict
Set.LeftInvOn
ContinuousOn
Set.image
β€”continuousOn_iff'
Set.image_restrict
IsOpen.preimage
continuous_subtype_val
Set.inter_eq_self_of_subset_left
Set.image_mono
Set.inter_subset_right
Set.LeftInvOn.image_inter'
continuousOn_range_of_leftInverse πŸ“–mathematicalIsOpenMapContinuousOn
Set.range
β€”Set.image_univ
continuousOn_image_of_leftInvOn
restrict
isOpen_univ

Set.LeftInvOn

Theorems

NameKindAssumesProvesValidatesDepends On
map_nhdsWithin_eq πŸ“–mathematicalSet.LeftInvOn
ContinuousWithinAt
Set.image
Filter.map
nhdsWithin
β€”le_antisymm
ContinuousWithinAt.tendsto_nhdsWithin
Set.mapsTo_image
Set.EqOn.eventuallyEq_of_mem
Set.RightInvOn.eqOn
rightInvOn_image
self_mem_nhdsWithin
Filter.le_map_of_right_inverse
mapsTo
Set.surjOn_image

Set.MapsTo

Theorems

NameKindAssumesProvesValidatesDepends On
closure_of_continuousOn πŸ“–β€”Set.MapsTo
ContinuousOn
closure
β€”β€”closure_of_continuousWithinAt
ContinuousWithinAt.mono
subset_closure
closure_of_continuousWithinAt πŸ“–mathematicalSet.MapsTo
ContinuousWithinAt
closureβ€”ContinuousWithinAt.mem_closure

Set.Subsingleton

Theorems

NameKindAssumesProvesValidatesDepends On
continuousOn πŸ“–mathematicalSet.SubsingletonContinuousOnβ€”induction_on
continuousOn_empty
continuousOn_singleton

Topology.IsEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
continuousOn_iff πŸ“–mathematicalTopology.IsEmbeddingContinuousOnβ€”Topology.IsInducing.continuousOn_iff
isInducing
map_nhdsWithin_eq πŸ“–mathematicalTopology.IsEmbeddingFilter.map
nhdsWithin
Set.image
β€”Topology.IsInducing.map_nhdsWithin_eq
isInducing

Topology.IsInducing

Theorems

NameKindAssumesProvesValidatesDepends On
continuousOn_iff πŸ“–mathematicalTopology.IsInducingContinuousOnβ€”continuousWithinAt_iff
continuousOn_image_iff πŸ“–mathematicalTopology.IsInducingContinuousOn
Set.image
β€”map_nhdsWithin_eq
continuousWithinAt_iff πŸ“–mathematicalTopology.IsInducingContinuousWithinAtβ€”tendsto_nhds_iff
map_nhdsWithin_eq πŸ“–mathematicalTopology.IsInducingFilter.map
nhdsWithin
Set.image
β€”Filter.ext
nhds_eq_comap

Topology.IsOpenEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
map_nhdsWithin_preimage_eq πŸ“–mathematicalTopology.IsOpenEmbeddingFilter.map
nhdsWithin
Set.preimage
β€”Topology.IsEmbedding.map_nhdsWithin_eq
isEmbedding
Set.image_preimage_eq_inter_range
nhdsWithin_eq_nhdsWithin
Set.mem_range_self
isOpen_range
Set.inter_assoc
Set.inter_self

Topology.IsQuotientMap

Theorems

NameKindAssumesProvesValidatesDepends On
continuousOn_isOpen_iff πŸ“–mathematicalTopology.IsQuotientMap
IsOpen
ContinuousOn
Set.preimage
β€”continuous_iff
restrictPreimage_isOpen

(root)

