Documentation Verification Report

DiscreteSubset

πŸ“ Source: Mathlib/Topology/DiscreteSubset.lean

Statistics

MetricCount
Definitionscodiscrete, codiscreteWithin
2
Theoremsdiscrete_of_tendsto_cofinite_cocompact, mono, self_mem_codiscreteWithin, tendsto_coe_cofinite_iff, tendsto_coe_cofinite_of_discreteTopology, tendsto_coe_cofinite_of_isDiscrete, eq_of_specializes, image, image_of_isOpenMap, image_of_isOpenMap_of_isOpen, nhdsWithin, of_nhdsWithin, preimage, preimage', univ, isDiscrete_range, isDiscrete_range, compl_mem_codiscrete, of_accPt, isDiscrete, codiscreteWithin_iff_locallyEmptyComplementWithin, codiscreteWithin_iff_locallyFiniteComplementWithin, codiscrete_le_cofinite, compl_mem_codiscrete_iff, discreteTopology_biUnion_finset, discreteTopology_iUnion_finite, discreteTopology_iUnion_fintype, discreteTopology_of_codiscreteWithin, discreteTopology_of_noAccPts, discreteTopology_subtype_iff, discreteTopology_subtype_iff', discreteTopology_union, isClosed_and_discrete_iff, isClosed_sdiff_of_codiscreteWithin, isDiscrete_iff_forall_exists_isOpen, isDiscrete_iff_nhdsNE, isDiscrete_iff_nhdsWithin, isDiscrete_of_codiscreteWithin, isDiscrete_univ_iff, mem_codiscrete, mem_codiscrete', mem_codiscreteWithin, mem_codiscreteWithin_accPt, mem_codiscreteWithin_iff_forall_mem_nhdsNE, mem_codiscrete_accPt, mem_codiscrete_subtype_iff_mem_codiscreteWithin, nhdsNE_of_nhdsNE_sdiff_finite, tendsto_cofinite_cocompact_iff, tendsto_cofinite_cocompact_of_discrete
49
Total51

Continuous

Theorems

NameKindAssumesProvesValidatesDepends On
discrete_of_tendsto_cofinite_cocompact πŸ“–mathematicalContinuous
Filter.Tendsto
Filter.cofinite
Filter.cocompact
DiscreteTopologyβ€”discreteTopology_iff_isOpen_singleton
WeaklyLocallyCompactSpace.exists_compact_mem_nhds
mem_nhds_iff
Set.Finite.subset
tendsto_cofinite_cocompact_iff
Set.preimage_mono
isOpen_singleton_of_finite_mem_nhds
IsOpen.mem_nhds
IsOpen.preimage

Filter

Definitions

NameCategoryTheorems
codiscrete πŸ“–CompOp
11 mathmath: MeromorphicOn.codiscrete_setOf_meromorphicOrderAt_eq_zero_or_top, compl_mem_codiscrete_iff, mem_codiscrete', mem_codiscrete, mem_codiscrete_accPt, AnalyticOnNhd.preimage_zero_mem_codiscrete, circleMap_preimage_codiscrete, AnalyticOnNhd.codiscrete_setOf_analyticOrderAt_eq_zero_or_top, Set.Finite.compl_mem_codiscrete, mem_codiscrete_subtype_iff_mem_codiscreteWithin, codiscrete_le_cofinite
codiscreteWithin πŸ“–CompOp
22 mathmath: mem_codiscreteWithin_iff_forall_mem_nhdsNE, Function.locallyFinsuppWithin.eq_zero_codiscreteWithin, MeromorphicOn.analyticAt_mem_codiscreteWithin, codiscreteWithin_iff_locallyEmptyComplementWithin, MeromorphicOn.meromorphicNFAt_mem_codiscreteWithin, AnalyticOnNhd.codiscreteWithin_setOf_analyticOrderAt_eq_zero_or_top, circleMap_preimage_codiscrete, MeromorphicOn.eventually_codiscreteWithin_analyticAt, AnalyticOnNhd.eqOn_or_eventually_ne_of_preconnected, codiscreteWithin_iff_locallyFiniteComplementWithin, mem_codiscreteWithin_accPt, ae_restrict_le_codiscreteWithin, supportDiscreteWithin_iff_locallyFiniteWithin, mem_codiscreteWithin, self_mem_codiscreteWithin, MeromorphicOn.extract_zeros_poles, codiscreteWithin.mono, AnalyticOnNhd.map_codiscreteWithin, AnalyticOnNhd.preimage_zero_mem_codiscreteWithin, mem_codiscrete_subtype_iff_mem_codiscreteWithin, AnalyticOnNhd.eqOn_zero_or_eventually_ne_zero_of_preconnected, toMeromorphicNFOn_eqOn_codiscrete

