Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Topology/EMetricSpace/Basic.lean

Statistics

MetricCount
DefinitionsofT0PseudoEMetricSpace, emetricSpaceMax, instEDistSeparationQuotient, instEMetricSpaceSeparationQuotient
4
TheoremscauchySeq_iff, cauchySeq_iff', cauchySeq_iff_NNReal, cauchy_iff, complete_of_cauchySeq_tendsto, complete_of_convergent_controlled_sequences, controlled_of_isUniformEmbedding, countable_closure_of_compact, inseparable_iff, instNontrivialTopologyOfNontrivial, isUniformEmbedding_iff, isUniformEmbedding_iff', isUniformInducing_iff, nontrivial_iff_nontrivialTopology, secondCountable_of_almost_dense_set, secondCountable_of_sigmaCompact, subset_countable_closure_of_almost_dense_set, subset_countable_closure_of_compact, subsingleton_iff_indiscreteTopology, tendstoLocallyUniformlyOn_iff, tendstoLocallyUniformly_iff, tendstoUniformlyOn_iff, tendstoUniformly_iff, totallyBounded_iff, totallyBounded_iff', instT0Space, edist_eq_zero, edist_mk, edist_le_Ico_sum_edist, edist_le_Ico_sum_of_edist_le, edist_le_range_sum_edist, edist_le_range_sum_of_edist_le, lebesgue_number_lemma_of_emetric, lebesgue_number_lemma_of_emetric_nhds, lebesgue_number_lemma_of_emetric_nhds', lebesgue_number_lemma_of_emetric_nhdsWithin, lebesgue_number_lemma_of_emetric_nhdsWithin', lebesgue_number_lemma_of_emetric_sUnion
38
Total42