Definitions

NameCategoryTheorems
ContinuousOn πŸ“–MathDef
265 mathmath: continuousOn_ceil, cfcβ‚™_def, Real.continuousOn_rpowIntegrand₀₁_uncurry, AnalyticOn.continuousOn, continuousOn_stereoToFun, Complex.continuousOn_exp, intervalIntegral.continuousOn_primitive_interval, ConvexOn.continuousOn_tfae, Topology.IsClosedEmbedding.continuousOn_comap_finiteMeasure, Set.Subsingleton.continuousOn, ApproximatesLinearOn.inverse_continuousOn, WithTop.continuousOn_untopD, mdifferentiableOn_iff, continuousOn_boolIndicator_iff_isClopen, ChartedSpaceCore.continuousOn_toFun, continuousOn_prod_of_discrete_right, antitone_continuousOn, DirichletCharacter.continuousOn_neg_logDeriv_LFunction_of_nontriv, Uniform.continuousOn_iff'_left, continuousOn_dslope, continuousOn_floor, HasGradientAt.continuousOn, Topology.RelCWComplex.continuousOn_symm, Topology.CWComplex.continuousOn, Complex.continuousOn_arg, Unitary.continuousOn_argSelfAdjoint, OpenPartialHomeomorph.continuousOn_univBall_symm, continuousOn_neg, Continuous.continuousOn, ContinuousAlgEquiv.continuousOn, contDiffOn_iff_continuousOn_differentiableOn, FiberPrebundle.continuous_trivChange, IsOpenMap.continuousOn_range_of_leftInverse, IsOpen.continuousOn_iff, DifferentiableOn.continuousOn, FiberPrebundle.continuous_symm_of_mem_pretrivializationAtlas, intervalIntegral.continuousOn_primitive, continuousOn_fract, HasDerivAt.continuousOn, contDiffOn_nat_iff_continuousOn_differentiableOn_deriv, Complex.continuousOn_cos, continuousOn_of_forall_continuousAt, continuousOn_star, intervalIntegral.continuousOn_primitive_interval_left, continuousOn_iUnion_iff_of_isOpen, CFC.continuousOn_log, Topology.RelCWComplex.continuousOn, Real.continuousOn_log, Trivialization.Prod.continuous_inv_fun, LipschitzOnWith.continuousOn, Trivialization.continuousOn, continuousOn_zpow, continuousOn_congr, ENNReal.continuousOn_sub, CFC.continuousOn_sqrt, ODE.FunSpace.continuousOn_comp_compProj, Topology.IsCoherentWith.continuous_iff, ContDiffOn.continuousOn_iteratedDerivWithin, continuousOn_iff, continuousOn_singleton, ArithmeticFunction.vonMangoldt.continuousOn_LFunctionResidueClassAux', contDiffAt_one_iff, MDifferentiableOn.continuousOn, continuousOn_tangentCoordChange, mdifferentiableOn_iff_target, lipschitzOnWith_cfc_fun_of_subset, continuousOn_cfc_setProd, IsometryEquiv.comp_continuousOn_iff, AffineIsometryEquiv.continuousOn, ContDiffOn.continuousOn_iteratedFDerivWithin, contDiffWithinAt_zero, HasFTaylorSeriesUpToOn.cont, IsPicardLindelof.continuousOn, continouousOn_union_iff_of_isClosed, contDiffOn_nat_iff_continuousOn_differentiableOn, Complex.continuousOn_sin, HurwitzZeta.continuousOn_cosKernel, continuousOn_zsmul, continuousOn_const, ConcaveOn.continuousOn, intervalIntegral.continuousOn_primitive_Icc, ContDiffOn.continuousOn_zero, hasFTaylorSeriesUpToOn_zero_iff, Polynomial.continuousOn, Complex.continuousOn_norm_circleTransformBoundingFunction, continuousOn_pow, continuousOn_extChartAt, SeparationQuotient.continuousOn_lift, Units.continuousOn_zpowβ‚€_spectrum, ZetaAsymptotics.continuousOn_term, continuousOn_inv, Set.EquicontinuousOn.continuousOn_of_mem, continuousOn_extendFrom, Real.continuousOn_cos, cfc_def, HasFPowerSeriesWithinOnBall.continuousOn, ContMDiffOn.continuousOn_tangentMapWithin, Uniform.continuousOn_iff'_right, equicontinuousOn_iff_continuousOn, DiffContOnCl.continuousOn_ball, IsLocalHomeomorphOn.continuousOn, HurwitzZeta.continuousOn_evenKernel, OpenPartialHomeomorph.continuousOn_extend_symm, Real.continuousOn_logb, lipschitzOnWith_cfc_fun, Filter.Tendsto.continuousOn_of_equicontinuousOn, IsPicardLindelof.continuousOn_uncurry, continuousOn_div, ENNReal.continuousOn_sub_left, continuousOn_invβ‚€, contDiffOn_zero, HurwitzZeta.continuousOn_oddKernel, VectorBundle.continuousOn_coordChange', continuousOn_iff_lower_upperSemicontinuousOn, HurwitzZeta.continuousOn_sinKernel, OpenPartialHomeomorph.continuousOn_writtenInExtend_iff, mdifferentiableOn_iff_of_subset_source, EReal.continuousOn_toReal, LocallyLipschitzOn.continuousOn, HasFTaylorSeriesUpToOn.continuousOn, continuousOn_apply, CFC.continuousOn_nnrpow, continuousOn_update_iff, ContinuousOn.continuousOn_iteratedFDerivWithin, UniformContinuousOn.continuousOn, ContMDiffOn.continuousOn, lipschitzOnWith_cfcβ‚™_fun, ContinuousLinearEquiv.comp_continuousOn_iff, Real.continuousOn_exp, continuousOn_const_smul_iffβ‚€, continuousOn_isOpen_of_generateFrom, ContDiffOn.continuousOn_fderivWithin_apply, Topology.IsEmbedding.continuousOn_iff, Dilation.comp_continuousOn_iff, OpenPartialHomeomorph.continuousOn_invFun, Homeomorph.comp_continuousOn_iff, Complex.continuousOn_tan, UniformOnFun.continuousOn_evalβ‚‚, ContDiffOn.continuousOn_derivWithin, Real.continuousOn_sin, continuousOn_snd, ContDiffOn.continuousOn_fderivWithin, AnalyticOnNhd.continuousOn, HasFiniteFPowerSeriesOnBall.continuousOn, Set.Finite.continuousOn, continuousOn_fst, NNReal.continuousOn_rpow_const, VectorPrebundle.exists_coordChange, ConvexOn.locallyLipschitzOn_iff_continuousOn, continuousOn_inv_iff, Complex.continuousOn_prod_circle_transform_function, ModelWithCorners.continuousOn_symm, Real.continuousOn_rpowIntegrand₀₁_Ici, ContDiffOn.continuousOn_fderiv_of_isOpen, IsPicardLindelof.exists_forall_mem_closedBall_eq_hasDerivWithinAt_continuousOn, contMDiffOn_iff, ConcaveOn.continuousOn_interior, ENNReal.continuousOn_toNNReal, CPolynomialOn.continuousOn, continuousOn_extChartAt_symm, Trivialization.Prod.continuous_to_fun, continuousOn_const_smul_iff, Isometry.comp_continuousOn_iff, Complex.isConservativeOn_and_continuousOn_iff_isDifferentiableOn, ContinuousLinearMap.continuousOn_uncurry_of_multilinear, OpenPartialHomeomorph.continuousOn, DiffContOnCl.continuousOn, lipschitzOnWith_cfcβ‚™_fun_of_subset, continuousOn_empty, continuousOn_iff_continuous_restrict, ZetaAsymptotics.continuousOn_term_tsum, contMDiffOn_iff_of_mem_maximalAtlas, Units.continuousOn_invβ‚€_spectrum, IsUnit.continuousOn_const_smul_iff, continuousOn_nsmul, VectorBundleCore.continuousOn_coordChange, LinearIsometryEquiv.continuousOn, Trivialization.continuousOn_