Theorems

NameKindAssumesProvesValidatesDepends On
self_mem_codiscreteWithin πŸ“–mathematicalβ€”Set
Filter
instMembership
codiscreteWithin
β€”sdiff_self
principal_empty

Filter.codiscreteWithin

Theorems

NameKindAssumesProvesValidatesDepends On
mono πŸ“–mathematicalSet
Set.instHasSubset
Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.codiscreteWithin
β€”LE.le.trans
biSup_mono
iSupβ‚‚_mono
nhdsWithin_mono
Set.diff_subset_diff
subset_refl
Set.instReflSubset

IsClosed

Theorems

NameKindAssumesProvesValidatesDepends On
tendsto_coe_cofinite_iff πŸ“–mathematicalβ€”Filter.Tendsto
Set
Set.instMembership
Filter.cofinite
Filter.cocompact
IsDiscrete
β€”Continuous.discrete_of_tendsto_cofinite_cocompact
Subtype.t1Space
continuous_subtype_val
tendsto_coe_cofinite_of_isDiscrete
tendsto_coe_cofinite_of_discreteTopology πŸ“–mathematicalIsDiscreteFilter.Tendsto
Set
Set.instMembership
Filter.cofinite
Filter.cocompact
β€”tendsto_coe_cofinite_of_isDiscrete
tendsto_coe_cofinite_of_isDiscrete πŸ“–mathematicalIsDiscreteFilter.Tendsto
Set
Set.instMembership
Filter.cofinite
Filter.cocompact
β€”tendsto_cofinite_cocompact_of_discrete
IsDiscrete.to_subtype
Topology.IsClosedEmbedding.tendsto_cocompact
isClosedEmbedding_subtypeVal

