Documentation Verification Report

GeneratedBy

πŸ“ Source: Mathlib/Topology/Convenient/GeneratedBy.lean

Statistics

MetricCount
DefinitionsgeneratedBy, IsGeneratedBy, homeomorph, WithGeneratedByTopology, equiv, instTopologicalSpace
6
TheoremsisGeneratedBy, isGeneratedBy, isGeneratedBy, isGeneratedBy, generatedBy_le, generatedBy_mono, coinduced, continuous_equiv_symm, continuous_iff, equiv_symm_comp_continuous_iff, generatedBy_eq, homeomorph_coe, homeomorph_symm_coe, iSup, iff_le_generatedBy, inst, instPUnit, instWithGeneratedByTopology, isClosed_iff, isOpen_iff, le_generatedBy, sup, isGeneratedBy, continuous_equiv, continuous_from_iff, isClosed_iff, isOpen_iff, isGeneratedBy_iff
28
Total34

Quot

Theorems

NameKindAssumesProvesValidatesDepends On
isGeneratedBy πŸ“–mathematicalβ€”Topology.IsGeneratedBy
instTopologicalSpaceQuot
β€”Topology.IsQuotientMap.isGeneratedBy

Quotient

Theorems

NameKindAssumesProvesValidatesDepends On
isGeneratedBy πŸ“–mathematicalβ€”Topology.IsGeneratedBy
instTopologicalSpaceQuotient
β€”Topology.IsQuotientMap.isGeneratedBy
isQuotientMap_quotient_mk'

Sigma

Theorems

NameKindAssumesProvesValidatesDepends On
isGeneratedBy πŸ“–mathematicalTopology.IsGeneratedByinstTopologicalSpaceSigmaβ€”Topology.IsGeneratedBy.iSup
Topology.IsGeneratedBy.coinduced

Sum

Theorems

NameKindAssumesProvesValidatesDepends On
isGeneratedBy πŸ“–mathematicalβ€”Topology.IsGeneratedBy
instTopologicalSpaceSum
β€”Topology.IsGeneratedBy.sup
Topology.IsGeneratedBy.coinduced

TopologicalSpace

Definitions

NameCategoryTheorems
generatedBy πŸ“–CompOp
5 mathmath: generatedBy_mono, Topology.IsGeneratedBy.le_generatedBy, Topology.IsGeneratedBy.generatedBy_eq, Topology.IsGeneratedBy.iff_le_generatedBy, generatedBy_le

Theorems

NameKindAssumesProvesValidatesDepends On
generatedBy_le πŸ“–mathematicalβ€”TopologicalSpace
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
generatedBy
β€”Continuous.isOpen_preimage
Topology.WithGeneratedByTopology.continuous_equiv
generatedBy_mono πŸ“–mathematicalTopologicalSpace
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
generatedByβ€”iSupβ‚‚_le
le_iSupβ‚‚_of_le
continuous_le_rng
ContinuousMap.continuous_toFun
le_rfl

Topology

Definitions

NameCategoryTheorems
IsGeneratedBy πŸ“–CompData
11 mathmath: Sum.isGeneratedBy, IsGeneratedBy.instWithGeneratedByTopology, IsGeneratedBy.coinduced, IsGeneratedBy.iff_le_generatedBy, isGeneratedBy_iff, Quotient.isGeneratedBy, IsGeneratedBy.sup, Quot.isGeneratedBy, IsQuotientMap.isGeneratedBy, IsGeneratedBy.inst, IsGeneratedBy.instPUnit
WithGeneratedByTopology πŸ“–CompOp
10 mathmath: IsGeneratedBy.homeomorph_symm_coe, IsGeneratedBy.instWithGeneratedByTopology, isGeneratedBy_iff, IsGeneratedBy.continuous_equiv_symm, IsGeneratedBy.equiv_symm_comp_continuous_iff, IsGeneratedBy.homeomorph_coe, WithGeneratedByTopology.continuous_from_iff, WithGeneratedByTopology.isOpen_iff, WithGeneratedByTopology.continuous_equiv, WithGeneratedByTopology.isClosed_iff