proj, hasFTaylorSeriesUpToOn_succ_iff_left, ContDiffOn.continuousOn, ArithmeticFunction.vonMangoldt.continuousOn_LFunctionResidueClassAux, contMDiffOn_iff_of_subset_source, Pretrivialization.continuousOn_continuousLinearMapCoordChange, continuousOn_prod_of_discrete_left, equicontinuousOn_unique, continuousOn_iff_isClosed, LinearIsometryEquiv.comp_continuousOn_iff, VectorPrebundle.continuousOn_coordChange, upperHemicontinuousOn_singleton_iff, Real.continuousOn_tan, contDiffAt_zero, continuousOn_cfcβ‚™_setProd, continuousOn_toIocDiv, OpenPartialHomeomorph.continuousOn_toFun, NormedSpace.continuousOn_exp, ConvexOn.continuousOn_interior, NNReal.continuousOn_rpow_const_compl_zero, continuousOn_id', HasFPowerSeriesOnBall.continuousOn, ConcaveOn.continuousOn_tfae, IsMIntegralCurveOn.continuousOn, OpenPartialHomeomorph.continuousOn_symm, ApproximatesLinearOn.continuousOn, continuousOn_open_iff, FiberBundleCore.continuousOn_coordChange, continuousOn_toIcoDiv, AffineIsometryEquiv.comp_continuousOn_iff, HasDerivWithinAt.continuousOn, ENNReal.continuousOn_toReal, ContDiffOn.continuousOn_deriv_of_isOpen, continuousOn_iff', SeparationQuotient.continuousOn_liftβ‚‚, Topology.IsInducing.continuousOn_iff, Metric.continuousOn_iff', continuousOn_cfc_nnreal_setProd, IsOpenMap.continuousOn_image_of_leftInvOn, intervalIntegral.continuousOn_primitive_interval', continuousOn_id, continuousOn_univ, ContinuousOn.continuousOn_iteratedFDeriv, WithTop.continuousOn_untopA, OpenPartialHomeomorph.continuousOn_extend, continuousOn_taylorWithinEval, continuousOn_zpowβ‚€, Real.continuousOn_rpowIntegrand₀₁, Metric.continuousOn_iff, Real.continuousOn_arcosh, continuousOn_to_generateFrom_iff, contMDiffOn_iff_target, Topology.IsInducing.continuousOn_image_iff, continuousOn_of_locally_uniform_approx_of_continuousWithinAt, contDiffOn_iff_continuousOn_differentiableOn_deriv, contMDiffOn_zero_iff, Topology.CWComplex.continuousOn_symm, Trivialization.continuousOn_symm, continuousOn_cfcβ‚™_nnreal_setProd, ContinuousLinearEquiv.continuousOn, CFC.continuousOn_rpow, ProbabilityTheory.continuousOn_mgf, FormalMultilinearSeries.continuousOn, OpenPartialHomeomorph.continuousOn_iff_continuousOn_comp_right, AbsolutelyContinuousOnInterval.continuousOn, continuousOn_clm_apply, IsLocalHomeomorph.exists_lift_nhds, HolderOnWith.continuousOn, EquicontinuousOn.continuousOn, Topology.IsQuotientMap.continuousOn_isOpen_iff, continuousOn_neg_iff, continuousOn_pi, Polynomial.continuousOn_aeval, ContinuousSqrt.continuousOn_sqrt, mdifferentiableOn_iff_of_mem_maximalAtlas, OpenPartialHomeomorph.continuousOn_iff_continuousOn_comp_left, continuousOn_coordChange, IsCoveringMapOn.continuousOn, DirichletCharacter.continuousOn_neg_logDeriv_LFunctionTrivChar₁, ConcaveOn.locallyLipschitzOn_iff_continuousOn, LocallyFinite.continuousOn_iUnion', ConvexOn.continuousOn, Complex.continuousOn_one_add_mul_inv, continuousOn_const_vadd_iff, equicontinuousOn_finite, Real.continuousOn_tan_Ioo, continouousOn_union_iff_of_isOpen, unitary.continuousOn_argSelfAdjoint

