Documentation Verification Report

DiscreteQuotient

๐Ÿ“ Source: Mathlib/Topology/DiscreteQuotient.lean

Statistics

MetricCount
DefinitionsDiscreteQuotient, LEComap, comap, equivFinsetClopens, finsetClopens, inhabitedQuotient, instCoeSortType, instInhabited, instMin, instOrderBotOfLocallyConnectedSpace, instOrderTop, instPartialOrder, instSemilatticeInf, instTopologicalSpaceQuotient, map, ofIsClopen, ofLE, proj, toSetoid, discreteQuotient
20
Theoremscomp, mono, comap_comp, comap_id, comap_mono, comp_finsetClopens, eq_of_forall_proj_eq, exists_of_compat, ext, ext_iff, fiber_eq, fiber_subset_ofLE, finsetClopens_inj, instDiscreteTopologyQuotient, instFiniteQuotientOfCompactSpace, instNonemptyQuotient, instSubsingletonQuotientTop, isClopen_preimage, isClopen_setOf_rel, isClosed_preimage, isOpen_preimage, isOpen_setOf_rel, leComap_id, leComap_id_iff, map_comp, map_comp_ofLE, map_comp_proj, map_continuous, map_id, map_ofLE, map_proj, ofLE_comp_map, ofLE_comp_ofLE, ofLE_comp_proj, ofLE_continuous, ofLE_map, ofLE_ofLE, ofLE_proj, ofLE_refl, ofLE_refl_apply, proj_bot_bijective, proj_bot_eq, proj_bot_inj, proj_bot_injective, proj_continuous, proj_isLocallyConstant, proj_isQuotientMap, proj_surjective, refl, toSetoid_injective, trans, lift_comp_proj
52
Total72

DiscreteQuotient

Definitions

NameCategoryTheorems
LEComap ๐Ÿ“–MathDef
2 mathmath: leComap_id, leComap_id_iff
comap ๐Ÿ“–CompOp
3 mathmath: comap_mono, comap_comp, comap_id
equivFinsetClopens ๐Ÿ“–CompOpโ€”
finsetClopens ๐Ÿ“–CompOp
2 mathmath: finsetClopens_inj, comp_finsetClopens
inhabitedQuotient ๐Ÿ“–CompOpโ€”
instCoeSortType ๐Ÿ“–CompOpโ€”
instInhabited ๐Ÿ“–CompOpโ€”
instMin ๐Ÿ“–CompOpโ€”
instOrderBotOfLocallyConnectedSpace ๐Ÿ“–CompOp
4 mathmath: proj_bot_inj, proj_bot_bijective, proj_bot_eq, proj_bot_injective
instOrderTop ๐Ÿ“–CompOp
1 mathmath: instSubsingletonQuotientTop
instPartialOrder ๐Ÿ“–CompOp
13 mathmath: ofLE_refl, proj_bot_inj, LightProfinite.lightToProfinite_map_proj_eq, proj_bot_bijective, Profinite.instEpiAppDiscreteQuotientCarrierToTopTotallyDisconnectedSpaceฯ€AsLimitCone, leComap_id_iff, Condensed.instFinalOppositeDiscreteQuotientCarrierToTopTotallyDisconnectedSpaceCostructuredArrowFintypeCatProfiniteOpToProfiniteOpPtAsLimitConeFunctorOp, Condensed.isColimitLocallyConstantPresheafDiagram_desc_apply, instSubsingletonQuotientTop, proj_bot_eq, ofLE_refl_apply, Profinite.isIso_asLimitCone_lift, proj_bot_injective
instSemilatticeInf ๐Ÿ“–CompOpโ€”
instTopologicalSpaceQuotient ๐Ÿ“–CompOp
6 mathmath: ofLE_continuous, proj_continuous, instDiscreteTopologyQuotient, proj_isQuotientMap, LocallyConstant.lift_comp_proj, map_continuous
map ๐Ÿ“–CompOp
9 mathmath: map_id, map_comp_proj, ofLE_map, map_comp_ofLE, map_ofLE, map_comp, map_continuous, ofLE_comp_map, map_proj
ofIsClopen ๐Ÿ“–CompOpโ€”
ofLE ๐Ÿ“–CompOp
12 mathmath: ofLE_proj, ofLE_refl, fiber_subset_ofLE, ofLE_continuous, ofLE_map, ofLE_ofLE, ofLE_comp_ofLE, ofLE_comp_proj, map_comp_ofLE, ofLE_refl_apply, map_ofLE, ofLE_comp_map
proj ๐Ÿ“–CompOp
19 mathmath: ofLE_proj, proj_bot_inj, fiber_subset_ofLE, map_comp_proj, proj_continuous, fiber_eq, proj_bot_bijective, isClopen_preimage, ofLE_comp_proj, isClosed_preimage, proj_isQuotientMap, exists_of_compat, proj_bot_eq, proj_isLocallyConstant, proj_surjective, LocallyConstant.lift_comp_proj, isOpen_preimage, proj_bot_injective, map_proj
toSetoid ๐Ÿ“–CompOp
31 mathmath: ofLE_refl, map_id, fiber_subset_ofLE, ofLE_continuous, isOpen_setOf_rel, map_comp_proj, proj_continuous, fiber_eq, proj_bot_bijective, isClopen_preimage, ext_iff, ofLE_comp_ofLE, toSetoid_injective, instDiscreteTopologyQuotient, instFiniteQuotientOfCompactSpace, ofLE_comp_proj, isClosed_preimage, map_comp_ofLE, proj_isQuotientMap, instNonemptyQuotient, instSubsingletonQuotientTop, isClopen_setOf_rel, proj_isLocallyConstant, proj_surjective, LocallyConstant.lift_comp_proj, refl, isOpen_preimage, map_comp, map_continuous, proj_bot_injective, ofLE_comp_map