IsDiscrete

Theorems

NameKindAssumesProvesValidatesDepends On
eq_of_specializes πŸ“–β€”IsDiscrete
Specializes
Set
Set.instMembership
β€”β€”Topology.IsInducing.specializes_iff
Topology.IsInducing.subtypeVal
specializes_iff_eq
instT1SpaceOfDiscreteTopology
to_subtype
image πŸ“–mathematicalIsDiscrete
Topology.IsEmbedding
Set.imageβ€”of_nhdsWithin
Filter.map_pure
nhdsWithin
Topology.IsEmbedding.map_nhdsWithin_eq
le_refl
image_of_isOpenMap πŸ“–mathematicalIsDiscrete
IsOpenMap
Set.imageβ€”of_nhdsWithin
Filter.map_pure
nhdsWithin
nhdsWithin.eq_1
Filter.map_inf
Filter.map_principal
le_imp_le_of_le_of_le
inf_le_inf
IsOpenMap.nhds_le
le_refl
image_of_isOpenMap_of_isOpen πŸ“–mathematicalIsDiscrete
IsOpenMap
IsOpen
Set.imageβ€”of_nhdsWithin
IsOpen.nhdsWithin_eq
Filter.map_pure
nhdsWithin
IsOpenMap.nhds_le
nhdsWithin πŸ“–mathematicalIsDiscrete
Set
Set.instMembership
nhdsWithin
Filter
Filter.instPure
β€”isDiscrete_iff_nhdsWithin
of_nhdsWithin πŸ“–mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
nhdsWithin
Filter.instPure
IsDiscreteβ€”isDiscrete_iff_nhdsWithin
LE.le.antisymm
pure_le_nhdsWithin
preimage πŸ“–β€”IsDiscrete
ContinuousOn
Set.preimage
β€”β€”of_nhdsWithin
Filter.map_le_map_iff
Filter.map_pure
nhdsWithin
Filter.Tendsto.eq_1
ContinuousWithinAt.tendsto_nhdsWithin
ContinuousOn.continuousWithinAt
Set.mapsTo_preimage
preimage' πŸ“–β€”IsDiscrete
ContinuousOn
Set.preimage
Set
Set.instSingletonSet
β€”β€”of_nhdsWithin
Eq.le
nhdsWithin
inf_eq_right
nhdsWithin_le_nhds
le_imp_le_of_le_of_le
inf_le_inf
le_refl
Filter.Tendsto.le_comap
ContinuousWithinAt.tendsto_nhdsWithin
ContinuousOn.continuousWithinAt
Filter.comap_pure
nhdsWithin.eq_1
univ πŸ“–mathematicalβ€”IsDiscrete
Set.univ
β€”isDiscrete_univ_iff

IsEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
isDiscrete_range πŸ“–mathematicalTopology.IsEmbeddingIsDiscrete
Set.range
β€”Set.image_univ
IsDiscrete.image
IsDiscrete.univ

IsOpenMap

Theorems

NameKindAssumesProvesValidatesDepends On
isDiscrete_range πŸ“–mathematicalIsOpenMapIsDiscrete
Set.range
β€”Set.image_univ
IsDiscrete.image_of_isOpenMap_of_isOpen
IsDiscrete.univ
isOpen_univ

Set.Finite

Theorems

NameKindAssumesProvesValidatesDepends On
compl_mem_codiscrete πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
Filter.codiscrete
Compl.compl
Set.instCompl
β€”codiscrete_le_cofinite
compl_compl

Set.Infinite

Theorems

NameKindAssumesProvesValidatesDepends On
of_accPt πŸ“–mathematicalβ€”Set.Infiniteβ€”Set.Finite.compl_mem_codiscrete
compl_compl
mem_codiscrete_accPt

Set.Subsingleton

Theorems

NameKindAssumesProvesValidatesDepends On
isDiscrete πŸ“–mathematicalSet.SubsingletonIsDiscreteβ€”Set.subsingleton_coe
Subsingleton.discreteTopology