Theorems

NameKindAssumesProvesValidatesDepends On
antitone_continuousOn πŸ“–mathematicalβ€”Antitone
Set
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
Prop.partialOrder
ContinuousOn
β€”ContinuousOn.mono
continouousOn_union_iff_of_isClosed πŸ“–mathematicalβ€”ContinuousOn
Set
Set.instUnion
β€”ContinuousOn.mono
Set.subset_union_left
Set.subset_union_right
ContinuousOn.union_of_isClosed
continouousOn_union_iff_of_isOpen πŸ“–mathematicalIsOpenContinuousOn
Set
Set.instUnion
β€”ContinuousOn.mono
Set.subset_union_left
Set.subset_union_right
ContinuousOn.union_of_isOpen
continuousAt_of_not_accPt πŸ“–mathematicalAccPt
Filter.principal
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
ContinuousAtβ€”continuousWithinAt_compl_self
continuousWithinAt_of_not_accPt
continuousAt_of_not_accPt_top πŸ“–mathematicalAccPt
Top.top
Filter
Filter.instTop
ContinuousAtβ€”continuousAt_of_not_accPt
AccPt.mono
continuousAt_prod_of_discrete_left πŸ“–mathematicalβ€”ContinuousAt
instTopologicalSpaceProd
β€”continuousWithinAt_prod_of_discrete_left
continuousAt_prod_of_discrete_right πŸ“–mathematicalβ€”ContinuousAt
instTopologicalSpaceProd
β€”continuousWithinAt_prod_of_discrete_right
continuousOn_apply πŸ“–mathematicalβ€”ContinuousOn
Pi.topologicalSpace
β€”Continuous.continuousOn
continuous_apply
continuousOn_congr πŸ“–mathematicalSet.EqOnContinuousOnβ€”ContinuousOn.congr
Set.EqOn.symm
continuousOn_const πŸ“–mathematicalβ€”ContinuousOnβ€”Continuous.continuousOn
continuous_const
continuousOn_empty πŸ“–mathematicalβ€”ContinuousOn
Set
Set.instEmptyCollection
β€”β€”
continuousOn_fst πŸ“–mathematicalβ€”ContinuousOn
instTopologicalSpaceProd
β€”Continuous.continuousOn
continuous_fst
continuousOn_iUnion_iff_of_isOpen πŸ“–mathematicalIsOpenContinuousOn
Set.iUnion
β€”ContinuousOn.mono
Set.subset_iUnion_of_subset
ContinuousOn.iUnion_of_isOpen
continuousOn_id πŸ“–mathematicalβ€”ContinuousOnβ€”Continuous.continuousOn
continuous_id
continuousOn_id' πŸ“–mathematicalβ€”ContinuousOnβ€”continuousOn_id
continuousOn_iff πŸ“–mathematicalβ€”ContinuousOn
IsOpen
Set
Set.instMembership
Set.instHasSubset
Set.instInter
Set.preimage
β€”β€”
continuousOn_iff' πŸ“–mathematicalβ€”ContinuousOn
IsOpen
Set
Set.instInter
Set.preimage
β€”isOpen_induced_iff
Set.restrict_eq
Set.preimage_comp
Set.inter_comm
continuousOn_iff_continuous_restrict
continuous_def
continuousOn_iff_continuous_restrict πŸ“–mathematicalβ€”ContinuousOn
Continuous
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
Set.restrict
β€”ContinuousOn.eq_1
continuous_iff_continuousAt
continuousWithinAt_iff_continuousAt_restrict
continuousOn_iff_isClosed πŸ“–mathematicalβ€”ContinuousOn
IsClosed
Set
Set.instInter
Set.preimage
β€”isClosed_induced_iff
Set.restrict_eq
Set.preimage_comp
Set.inter_comm
continuousOn_iff_continuous_restrict
continuous_iff_isClosed
continuousOn_isOpen_of_generateFrom πŸ“–mathematicalIsOpen
Set
Set.instInter
Set.preimage
ContinuousOn
TopologicalSpace.generateFrom
β€”continuousOn_to_generateFrom_iff
