Documentation Verification Report

DenseEmbedding

πŸ“ Source: Mathlib/Topology/DenseEmbedding.lean

Statistics

MetricCount
Definitionsextend, IsDenseEmbedding, subtypeEmb, IsDenseInducing, extend
5
Theoremscomap_val_nhds_neBot, continuousAt_extend, continuous_extend, extend_eq, extend_eq_at, extend_eq_of_tendsto, extend_unique, extend_unique_at, isDenseEmbedding_val, isDenseInducing_val, equalizer, induction_on, induction_onβ‚‚, induction_on₃, hasBasis_of_isDenseInducing, dense_image, id, inj_iff, injective, isDenseInducing, isEmbedding, mk', prodMap, separableSpace, subtype, subtypeEmb_coe, toIsDenseInducing, closure_image_mem_nhds, closure_range, comap_nhds_neBot, continuous, continuousAt_extend, continuous_extend, dense, dense_image, extend_eq, extend_eq', extend_eq_at, extend_eq_at', extend_eq_of_tendsto, extend_unique, extend_unique_at, inseparable_extend, interior_compact_eq_empty, isInducing, mk', nhdsWithin_neBot, nhds_eq_comap, preconnectedSpace, prodMap, separableSpace, tendsto_comap_nhds_nhds, tendsto_extend, toIsInducing, isClosed_property, isClosed_property2, isClosed_property3
57
Total62

Dense

Definitions

NameCategoryTheorems
extend πŸ“–CompOp
11 mathmath: extend_eq_at, extend_unique_at, lipschitzWith_extend, uniformContinuous_extend, continuous_extend, extend_unique, extend_eq, extend_of_ind, extend_spec, continuousAt_extend, extend_eq_of_tendsto

Theorems

NameKindAssumesProvesValidatesDepends On
comap_val_nhds_neBot πŸ“–mathematicalDenseFilter.NeBot
Set
Set.instMembership
Filter.comap
nhds
β€”IsDenseInducing.comap_nhds_neBot
isDenseInducing_val
continuousAt_extend πŸ“–mathematicalDense
Filter.Eventually
Filter.Tendsto
Set.Elem
Filter.comap
Set
Set.instMembership
nhds
ContinuousAt
extend
β€”IsDenseInducing.continuousAt_extend
isDenseInducing_val
continuous_extend πŸ“–mathematicalDense
Filter.Tendsto
Set.Elem
Filter.comap
Set
Set.instMembership
nhds
Continuous
extend
β€”IsDenseInducing.continuous_extend
isDenseInducing_val
extend_eq πŸ“–mathematicalDense
Continuous
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
extendβ€”extend_eq_at
Continuous.continuousAt
extend_eq_at πŸ“–mathematicalDense
ContinuousAt
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
extendβ€”IsDenseInducing.extend_eq_at
isDenseInducing_val
extend_eq_of_tendsto πŸ“–mathematicalDense
Filter.Tendsto
Set.Elem
Filter.comap
Set
Set.instMembership
nhds
extendβ€”IsDenseInducing.extend_eq_of_tendsto
isDenseInducing_val
extend_unique πŸ“–mathematicalDense
Set
Set.instMembership
Continuous
extendβ€”IsDenseInducing.extend_unique
isDenseInducing_val
extend_unique_at πŸ“–mathematicalDense
Filter.Eventually
Set.Elem
Set
Set.instMembership
Filter.comap
nhds
ContinuousAt
extendβ€”IsDenseInducing.extend_unique_at
isDenseInducing_val
isDenseEmbedding_val πŸ“–mathematicalDenseIsDenseEmbedding
Set
Set.instMembership
instTopologicalSpaceSubtype
β€”Topology.IsEmbedding.subtypeVal
Topology.IsEmbedding.toIsInducing
denseRange_val
Topology.IsEmbedding.injective
isDenseInducing_val πŸ“–mathematicalDenseIsDenseInducing
instTopologicalSpaceSubtype
β€”Topology.IsInducing.subtypeVal
denseRange_val