EMetric

Theorems

NameKindAssumesProvesValidatesDepends On
cauchySeq_iff πŸ“–mathematicalβ€”CauchySeq
PseudoEMetricSpace.toUniformSpace
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
ENNReal
Preorder.toLT
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
β€”Filter.HasBasis.cauchySeq_iff
uniformity_basis_edist
cauchySeq_iff' πŸ“–mathematicalβ€”CauchySeq
PseudoEMetricSpace.toUniformSpace
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
ENNReal
Preorder.toLT
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
β€”Filter.HasBasis.cauchySeq_iff'
uniformity_basis_edist
cauchySeq_iff_NNReal πŸ“–mathematicalβ€”CauchySeq
PseudoEMetricSpace.toUniformSpace
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
ENNReal
Preorder.toLT
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
ENNReal.ofNNReal
β€”Filter.HasBasis.cauchySeq_iff'
uniformity_basis_edist_nnreal
cauchy_iff πŸ“–mathematicalβ€”Cauchy
PseudoEMetricSpace.toUniformSpace
Set
Filter
Filter.instMembership
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
β€”Filter.neBot_iff
Filter.HasBasis.cauchy_iff
uniformity_basis_edist
complete_of_cauchySeq_tendsto πŸ“–mathematicalFilter.Tendsto
Filter.atTop
Nat.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
CompleteSpaceβ€”UniformSpace.complete_of_cauchySeq_tendsto
instIsCountablyGeneratedUniformity
complete_of_convergent_controlled_sequences πŸ“–mathematicalENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
Filter.Tendsto
Filter.atTop
Nat.instPreorder
nhds
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
CompleteSpaceβ€”UniformSpace.complete_of_convergent_controlled_sequences
instIsCountablyGeneratedUniformity
edist_mem_uniformity
controlled_of_isUniformEmbedding πŸ“–mathematicalIsUniformEmbedding
PseudoEMetricSpace.toUniformSpace
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
EDist.edist
PseudoEMetricSpace.toEDist
β€”uniformContinuous_iff
IsUniformInducing.uniformContinuous
IsUniformEmbedding.toIsUniformInducing
isUniformEmbedding_iff
countable_closure_of_compact πŸ“–mathematicalIsCompact
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
EMetricSpace.toPseudoEMetricSpace
Set
Set.instHasSubset
Set.Countable
closure
β€”subset_countable_closure_of_compact
HasSubset.Subset.antisymm
Set.instAntisymmSubset
closure_minimal
IsCompact.isClosed
T25Space.t2Space
T3Space.t25Space
T4Space.t3Space
instT4SpaceOfT1SpaceOfNormalSpace
instT1SpaceOfT0SpaceOfR0Space
EMetricSpace.instT0Space
instR0Space
instR1Space
UniformSpace.to_regularSpace
CompletelyNormalSpace.toNormalSpace
UniformSpace.completelyNormalSpace_of_isCountablyGenerated_uniformity
instIsCountablyGeneratedUniformity
inseparable_iff πŸ“–mathematicalβ€”Inseparable
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
EDist.edist
PseudoEMetricSpace.toEDist
ENNReal
instZeroENNReal
β€”ENNReal.instCanonicallyOrderedAdd
PseudoEMetricSpace.edist_comm
instNontrivialTopologyOfNontrivial πŸ“–mathematicalβ€”NontrivialTopology
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
EMetricSpace.toPseudoEMetricSpace
β€”nontrivial_iff_nontrivialTopology
isUniformEmbedding_iff πŸ“–mathematicalβ€”IsUniformEmbedding
PseudoEMetricSpace.toUniformSpace
UniformContinuous
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
EDist.edist
PseudoEMetricSpace.toEDist
β€”isUniformEmbedding_iff
Iff.and
isUniformInducing_iff
isUniformEmbedding_iff' πŸ“–mathematicalβ€”IsUniformEmbedding
PseudoEMetricSpace.toUniformSpace
EMetricSpace.toPseudoEMetricSpace
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
EDist.edist
PseudoEMetricSpace.toEDist
β€”isUniformEmbedding_iff_isUniformInducing
EMetricSpace.instT0Space
isUniformInducing_iff
uniformContinuous_iff
isUniformInducing_iff πŸ“–mathematicalβ€”IsUniformInducing
PseudoEMetricSpace.toUniformSpace
UniformContinuous
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
EDist.edist
PseudoEMetricSpace.toEDist
β€”isUniformInducing_iff'
Iff.and
Filter.HasBasis.le_basis_iff
Filter.HasBasis.comap
uniformity_basis_edist
nontrivial_iff_nontrivialTopology πŸ“–mathematicalβ€”Nontrivial
NontrivialTopology
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
EMetricSpace.toPseudoEMetricSpace
β€”β€”
secondCountable_of_almost_dense_set πŸ“–mathematicalSet.Countable
Set.iUnion
Set
Set.instMembership
Metric.closedEBall
Set.univ
SecondCountableTopology
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
β€”subset_countable_closure_of_almost_dense_set
Set.mem_univ
UniformSpace.secondCountable_of_separable
instIsCountablyGeneratedUniformity
secondCountable_of_sigmaCompact πŸ“–mathematicalβ€”SecondCountableTopology
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
β€”Set.countable_iUnion
instCountableNat
Set.iUnion_eq_univ_iff
iUnion_compactCovering
closure_mono
Set.subset_iUnion
subset_countable_closure_of_compact
isCompact_compactCovering
UniformSpace.secondCountable_of_separable
instIsCountablyGeneratedUniformity
subset_countable_closure_of_almost_dense_set πŸ“–mathematicalSet.Countable
Set
Set.instHasSubset
Set.iUnion
Set.instMembership
Metric.closedEBall
closure
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
β€”UniformSpace.subset_countable_closure_of_almost_dense_set
instIsCountablyGeneratedUniformity
Filter.HasBasis.mem_iff
uniformity_basis_edist_le
HasSubset.Subset.trans
Set.instIsTransSubset
Set.iUnionβ‚‚_mono
UniformSpace.ball_mono
PseudoEMetricSpace.edist_comm
Metric.mem_closedEBall
subset_countable_closure_of_compact πŸ“–mathematicalIsCompact
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
Set
Set.instHasSubset
Set.Countable
closure
β€”subset_countable_closure_of_almost_dense_set
totallyBounded_iff'
IsCompact.totallyBounded
Set.Finite.countable
HasSubset.Subset.trans
Set.instIsTransSubset
Set.iUnionβ‚‚_mono
Metric.eball_subset_closedEBall
subsingleton_iff_indiscreteTopology πŸ“–mathematicalβ€”IndiscreteTopology
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
EMetricSpace.toPseudoEMetricSpace
β€”Iff.not
nontrivial_iff_nontrivialTopology
tendstoLocallyUniformlyOn_iff πŸ“–mathematicalβ€”TendstoLocallyUniformlyOn
PseudoEMetricSpace.toUniformSpace
Set
Filter
Filter.instMembership
nhdsWithin
Filter.Eventually
β€”edist_mem_uniformity
mem_uniformity_edist
Filter.Eventually.mono
tendstoLocallyUniformly_iff πŸ“–mathematicalβ€”TendstoLocallyUniformly
PseudoEMetricSpace.toUniformSpace
Set
Filter
Filter.instMembership
nhds
Filter.Eventually
β€”nhdsWithin_univ
tendstoUniformlyOn_iff πŸ“–mathematicalβ€”TendstoUniformlyOn
PseudoEMetricSpace.toUniformSpace
Filter.Eventually
β€”edist_mem_uniformity
mem_uniformity_edist
Filter.Eventually.mono
tendstoUniformly_iff πŸ“–mathematicalβ€”TendstoUniformly
PseudoEMetricSpace.toUniformSpace
Filter.Eventually
β€”β€”
totallyBounded_iff πŸ“–mathematicalβ€”TotallyBounded
PseudoEMetricSpace.toUniformSpace
Set.Finite
Set
Set.instHasSubset
Set.iUnion
Set.instMembership
Metric.eball
β€”edist_mem_uniformity
mem_uniformity_edist
HasSubset.Subset.trans
Set.instIsTransSubset
Set.iUnionβ‚‚_mono
totallyBounded_iff' πŸ“–mathematicalβ€”TotallyBounded
PseudoEMetricSpace.toUniformSpace
Set
Set.instHasSubset
Set.Finite
Set.iUnion
Set.instMembership
Metric.eball
β€”totallyBounded_iff_subset
edist_mem_uniformity
mem_uniformity_edist
HasSubset.Subset.trans
Set.instIsTransSubset
Set.iUnionβ‚‚_mono