mem_nhdsWithin
continuousOn_of_forall_continuousAt πŸ“–mathematicalContinuousAtContinuousOnβ€”ContinuousAt.continuousWithinAt
continuousOn_of_locally_continuousOn πŸ“–β€”IsOpen
Set
Set.instMembership
ContinuousOn
Set.instInter
β€”β€”nhdsWithin_restrict
ContinuousWithinAt.eq_1
continuousOn_open_iff πŸ“–mathematicalIsOpenContinuousOn
Set
Set.instInter
Set.preimage
β€”continuousOn_iff'
Set.inter_comm
IsOpen.inter
Set.inter_assoc
Set.inter_self
continuousOn_pi πŸ“–mathematicalβ€”ContinuousOn
Pi.topologicalSpace
β€”tendsto_pi_nhds
continuousOn_pi' πŸ“–mathematicalContinuousOnPi.topologicalSpaceβ€”continuousOn_pi
continuousOn_prod_of_discrete_left πŸ“–mathematicalβ€”ContinuousOn
instTopologicalSpaceProd
setOf
Set
Set.instMembership
β€”β€”
continuousOn_prod_of_discrete_right πŸ“–mathematicalβ€”ContinuousOn
instTopologicalSpaceProd
setOf
Set
Set.instMembership
β€”forall_swap
continuousOn_singleton πŸ“–mathematicalβ€”ContinuousOn
Set
Set.instSingletonSet
β€”nhdsWithin_singleton
mem_of_mem_nhds
continuousOn_snd πŸ“–mathematicalβ€”ContinuousOn
instTopologicalSpaceProd
β€”Continuous.continuousOn
continuous_snd
continuousOn_to_generateFrom_iff πŸ“–mathematicalβ€”ContinuousOn
TopologicalSpace.generateFrom
Set
Filter
Filter.instMembership
nhdsWithin
Set.preimage
β€”TopologicalSpace.nhds_generateFrom
forall_swap
continuousOn_univ πŸ“–mathematicalβ€”ContinuousOn
Set.univ
Continuous
β€”nhdsWithin_univ
continuousWithinAt_compl_self πŸ“–mathematicalβ€”ContinuousWithinAt
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
ContinuousAt
β€”Set.compl_eq_univ_diff
continuousWithinAt_diff_self
continuousWithinAt_univ
continuousWithinAt_congr πŸ“–mathematicalβ€”ContinuousWithinAtβ€”ContinuousWithinAt.congr
continuousWithinAt_congr_of_insert πŸ“–mathematicalβ€”ContinuousWithinAtβ€”continuousWithinAt_congr
Set.mem_insert_of_mem
Set.mem_insert
continuousWithinAt_congr_of_mem πŸ“–mathematicalSet
Set.instMembership
ContinuousWithinAtβ€”continuousWithinAt_congr
continuousWithinAt_congr_set πŸ“–mathematicalFilter.EventuallyEq
nhds
ContinuousWithinAtβ€”nhdsWithin_eq_iff_eventuallyEq
continuousWithinAt_const πŸ“–mathematicalβ€”ContinuousWithinAtβ€”Continuous.continuousWithinAt
continuous_const
continuousWithinAt_diff_self πŸ“–mathematicalβ€”ContinuousWithinAt
Set
Set.instSDiff
Set.instSingletonSet
β€”ContinuousWithinAt.diff_iff
continuousWithinAt_singleton
continuousWithinAt_fst πŸ“–mathematicalβ€”ContinuousWithinAt
instTopologicalSpaceProd
β€”Continuous.continuousWithinAt
continuous_fst
continuousWithinAt_id πŸ“–mathematicalβ€”ContinuousWithinAtβ€”Continuous.continuousWithinAt
continuous_id
continuousWithinAt_iff_continuousAt πŸ“–mathematicalSet
Filter
Filter.instMembership
nhds
ContinuousWithinAt
ContinuousAt
β€”Set.univ_inter
continuousWithinAt_inter
continuousWithinAt_univ
continuousWithinAt_iff_continuousAt_restrict πŸ“–mathematicalSet
Set.instMembership
ContinuousWithinAt
ContinuousAt
Set.Elem
instTopologicalSpaceSubtype
Set.restrict
β€”tendsto_nhdsWithin_iff_subtype