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
codiscreteWithin_iff_locallyEmptyComplementWithin πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
Filter.codiscreteWithin
nhdsWithin
Compl.compl
Set.instCompl
Set.instSingletonSet
Set.instInter
Set.instSDiff
Set.instEmptyCollection
β€”Set.compl_inter_self
Filter.exists_mem_subset_iff
Disjoint.subset_compl_right
Set.disjoint_iff_inter_eq_empty
codiscreteWithin_iff_locallyFiniteComplementWithin πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
Filter.codiscreteWithin
nhds
Set.Finite
Set.instInter
Set.instSDiff
β€”codiscreteWithin_iff_locallyEmptyComplementWithin
insert_mem_nhds_iff
Set.inter_comm
Set.inter_insert_of_mem
Set.instLawfulSingleton
Set.inter_insert_of_notMem
nhdsNE_of_nhdsNE_sdiff_finite
mem_nhdsWithin_of_mem_nhds
Set.diff_self_inter
Set.diff_inter_self
codiscrete_le_cofinite πŸ“–mathematicalβ€”Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.codiscrete
Filter.cofinite
β€”compl_compl
compl_mem_codiscrete_iff
Set.Finite.isClosed
IsDiscrete.to_subtype
Set.Finite.isDiscrete
compl_mem_codiscrete_iff πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
Filter.codiscrete
Compl.compl
Set.instCompl
IsClosed
DiscreteTopology
Set.Elem
instTopologicalSpaceSubtype
Set.instMembership
β€”mem_codiscrete
compl_compl
isDiscrete_iff_discreteTopology
isClosed_and_discrete_iff
discreteTopology_biUnion_finset πŸ“–mathematicalDiscreteTopology
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
IsClosed
Set.iUnion
Finset
Finset.instMembership
β€”Set.compl_iUnion
Filter.biInter_finset_mem
compl_mem_codiscrete_iff
discreteTopology_iUnion_finite πŸ“–mathematicalDiscreteTopology
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
IsClosed
Set.iUnionβ€”Set.iUnion_congr_Prop
Set.iUnion_true
discreteTopology_biUnion_finset
discreteTopology_iUnion_fintype πŸ“–mathematicalDiscreteTopology
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
IsClosed
Set.iUnionβ€”discreteTopology_iUnion_finite
discreteTopology_of_codiscreteWithin πŸ“–mathematicalSet
Filter
Filter.instMembership
Filter.codiscreteWithin
Compl.compl
Set.instCompl
IsDiscrete
Set.instInter
β€”isDiscrete_of_codiscreteWithin
discreteTopology_of_noAccPts πŸ“–mathematicalAccPt
Filter.principal
DiscreteTopology
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
β€”β€”
discreteTopology_subtype_iff πŸ“–mathematicalβ€”DiscreteTopology
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
Filter
Filter.instInf
nhdsWithin
Compl.compl
Set.instCompl
Set.instSingletonSet
Filter.principal
Bot.bot
Filter.instBot
β€”β€”
discreteTopology_subtype_iff' πŸ“–mathematicalβ€”DiscreteTopology
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
IsOpen
Set.instInter
Set.instSingletonSet
β€”β€”
discreteTopology_union πŸ“–mathematicalβ€”DiscreteTopology
Set.Elem
Set
Set.instUnion
instTopologicalSpaceSubtype
Set.instMembership
β€”Set.compl_union
Filter.inter_mem
compl_mem_codiscrete_iff
isClosed_and_discrete_iff πŸ“–mathematicalβ€”IsClosed
IsDiscrete
Disjoint
Filter
Filter.instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
Filter.instCompleteLatticeFilter
nhdsWithin
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
Filter.principal
β€”isDiscrete_iff_nhdsNE
isClosed_iff_clusterPt
not_imp_not
clusterPt_iff_not_disjoint
disjoint_iff
Disjoint.mono_left
nhdsWithin_le_nhds
inf_assoc
inf_of_le_right
isClosed_sdiff_of_codiscreteWithin πŸ“–mathematicalSet
Filter
Filter.instMembership
Filter.codiscreteWithin
IsClosed
Set.instSDiff
β€”isOpen_compl_iff
isOpen_iff_eventually
Filter.mp_mem
eventually_nhdsWithin_iff