DenseRange

Theorems

NameKindAssumesProvesValidatesDepends On
equalizer πŸ“–β€”DenseRange
Continuous
β€”β€”induction_on
isClosed_eq
induction_on πŸ“–β€”DenseRangeβ€”β€”isClosed_property
induction_onβ‚‚ πŸ“–β€”DenseRangeβ€”β€”isClosed_property2
induction_on₃ πŸ“–β€”DenseRangeβ€”β€”isClosed_property3

Filter.HasBasis

Theorems

NameKindAssumesProvesValidatesDepends On
hasBasis_of_isDenseInducing πŸ“–mathematicalFilter.HasBasis
nhds
IsDenseInducing
closure
Set.image
β€”Filter.hasBasis_iff
exists_mem_nhds_isClosed_subset
Topology.IsInducing.nhds_eq_comap
IsDenseInducing.isInducing
Set.Subset.rfl
HasSubset.Subset.trans
Set.instIsTransSubset
closure_mono
Set.image_mono
Set.Subset.trans
closure_minimal
Set.image_preimage_subset
IsDenseInducing.closure_image_mem_nhds
Filter.mp_mem
Filter.univ_mem'

IsDenseEmbedding

Definitions

NameCategoryTheorems
subtypeEmb πŸ“–CompOp
3 mathmath: subtypeEmb_coe, isUniformEmbedding_subtypeEmb, subtype

Theorems

NameKindAssumesProvesValidatesDepends On
dense_image πŸ“–mathematicalIsDenseEmbeddingDense
Set.image
β€”IsDenseInducing.dense_image
isDenseInducing
id πŸ“–mathematicalβ€”IsDenseEmbeddingβ€”Topology.IsEmbedding.id
Topology.IsEmbedding.toIsInducing
denseRange_id
Topology.IsEmbedding.injective
inj_iff πŸ“–β€”IsDenseEmbeddingβ€”β€”injective
injective πŸ“–β€”IsDenseEmbeddingβ€”β€”β€”
isDenseInducing πŸ“–mathematicalIsDenseEmbeddingIsDenseInducingβ€”toIsDenseInducing
isEmbedding πŸ“–mathematicalIsDenseEmbeddingTopology.IsEmbeddingβ€”IsDenseInducing.toIsInducing
toIsDenseInducing
injective
mk' πŸ“–mathematicalContinuous
DenseRange
Set
Filter
Filter.instMembership
nhds
Set.instMembership
IsDenseEmbeddingβ€”IsDenseInducing.mk'
prodMap πŸ“–mathematicalIsDenseEmbeddinginstTopologicalSpaceProdβ€”IsDenseInducing.prodMap
isDenseInducing
Function.Injective.prodMap
injective
separableSpace πŸ“–mathematicalIsDenseEmbeddingTopologicalSpace.SeparableSpaceβ€”IsDenseInducing.separableSpace
isDenseInducing
subtype πŸ“–mathematicalIsDenseEmbeddingSet
Set.instMembership
closure
Set.image
setOf
instTopologicalSpaceSubtype
subtypeEmb
β€”induced_iff_nhds_eq
nhds_subtype_eq_comap
Topology.IsInducing.nhds_eq_comap
IsDenseInducing.isInducing
toIsDenseInducing
Filter.comap_comap
dense_iff_closure_eq
Set.ext
Set.image_eq_range
Function.Injective.codRestrict
injective
Subtype.coe_injective
subtypeEmb_coe πŸ“–mathematicalβ€”Set
Set.instMembership
closure
Set.image
setOf
subtypeEmb
β€”β€”
toIsDenseInducing πŸ“–mathematicalIsDenseEmbeddingIsDenseInducingβ€”β€”

IsDenseInducing

Definitions

NameCategoryTheorems
extend πŸ“–CompOp
22 mathmath: uniformly_extend_unique, MvPowerSeries.evalβ‚‚Hom_eq_extend, extend_Z_bilin, continuousAt_extend, uniformContinuous_uniformly_extend, extend_unique, isUniformInducing_extend, AbstractCompletion.extend_def, uniformly_extend_of_ind, extend_eq_of_tendsto, LaurentSeries.valuation_LaurentSeries_equal_extension, continuous_extend, continuous_extend_of_cauchy, extend_eq', extend_unique_at, Padic.coe_withValRingEquiv_symm, extend_eq_at, uniformly_extend_spec, extend_eq_at', inseparable_extend, extend_eq, tendsto_extend