Theorems

NameKindAssumesProvesValidatesDepends On
comap_comp ๐Ÿ“–mathematicalโ€”comap
ContinuousMap.comp
โ€”โ€”
comap_id ๐Ÿ“–mathematicalโ€”comap
ContinuousMap.id
โ€”โ€”
comap_mono ๐Ÿ“–mathematicalDiscreteQuotient
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
comapโ€”โ€”
comp_finsetClopens ๐Ÿ“–mathematicalโ€”DiscreteQuotient
Finset
TopologicalSpace.Clopens
Set
Set.image
TopologicalSpace.Clopens.carrier
SetLike.coe
Finset.instSetLike
finsetClopens
Setoid.classes
โ€”Set.ext
instFiniteQuotientOfCompactSpace
Set.coe_toFinset
Quotient.mk_eq_iff_out
eq_of_forall_proj_eq ๐Ÿ“–โ€”projโ€”โ€”Set.mem_singleton_iff
connectedComponent_eq_singleton
connectedComponent_eq_iInter_isClopen
Set.mem_iInter
Quotient.exact'
exists_of_compat ๐Ÿ“–mathematicalofLEprojโ€”fiber_subset_ofLE
IsCompact.nonempty_iInter_of_directed_nonempty_isCompact_isClosed
directed_of_isDirected_ge
SemilatticeInf.instIsCodirectedOrder
Set.Nonempty.preimage
Set.singleton_nonempty
proj_surjective
IsClosed.isCompact
isClosed_preimage
Set.mem_iInter
ext ๐Ÿ“–โ€”toSetoidโ€”โ€”โ€”
ext_iff ๐Ÿ“–mathematicalโ€”toSetoidโ€”ext
fiber_eq ๐Ÿ“–mathematicalโ€”Set.preimage
toSetoid
proj
Set
Set.instSingletonSet
setOf
โ€”Set.ext
Quotient.eq''
fiber_subset_ofLE ๐Ÿ“–mathematicalDiscreteQuotient
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Set
Set.instHasSubset
Set.preimage
toSetoid
proj
Set.instSingletonSet
ofLE
โ€”proj_surjective
fiber_eq
ofLE_proj
finsetClopens_inj ๐Ÿ“–mathematicalโ€”DiscreteQuotient
Finset
TopologicalSpace.Clopens
finsetClopens
โ€”Function.Injective.of_comp
comp_finsetClopens
instDiscreteTopologyQuotient ๐Ÿ“–mathematicalโ€”DiscreteTopology
toSetoid
instTopologicalSpaceQuotient
โ€”discreteTopology_iff_isOpen_singleton
Function.Surjective.forall
proj_surjective
Topology.IsQuotientMap.isOpen_preimage
proj_isQuotientMap
fiber_eq
isOpen_setOf_rel
instFiniteQuotientOfCompactSpace ๐Ÿ“–mathematicalโ€”Finite
toSetoid
โ€”Quotient.compactSpace
Set.finite_univ_iff
isCompact_iff_finite
instDiscreteTopologyQuotient
isCompact_univ_iff
instNonemptyQuotient ๐Ÿ“–mathematicalโ€”toSetoidโ€”Nonempty.map
instSubsingletonQuotientTop ๐Ÿ“–mathematicalโ€”toSetoid
Top.top
DiscreteQuotient
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instOrderTop
โ€”โ€”
isClopen_preimage ๐Ÿ“–mathematicalโ€”IsClopen
Set.preimage
toSetoid
proj
โ€”IsClopen.preimage
isClopen_discrete
instDiscreteTopologyQuotient
proj_continuous
isClopen_setOf_rel ๐Ÿ“–mathematicalโ€”IsClopen
setOf
toSetoid
โ€”fiber_eq
isClopen_preimage
isClosed_preimage ๐Ÿ“–mathematicalโ€”IsClosed
Set.preimage
toSetoid
proj
โ€”isClopen_preimage
isOpen_preimage ๐Ÿ“–mathematicalโ€”IsOpen
Set.preimage
toSetoid
proj
โ€”isClopen_preimage
isOpen_setOf_rel ๐Ÿ“–mathematicalโ€”IsOpen
setOf
toSetoid
โ€”โ€”
leComap_id ๐Ÿ“–mathematicalโ€”LEComap
ContinuousMap.id
โ€”le_rfl
leComap_id_iff ๐Ÿ“–mathematicalโ€”LEComap
ContinuousMap.id
DiscreteQuotient
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
โ€”โ€”
map_comp ๐Ÿ“–mathematicalLEComapmap
ContinuousMap.comp
LEComap.comp
toSetoid
โ€”LEComap.comp
map_comp_ofLE ๐Ÿ“–mathematicalLEComap
DiscreteQuotient
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
toSetoid
map
ofLE
LEComap.mono
le_rfl
โ€”LEComap.mono
le_rfl
map_ofLE
map_comp_proj ๐Ÿ“–mathematicalLEComaptoSetoid
map
proj
DFunLike.coe
ContinuousMap
ContinuousMap.instFunLike
โ€”โ€”
map_continuous ๐Ÿ“–mathematicalLEComapContinuous
toSetoid
instTopologicalSpaceQuotient
map
โ€”continuous_of_discreteTopology