Filter.disjoint_principal_right
mem_codiscreteWithin
Filter.univ_mem'
Filter.eventually_iff_exists_mem
IsClosed.compl_mem_nhds
isDiscrete_iff_forall_exists_isOpen πŸ“–mathematicalβ€”IsDiscrete
IsOpen
Set
Set.instInter
Set.instSingletonSet
β€”isDiscrete_iff_discreteTopology
discreteTopology_subtype_iff'
isDiscrete_iff_nhdsNE πŸ“–mathematicalβ€”IsDiscrete
Filter
Filter.instInf
nhdsWithin
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
Filter.principal
Bot.bot
Filter.instBot
β€”isDiscrete_iff_discreteTopology
discreteTopology_subtype_iff
isDiscrete_iff_nhdsWithin πŸ“–mathematicalβ€”IsDiscrete
nhdsWithin
Filter
Filter.instPure
β€”nhds_induced
Filter.map_injective
Subtype.val_injective
Filter.map_comap
Subtype.range_coe_subtype
isDiscrete_of_codiscreteWithin πŸ“–mathematicalSet
Filter
Filter.instMembership
Filter.codiscreteWithin
Compl.compl
Set.instCompl
IsDiscrete
Set.instInter
β€”Set.compl_union
compl_compl
isDiscrete_iff_nhdsNE
sdiff_compl
isDiscrete_univ_iff πŸ“–mathematicalβ€”IsDiscrete
Set.univ
DiscreteTopology
β€”nhdsWithin_univ
mem_codiscrete πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
Filter.codiscrete
Disjoint
Filter.instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
Filter.instCompleteLatticeFilter
nhdsWithin
Compl.compl
Set.instCompl
Set.instSingletonSet
Filter.principal
β€”Set.compl_eq_univ_diff
sdiff_sdiff_right_self
inf_of_le_right
mem_codiscrete' πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
Filter.codiscrete
IsOpen
IsDiscrete
Compl.compl
Set.instCompl
β€”mem_codiscrete
isClosed_compl_iff
isClosed_and_discrete_iff
mem_codiscreteWithin πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
Filter.codiscreteWithin
Disjoint
Filter.instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
Filter.instCompleteLatticeFilter
nhdsWithin
Compl.compl
Set.instCompl
Set.instSingletonSet
Filter.principal
Set.instSDiff
β€”β€”
mem_codiscreteWithin_accPt πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
Filter.codiscreteWithin
AccPt
Filter.principal
Set.instSDiff
β€”β€”
mem_codiscreteWithin_iff_forall_mem_nhdsNE πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
Filter.codiscreteWithin
nhdsWithin
Compl.compl
Set.instCompl
Set.instSingletonSet
Set.instUnion
β€”Set.compl_diff
mem_codiscrete_accPt πŸ“–mathematicalβ€”Set
Filter
Filter.instMembership
Filter.codiscrete
AccPt
Filter.principal
Compl.compl
Set.instCompl
β€”β€”
mem_codiscrete_subtype_iff_mem_codiscreteWithin πŸ“–mathematicalβ€”Set
Set.Elem
Filter
Filter.instMembership
Filter.codiscrete
instTopologicalSpaceSubtype
Set.instMembership
Filter.codiscreteWithin
Set.image
β€”compl_compl
nhdsWithin_subtype
Filter.mem_comap
mem_nhdsWithin
Set.image_val_compl
Set.image_singleton
tendsto_nhdsWithin_of_tendsto_nhds_of_eventually_within
Continuous.continuousWithinAt
continuous_subtype_val
Filter.Eventually.mono
eventually_mem_nhdsWithin
Set.ext
Subtype.coe_preimage_self
Set.preimage_image_eq
Filter.tendsto_def
nhdsNE_of_nhdsNE_sdiff_finite πŸ“–mathematicalSet
Filter
Filter.instMembership
nhdsWithin
Compl.compl
Set.instCompl
Set.instSingletonSet
Set.instSDiffβ€”mem_nhdsWithin
isClosed_compl_iff
Set.compl_diff
IsClosed.union
Set.Finite.isClosed
Set.Finite.diff
Set.toFinite
tendsto_cofinite_cocompact_iff πŸ“–mathematicalβ€”Filter.Tendsto
Filter.cofinite
Filter.cocompact
Set.Finite
Set.preimage
β€”Filter.HasBasis.tendsto_right_iff
Filter.hasBasis_cocompact
tendsto_cofinite_cocompact_of_discrete πŸ“–mathematicalFilter.Tendsto
Filter.cocompact
Filter.cofiniteβ€”Filter.cocompact_eq_cofinite

---

← Back to Index