Theorems

NameKindAssumesProvesValidatesDepends On
closure_image_mem_nhds πŸ“–mathematicalIsDenseInducing
Set
Filter
Filter.instMembership
nhds
closure
Set.image
β€”Filter.HasBasis.mem_iff
Filter.HasBasis.comap
nhds_basis_opens
nhds_eq_comap
Filter.mem_of_superset
IsOpen.mem_nhds
DenseRange.subset_closure_image_preimage_of_isOpen
dense
closure_mono
Set.image_mono
closure_range πŸ“–mathematicalIsDenseInducingclosure
Set.range
Set.univ
β€”DenseRange.closure_range
dense
comap_nhds_neBot πŸ“–mathematicalIsDenseInducingFilter.NeBot
Filter.comap
nhds
β€”Filter.comap_neBot
mem_closure_iff_nhds
dense
continuous πŸ“–mathematicalIsDenseInducingContinuousβ€”Topology.IsInducing.continuous
isInducing
continuousAt_extend πŸ“–mathematicalIsDenseInducing
Filter.Eventually
Filter.Tendsto
Filter.comap
nhds
ContinuousAt
extend
β€”Filter.mp_mem
Filter.univ_mem'
extend_eq_of_tendsto
T25Space.t2Space
T3Space.t25Space
Filter.HasBasis.tendsto_left_iff
Filter.HasBasis.comap
nhds_basis_opens'
mem_of_mem_nhds
IsOpen.mem_nhds
IsClosed.mem_of_tendsto
comap_nhds_neBot
Filter.inter_mem
Filter.HasBasis.tendsto_right_iff
closed_nhds_basis
T3Space.toRegularSpace
continuous_extend πŸ“–mathematicalIsDenseInducing
Filter.Tendsto
Filter.comap
nhds
Continuous
extend
β€”continuous_iff_continuousAt
continuousAt_extend
Filter.univ_mem'
dense πŸ“–mathematicalIsDenseInducingDenseRangeβ€”β€”
dense_image πŸ“–mathematicalIsDenseInducingDense
Set.image
β€”Topology.IsInducing.closure_eq_preimage_closure_image
isInducing
Dense.closure_eq
Set.preimage_univ
DenseRange.dense_image
dense
continuous
extend_eq πŸ“–mathematicalIsDenseInducing
Continuous
extendβ€”extend_eq_at
Continuous.continuousAt
extend_eq' πŸ“–mathematicalIsDenseInducing
Filter.Tendsto
Filter.comap
nhds
extendβ€”extend_eq_at'
Topology.IsInducing.nhds_eq_comap
isInducing
extend_eq_at πŸ“–mathematicalIsDenseInducing
ContinuousAt
extendβ€”extend_eq_of_tendsto
nhds_eq_comap
extend_eq_at' πŸ“–mathematicalIsDenseInducing
Filter.Tendsto
nhds
extendβ€”extend_eq_at
continuousAt_of_tendsto_nhds
T2Space.t1Space
extend_eq_of_tendsto πŸ“–mathematicalIsDenseInducing
Filter.Tendsto
Filter.comap
nhds
extendβ€”Filter.Tendsto.limUnder_eq
comap_nhds_neBot
extend_unique πŸ“–mathematicalIsDenseInducing
Continuous
extendβ€”extend_unique_at
Filter.Eventually.of_forall
Continuous.continuousAt
extend_unique_at πŸ“–mathematicalIsDenseInducing
Filter.Eventually
Filter.comap
nhds
ContinuousAt
extendβ€”extend_eq_of_tendsto
Filter.mem_map
Filter.eventually_comap
Filter.Eventually.mono
Filter.Tendsto.eventually
Filter.Eventually.mp
inseparable_extend πŸ“–mathematicalIsDenseInducing
ContinuousAt
Inseparable
extend
β€”tendsto_nhds_unique_inseparable
nhds_neBot
tendsto_extend
interior_compact_eq_empty πŸ“–mathematicalIsDenseInducing
Dense
Compl.compl
Set
Set.instCompl
Set.range
IsCompact
interior
Set.instEmptyCollection
β€”Set.eq_empty_iff_forall_notMem
closure_image_mem_nhds
mem_interior_iff_mem_nhds
Dense.inter_nhds_nonempty
IsClosed.closure_eq
IsCompact.isClosed
IsCompact.image
continuous
Set.image_subset_range
isInducing πŸ“–mathematicalIsDenseInducingTopology.IsInducingβ€”toIsInducing
mk' πŸ“–mathematicalContinuous
Set
Set.instMembership
closure
Set.range
Filter
Filter.instMembership
nhds
IsDenseInducingβ€”Topology.isInducing_iff_nhds
le_antisymm
Filter.Tendsto.le_comap
Continuous.tendsto
nhdsWithin_neBot πŸ“–mathematicalIsDenseInducingFilter.NeBot
nhdsWithin
Set.range
β€”DenseRange.nhdsWithin_neBot
dense
nhds_eq_comap πŸ“–mathematicalIsDenseInducingnhds
Filter.comap
β€”Topology.IsInducing.nhds_eq_comap
isInducing
preconnectedSpace πŸ“–mathematicalIsDenseInducingPreconnectedSpaceβ€”DenseRange.preconnectedSpace
dense
continuous
prodMap πŸ“–mathematicalIsDenseInducinginstTopologicalSpaceProdβ€”Topology.IsInducing.prodMap
isInducing
DenseRange.prodMap
dense
separableSpace πŸ“–mathematicalIsDenseInducingTopologicalSpace.SeparableSpaceβ€”DenseRange.separableSpace
dense
continuous
tendsto_comap_nhds_nhds πŸ“–mathematicalIsDenseInducing
Filter.Tendsto
nhds
Filter.comapβ€”Filter.map_comap_le
Filter.map_mono
Filter.comap_mono
le_trans
Filter.map_le_iff_le_comap
Filter.map_map
nhds_eq_comap
tendsto_extend πŸ“–mathematicalIsDenseInducing
ContinuousAt
Filter.Tendsto
nhds
extend
β€”extend.eq_1
nhds_eq_comap
tendsto_nhds_limUnder
toIsInducing πŸ“–mathematicalIsDenseInducingTopology.IsInducingβ€”β€”