instDiscreteTopologyQuotient
map_id ๐Ÿ“–mathematicalโ€”map
ContinuousMap.id
leComap_id
toSetoid
โ€”leComap_id
map_ofLE ๐Ÿ“–mathematicalLEComap
DiscreteQuotient
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
map
ofLE
LEComap.mono
le_rfl
โ€”LEComap.mono
le_rfl
map_proj ๐Ÿ“–mathematicalLEComapmap
proj
DFunLike.coe
ContinuousMap
ContinuousMap.instFunLike
โ€”โ€”
ofLE_comp_map ๐Ÿ“–mathematicalLEComap
DiscreteQuotient
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
toSetoid
ofLE
map
LEComap.mono
le_rfl
โ€”LEComap.mono
le_rfl
ofLE_map
ofLE_comp_ofLE ๐Ÿ“–mathematicalDiscreteQuotient
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
toSetoid
ofLE
le_trans
โ€”le_trans
ofLE_ofLE
ofLE_comp_proj ๐Ÿ“–mathematicalDiscreteQuotient
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
toSetoid
ofLE
proj
โ€”ofLE_proj
ofLE_continuous ๐Ÿ“–mathematicalDiscreteQuotient
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Continuous
toSetoid
instTopologicalSpaceQuotient
ofLE
โ€”continuous_of_discreteTopology
instDiscreteTopologyQuotient
ofLE_map ๐Ÿ“–mathematicalLEComap
DiscreteQuotient
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
ofLE
map
LEComap.mono
le_rfl
โ€”LEComap.mono
le_rfl
ofLE_ofLE ๐Ÿ“–mathematicalDiscreteQuotient
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
ofLE
LE.le.trans
โ€”LE.le.trans
ofLE_proj ๐Ÿ“–mathematicalDiscreteQuotient
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
ofLE
proj
โ€”Quotient.sound'
refl
ofLE_refl ๐Ÿ“–mathematicalโ€”ofLE
le_refl
DiscreteQuotient
PartialOrder.toPreorder
instPartialOrder
toSetoid
โ€”le_refl
ofLE_refl_apply ๐Ÿ“–mathematicalโ€”ofLE
le_refl
DiscreteQuotient
PartialOrder.toPreorder
instPartialOrder
โ€”le_refl
ofLE_refl
proj_bot_bijective ๐Ÿ“–mathematicalโ€”Function.Bijective
toSetoid
Bot.bot
DiscreteQuotient
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instOrderBotOfLocallyConnectedSpace
DiscreteTopology.toLocallyConnectedSpace
proj
โ€”DiscreteTopology.toLocallyConnectedSpace
proj_bot_injective
proj_surjective
proj_bot_eq ๐Ÿ“–mathematicalโ€”proj
Bot.bot
DiscreteQuotient
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instOrderBotOfLocallyConnectedSpace
connectedComponent
โ€”Quotient.eq''
proj_bot_inj ๐Ÿ“–mathematicalโ€”proj
Bot.bot
DiscreteQuotient
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instOrderBotOfLocallyConnectedSpace
DiscreteTopology.toLocallyConnectedSpace
โ€”DiscreteTopology.toLocallyConnectedSpace
connectedComponent_eq_singleton
TotallySeparatedSpace.totallyDisconnectedSpace
TotallySeparatedSpace.of_discrete
proj_bot_injective ๐Ÿ“–mathematicalโ€”toSetoid
Bot.bot
DiscreteQuotient
OrderBot.toBot
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
instOrderBotOfLocallyConnectedSpace
DiscreteTopology.toLocallyConnectedSpace
proj
โ€”DiscreteTopology.toLocallyConnectedSpace
proj_continuous ๐Ÿ“–mathematicalโ€”Continuous
toSetoid
instTopologicalSpaceQuotient
proj
โ€”Topology.IsQuotientMap.continuous
proj_isQuotientMap
proj_isLocallyConstant ๐Ÿ“–mathematicalโ€”IsLocallyConstant
toSetoid
proj
โ€”IsLocallyConstant.iff_continuous
instDiscreteTopologyQuotient
proj_continuous
proj_isQuotientMap ๐Ÿ“–mathematicalโ€”Topology.IsQuotientMap
toSetoid
instTopologicalSpaceQuotient
proj
โ€”โ€”
proj_surjective ๐Ÿ“–mathematicalโ€”toSetoid
proj
โ€”Quotient.mk''_surjective
refl ๐Ÿ“–mathematicalโ€”toSetoidโ€”Setoid.refl'
toSetoid_injective ๐Ÿ“–mathematicalโ€”DiscreteQuotient
toSetoid
โ€”โ€”
trans ๐Ÿ“–โ€”toSetoidโ€”โ€”Setoid.trans'

