DiscreteSubset
π Source: Mathlib/Topology/DiscreteSubset.lean
Statistics
Continuous
Theorems
Filter
Definitions
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
self_mem_codiscreteWithin π | mathematical | β | SetFilterinstMembershipcodiscreteWithin | β | sdiff_selfprincipal_empty |
Filter.codiscreteWithin
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
mono π | mathematical | SetSet.instHasSubset | FilterPreorder.toLEPartialOrder.toPreorderFilter.instPartialOrderFilter.codiscreteWithin | β | LE.le.transbiSup_monoiSupβ_mononhdsWithin_monoSet.diff_subset_diffsubset_reflSet.instReflSubset |
IsClosed
Theorems
IsDiscrete
Theorems
IsEmbedding
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
isDiscrete_range π | mathematical | Topology.IsEmbedding | IsDiscreteSet.range | β | Set.image_univIsDiscrete.imageIsDiscrete.univ |
IsOpenMap
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
isDiscrete_range π | mathematical | IsOpenMap | IsDiscreteSet.range | β | Set.image_univIsDiscrete.image_of_isOpenMap_of_isOpenIsDiscrete.univisOpen_univ |
Set.Finite
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
compl_mem_codiscrete π | mathematical | β | SetFilterFilter.instMembershipFilter.codiscreteCompl.complSet.instCompl | β | codiscrete_le_cofinitecompl_compl |
Set.Infinite
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
of_accPt π | mathematical | β | Set.Infinite | β | Set.Finite.compl_mem_codiscretecompl_complmem_codiscrete_accPt |
Set.Subsingleton
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
isDiscrete π | mathematical | Set.Subsingleton | IsDiscrete | β | Set.subsingleton_coeSubsingleton.discreteTopology |
(root)
Theorems
---