(root)

Definitions

NameCategoryTheorems
IsDenseEmbedding πŸ“–CompData
13 mathmath: isDenseEmbedding_stoneCechUnit, MeasureTheory.Lp.simpleFunc.isDenseEmbedding, Rat.isDenseEmbedding_coe_real, isDenseEmbedding_pure, IsDenseEmbedding.id, IsUniformEmbedding.isDenseEmbedding, IsHomeomorph.isDenseEmbedding, CauchyFilter.isDenseEmbedding_pureCauchy, Homeomorph.isDenseEmbedding, IsDenseEmbedding.mk', OnePoint.isDenseEmbedding_coe, Dense.isDenseEmbedding_val, UniformSpace.Completion.isDenseEmbedding_coe
IsDenseInducing πŸ“–CompData
14 mathmath: IsDenseEmbedding.toIsDenseInducing, IsDenseEmbedding.isDenseInducing, isDenseInducing_stoneCechUnit, IsUniformInducing.isDenseInducing, MvPolynomial.toMvPowerSeries_isDenseInducing, IsDenseInducing.mk', isDenseInducing_pure, CauchyFilter.isDenseInducing_pureCauchy, MeasureTheory.Lp.simpleFunc.isDenseInducing, UniformSpace.Completion.isDenseInducing_toCompl, AbstractCompletion.isDenseInducing, Padic.isDenseInducing_cast_withVal, Dense.isDenseInducing_val, UniformSpace.Completion.isDenseInducing_coe

Theorems

NameKindAssumesProvesValidatesDepends On
isClosed_property πŸ“–β€”DenseRangeβ€”β€”DenseRange.closure_range
closure_mono
Set.range_subset_iff
IsClosed.closure_eq
isClosed_property2 πŸ“–β€”DenseRangeβ€”β€”isClosed_property
DenseRange.prodMap
isClosed_property3 πŸ“–β€”DenseRangeβ€”β€”isClosed_property
DenseRange.prodMap

---

← Back to Index