DiscreteQuotient.LEComap

Theorems

NameKindAssumesProvesValidatesDepends On
comp ๐Ÿ“–mathematicalDiscreteQuotient.LEComapContinuousMap.compโ€”โ€”
mono ๐Ÿ“–โ€”DiscreteQuotient.LEComap
DiscreteQuotient
Preorder.toLE
PartialOrder.toPreorder
DiscreteQuotient.instPartialOrder
โ€”โ€”LE.le.trans
DiscreteQuotient.comap_mono

LocallyConstant

Definitions

NameCategoryTheorems
discreteQuotient ๐Ÿ“–CompOp
1 mathmath: lift_comp_proj

Theorems

NameKindAssumesProvesValidatesDepends On
lift_comp_proj ๐Ÿ“–mathematicalโ€”DiscreteQuotient.toSetoid
discreteQuotient
DFunLike.coe
LocallyConstant
DiscreteQuotient.instTopologicalSpaceQuotient
instFunLike
lift
DiscreteQuotient.proj
โ€”โ€”

(root)

Definitions

NameCategoryTheorems
DiscreteQuotient ๐Ÿ“–CompData
17 mathmath: DiscreteQuotient.ofLE_refl, DiscreteQuotient.proj_bot_inj, DiscreteQuotient.finsetClopens_inj, LightProfinite.lightToProfinite_map_proj_eq, DiscreteQuotient.proj_bot_bijective, LightProfinite.instCountableDiscreteQuotient, Profinite.instEpiAppDiscreteQuotientCarrierToTopTotallyDisconnectedSpaceฯ€AsLimitCone, DiscreteQuotient.leComap_id_iff, DiscreteQuotient.comp_finsetClopens, Condensed.instFinalOppositeDiscreteQuotientCarrierToTopTotallyDisconnectedSpaceCostructuredArrowFintypeCatProfiniteOpToProfiniteOpPtAsLimitConeFunctorOp, DiscreteQuotient.toSetoid_injective, Condensed.isColimitLocallyConstantPresheafDiagram_desc_apply, DiscreteQuotient.instSubsingletonQuotientTop, DiscreteQuotient.proj_bot_eq, DiscreteQuotient.ofLE_refl_apply, Profinite.isIso_asLimitCone_lift, DiscreteQuotient.proj_bot_injective

---

โ† Back to Index