EMetricSpace

Definitions

NameCategoryTheorems
ofT0PseudoEMetricSpace πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
instT0Space πŸ“–mathematicalβ€”T0Space
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
toPseudoEMetricSpace
β€”eq_of_edist_eq_zero
EMetric.inseparable_iff

Inseparable

Theorems

NameKindAssumesProvesValidatesDepends On
edist_eq_zero πŸ“–mathematicalInseparable
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
EDist.edist
PseudoEMetricSpace.toEDist
ENNReal
instZeroENNReal
β€”EMetric.inseparable_iff

Prod

Definitions

NameCategoryTheorems
emetricSpaceMax πŸ“–CompOp
5 mathmath: EMetric.NonemptyCompacts.lipschitz_prod, TopologicalSpace.Compacts.lipschitz_prod, MeasureTheory.hausdorffMeasure_measurePreserving_piFinTwo, TopologicalSpace.NonemptyCompacts.lipschitz_prod, MeasureTheory.hausdorffMeasure_prod_real

SeparationQuotient

Theorems

NameKindAssumesProvesValidatesDepends On
edist_mk πŸ“–mathematicalβ€”EDist.edist
SeparationQuotient
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
instEDistSeparationQuotient
PseudoEMetricSpace.toEDist
β€”β€”

(root)

Definitions

NameCategoryTheorems
instEDistSeparationQuotient πŸ“–CompOp
1 mathmath: SeparationQuotient.edist_mk
instEMetricSpaceSeparationQuotient πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
edist_le_Ico_sum_edist πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
Finset.sum
ENNReal.instAddCommMonoid
Finset.Ico
Nat.instPreorder
Nat.instLocallyFiniteOrder
β€”Nat.le_induction
Finset.Ico_self
Finset.sum_empty
PseudoEMetricSpace.edist_self
le_refl
PseudoEMetricSpace.edist_triangle
add_le_add
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
le_rfl
Finset.insert_Ico_right_eq_Ico_add_one
Nat.instNoMaxOrder
Finset.sum_insert
add_comm
edist_le_Ico_sum_of_edist_le πŸ“–mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
Finset.sum
ENNReal.instAddCommMonoid
Finset.Ico
Nat.instPreorder
Nat.instLocallyFiniteOrder
β€”le_trans
edist_le_Ico_sum_edist
Finset.sum_le_sum
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
Finset.mem_Ico
edist_le_range_sum_edist πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
Finset.sum
ENNReal.instAddCommMonoid
Finset.range
β€”edist_le_Ico_sum_edist
Nat.Ico_zero_eq_range
edist_le_range_sum_of_edist_le πŸ“–mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
Finset.sum
ENNReal.instAddCommMonoid
Finset.range
β€”edist_le_Ico_sum_of_edist_le
zero_le
Nat.instCanonicallyOrderedAdd
Nat.Ico_zero_eq_range
lebesgue_number_lemma_of_emetric πŸ“–mathematicalIsCompact
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
IsOpen
Set
Set.instHasSubset
Set.iUnion
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
Metric.eball
β€”PseudoEMetricSpace.edist_comm
Filter.HasBasis.lebesgue_number_lemma
uniformity_basis_edist
lebesgue_number_lemma_of_emetric_nhds πŸ“–mathematicalIsCompact
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
Set
Filter
Filter.instMembership
nhds
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
Set.instHasSubset
Metric.eball
β€”PseudoEMetricSpace.edist_comm
Filter.HasBasis.lebesgue_number_lemma_nhds
uniformity_basis_edist
lebesgue_number_lemma_of_emetric_nhds' πŸ“–mathematicalIsCompact
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
Set
Filter
Filter.instMembership
nhds
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
Set.instHasSubset
Metric.eball
Set.instMembership
β€”PseudoEMetricSpace.edist_comm
Filter.HasBasis.lebesgue_number_lemma_nhds'
uniformity_basis_edist
lebesgue_number_lemma_of_emetric_nhdsWithin πŸ“–mathematicalIsCompact
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
Set
Filter
Filter.instMembership
nhdsWithin
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
Set.instHasSubset
Set.instInter
Metric.eball
β€”PseudoEMetricSpace.edist_comm
Filter.HasBasis.lebesgue_number_lemma_nhdsWithin
uniformity_basis_edist
lebesgue_number_lemma_of_emetric_nhdsWithin' πŸ“–mathematicalIsCompact
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
Set
Filter
Filter.instMembership
nhdsWithin
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
Set.instHasSubset
Set.instInter
Metric.eball
Set.instMembership
β€”PseudoEMetricSpace.edist_comm
Filter.HasBasis.lebesgue_number_lemma_nhdsWithin'
uniformity_basis_edist
lebesgue_number_lemma_of_emetric_sUnion πŸ“–mathematicalIsCompact
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
IsOpen
Set
Set.instHasSubset
Set.sUnion
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
Set.instMembership
Metric.eball
β€”lebesgue_number_lemma_of_emetric
Set.sUnion_eq_iUnion

---

← Back to Index