Theorems

NameKindAssumesProvesValidatesDepends On
isGeneratedBy_iff πŸ“–mathematicalβ€”IsGeneratedBy
Continuous
WithGeneratedByTopology
WithGeneratedByTopology.instTopologicalSpace
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
WithGeneratedByTopology.equiv
β€”β€”

Topology.IsGeneratedBy

Definitions

NameCategoryTheorems
homeomorph πŸ“–CompOp
2 mathmath: homeomorph_symm_coe, homeomorph_coe

Theorems

NameKindAssumesProvesValidatesDepends On
coinduced πŸ“–mathematicalβ€”Topology.IsGeneratedBy
TopologicalSpace.coinduced
β€”iff_le_generatedBy
Continuous.coinduced_le
equiv_symm_comp_continuous_iff
continuous_coinduced_rng
continuous_equiv_symm πŸ“–mathematicalβ€”Continuous
Topology.WithGeneratedByTopology
Topology.WithGeneratedByTopology.instTopologicalSpace
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
Topology.WithGeneratedByTopology.equiv
β€”β€”
continuous_iff πŸ“–mathematicalβ€”Continuous
DFunLike.coe
ContinuousMap
ContinuousMap.instFunLike
β€”Topology.IsQuotientMap.continuous_iff
Homeomorph.isQuotientMap
Topology.WithGeneratedByTopology.continuous_from_iff
Function.comp_assoc
Equiv.self_comp_symm
equiv_symm_comp_continuous_iff πŸ“–mathematicalβ€”Continuous
Topology.WithGeneratedByTopology
Topology.WithGeneratedByTopology.instTopologicalSpace
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
Topology.WithGeneratedByTopology.equiv
β€”Continuous.comp
Topology.WithGeneratedByTopology.continuous_equiv
continuous_iff
continuous_def
Topology.WithGeneratedByTopology.isOpen_iff
generatedBy_eq πŸ“–mathematicalβ€”TopologicalSpace.generatedByβ€”le_antisymm
TopologicalSpace.generatedBy_le
le_generatedBy
homeomorph_coe πŸ“–mathematicalβ€”DFunLike.coe
Homeomorph
Topology.WithGeneratedByTopology
Topology.WithGeneratedByTopology.instTopologicalSpace
EquivLike.toFunLike
Homeomorph.instEquivLike
homeomorph
Equiv
Equiv.instEquivLike
Topology.WithGeneratedByTopology.equiv
β€”β€”
homeomorph_symm_coe πŸ“–mathematicalβ€”DFunLike.coe
Homeomorph
Topology.WithGeneratedByTopology
Topology.WithGeneratedByTopology.instTopologicalSpace
EquivLike.toFunLike
Homeomorph.instEquivLike
Homeomorph.symm
homeomorph
Equiv
Equiv.instEquivLike
Equiv.symm
Topology.WithGeneratedByTopology.equiv
β€”β€”
iSup πŸ“–mathematicalTopology.IsGeneratedByiSup
TopologicalSpace
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
β€”iff_le_generatedBy
iSup_le_iff
LE.le.trans
le_generatedBy
TopologicalSpace.generatedBy_mono
le_iSup
iff_le_generatedBy πŸ“–mathematicalβ€”Topology.IsGeneratedBy
TopologicalSpace
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.instPartialOrder
TopologicalSpace.generatedBy
β€”le_generatedBy
continuous_def
inst πŸ“–mathematicalβ€”Topology.IsGeneratedByβ€”continuous_def
Topology.WithGeneratedByTopology.isOpen_iff
continuous_id
instPUnit πŸ“–mathematicalβ€”Topology.IsGeneratedBy
instTopologicalSpacePUnit
β€”iff_le_generatedBy
Eq.le
Unique.instSubsingleton
instWithGeneratedByTopology πŸ“–mathematicalβ€”Topology.IsGeneratedBy
Topology.WithGeneratedByTopology
Topology.WithGeneratedByTopology.instTopologicalSpace
β€”continuous_def
Topology.WithGeneratedByTopology.isOpen_iff
continuous_iff
inst
Function.comp_assoc
equiv_symm_comp_continuous_iff
Continuous.comp'
ContinuousMapClass.map_continuous
ContinuousMap.instContinuousMapClass
isClosed_iff πŸ“–mathematicalβ€”IsClosed
Set.preimage
DFunLike.coe
ContinuousMap
ContinuousMap.instFunLike
β€”Topology.IsQuotientMap.isClosed_preimage
Homeomorph.isQuotientMap
Equiv.symm_preimage_preimage
isOpen_iff πŸ“–mathematicalβ€”IsOpen
Set.preimage
DFunLike.coe
ContinuousMap
ContinuousMap.instFunLike
β€”Topology.IsQuotientMap.isOpen_preimage
Homeomorph.isQuotientMap
Equiv.symm_preimage_preimage
le_generatedBy πŸ“–mathematicalβ€”TopologicalSpace
Preorder.toLE
PartialOrder.toPreorder
TopologicalSpace.instPartialOrder
TopologicalSpace.generatedBy
β€”Continuous.isOpen_preimage
continuous_equiv_symm
sup πŸ“–mathematicalβ€”Topology.IsGeneratedBy
TopologicalSpace
SemilatticeSup.toMax
Lattice.toSemilatticeSup
ConditionallyCompleteLattice.toLattice
CompleteLattice.toConditionallyCompleteLattice
TopologicalSpace.instCompleteLattice
β€”sup_eq_iSup
iSup