continuousWithinAt_insert_self πŸ“–mathematicalβ€”ContinuousWithinAt
Set
Set.instInsert
β€”β€”
continuousWithinAt_inter πŸ“–mathematicalSet
Filter
Filter.instMembership
nhds
ContinuousWithinAt
Set.instInter
β€”nhdsWithin_restrict'
continuousWithinAt_inter' πŸ“–mathematicalSet
Filter
Filter.instMembership
nhdsWithin
ContinuousWithinAt
Set.instInter
β€”nhdsWithin_restrict''
continuousWithinAt_of_notMem_closure πŸ“–mathematicalSet
Set.instMembership
closure
ContinuousWithinAtβ€”ContinuousWithinAt.eq_1
Filter.not_neBot
mem_closure_iff_nhdsWithin_neBot
Filter.tendsto_bot
continuousWithinAt_of_not_accPt πŸ“–mathematicalAccPt
Filter.principal
ContinuousWithinAtβ€”continuousWithinAt_diff_self
Set.inter_comm
continuousWithinAt_pi πŸ“–mathematicalβ€”ContinuousWithinAt
Pi.topologicalSpace
β€”tendsto_pi_nhds
continuousWithinAt_prod_iff πŸ“–mathematicalβ€”ContinuousWithinAt
instTopologicalSpaceProd
β€”ContinuousWithinAt.fst
ContinuousWithinAt.snd
ContinuousWithinAt.prodMk
continuousWithinAt_prod_of_discrete_left πŸ“–mathematicalβ€”ContinuousWithinAt
instTopologicalSpaceProd
setOf
Set
Set.instMembership
β€”nhds_prod_eq
nhds_discrete
Filter.pure_prod
continuousWithinAt_prod_of_discrete_right πŸ“–mathematicalβ€”ContinuousWithinAt
instTopologicalSpaceProd
setOf
Set
Set.instMembership
β€”nhds_prod_eq
nhds_discrete
Filter.prod_pure
continuousWithinAt_singleton πŸ“–mathematicalβ€”ContinuousWithinAt
Set
Set.instSingletonSet
β€”nhdsWithin_singleton
continuousWithinAt_snd πŸ“–mathematicalβ€”ContinuousWithinAt
instTopologicalSpaceProd
β€”Continuous.continuousWithinAt
continuous_snd
continuousWithinAt_union πŸ“–mathematicalβ€”ContinuousWithinAt
Set
Set.instUnion
β€”nhdsWithin_union
continuousWithinAt_univ πŸ“–mathematicalβ€”ContinuousWithinAt
Set.univ
ContinuousAt
β€”ContinuousAt.eq_1
ContinuousWithinAt.eq_1
nhdsWithin_univ
continuous_of_continuousOn_iUnion_of_isOpen πŸ“–mathematicalContinuousOn
IsOpen
Set.iUnion
Set.univ
Continuousβ€”continuousOn_univ
ContinuousOn.iUnion_of_isOpen
continuous_of_cover_nhds πŸ“–mathematicalSet
Filter
Filter.instMembership
nhds
ContinuousOn
Continuousβ€”continuous_iff_continuousAt
ContinuousAt.eq_1
nhdsWithin_eq_nhds
mem_of_mem_nhds
continuous_prod_of_discrete_left πŸ“–mathematicalβ€”Continuous
instTopologicalSpaceProd
β€”continuousOn_prod_of_discrete_left
continuous_prod_of_discrete_right πŸ“–mathematicalβ€”Continuous
instTopologicalSpaceProd
β€”continuousOn_prod_of_discrete_right
isOpenMap_prod_of_discrete_left πŸ“–mathematicalβ€”IsOpenMap
instTopologicalSpaceProd
β€”nhds_prod_eq
nhds_discrete
Filter.pure_prod
Filter.map_map
isOpenMap_prod_of_discrete_right πŸ“–mathematicalβ€”IsOpenMap
instTopologicalSpaceProd
β€”forall_swap
nhds_prod_eq
nhds_discrete
Filter.prod_pure
Filter.map_map
nhdsWithin_le_comap πŸ“–mathematicalContinuousWithinAtFilter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
nhdsWithin
Filter.comap
Set.image
β€”Filter.Tendsto.le_comap
ContinuousWithinAt.tendsto_nhdsWithin_image

---

← Back to Index