Topology.IsQuotientMap

Theorems

NameKindAssumesProvesValidatesDepends On
isGeneratedBy πŸ“–mathematicalTopology.IsQuotientMapTopology.IsGeneratedByβ€”Topology.IsGeneratedBy.coinduced
eq_coinduced

Topology.WithGeneratedByTopology

Definitions

NameCategoryTheorems
equiv πŸ“–CompOp
9 mathmath: Topology.IsGeneratedBy.homeomorph_symm_coe, Topology.isGeneratedBy_iff, Topology.IsGeneratedBy.continuous_equiv_symm, Topology.IsGeneratedBy.equiv_symm_comp_continuous_iff, Topology.IsGeneratedBy.homeomorph_coe, continuous_from_iff, isOpen_iff, continuous_equiv, isClosed_iff
instTopologicalSpace πŸ“–CompOp
10 mathmath: Topology.IsGeneratedBy.homeomorph_symm_coe, Topology.IsGeneratedBy.instWithGeneratedByTopology, Topology.isGeneratedBy_iff, Topology.IsGeneratedBy.continuous_equiv_symm, Topology.IsGeneratedBy.equiv_symm_comp_continuous_iff, Topology.IsGeneratedBy.homeomorph_coe, continuous_from_iff, isOpen_iff, continuous_equiv, isClosed_iff

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_equiv πŸ“–mathematicalβ€”Continuous
Topology.WithGeneratedByTopology
instTopologicalSpace
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
equiv
β€”continuous_def
isOpen_iff
Continuous.isOpen_preimage
ContinuousMap.continuous
continuous_from_iff πŸ“–mathematicalβ€”Continuous
Topology.WithGeneratedByTopology
instTopologicalSpace
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equiv
ContinuousMap
ContinuousMap.instFunLike
β€”continuous_coinduced_dom
isClosed_iff πŸ“–mathematicalβ€”IsClosed
Topology.WithGeneratedByTopology
instTopologicalSpace
Set.preimage
DFunLike.coe
ContinuousMap
ContinuousMap.instFunLike
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equiv
β€”β€”
isOpen_iff πŸ“–mathematicalβ€”IsOpen
Topology.WithGeneratedByTopology
instTopologicalSpace
Set.preimage
DFunLike.coe
ContinuousMap
ContinuousMap.instFunLike
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
equiv
β€”β€”

---

← Back to Index