Documentation Verification Report

Defs

📁 Source: Mathlib/Topology/EMetricSpace/Defs.lean

Statistics

MetricCount
DefinitionsinstPseudoEMetricSpace, EDist, edist, ball, closedBall, edistLtTopSetoid, EMetricSpace, induced, replaceTopology, replaceUniformity, toPseudoEMetricSpace, closedEBall, eball, edistLtTopSetoid, instPseudoEMetricSpace, pseudoEMetricSpaceMax, PseudoEMetricSpace, induced, ofEDistOfTopology, replaceUniformity, toEDist, toUniformSpace, ofEdistOfTopology, instEDistAdditive, instEDistMultiplicative, instEDistOrderDual, instEMetricSpaceAddOpposite, instEMetricSpaceAdditive, instEMetricSpaceMulOpposite, instEMetricSpaceMultiplicative, instEMetricSpaceOrderDual, instEMetricSpaceSubtype, instEMetricSpaceULift, instPseudoEMetricSpaceAdditive, instPseudoEMetricSpaceMultiplicative, instPseudoEMetricSpaceOrderDual, instPseudoEMetricSpaceSubtype, instPseudoEMetricSpaceULift, uniformSpaceOfEDist, uniformSpaceOfEDistOfHasBasis
40
Theoremsedist_op, edist_unop, ext, ext_iff, ball_disjoint, ball_eq_empty_iff, ball_mem_nhds, ball_prod_same, ball_subset, ball_subset_ball, ball_subset_closedBall, ball_zero, closedBall_mem_nhds, closedBall_prod_same, closedBall_subset_closedBall, closedBall_top, closedBall_zero, dense_iff, exists_ball_subset_ball, instIsCountablyGeneratedUniformity, isClosed_ball_top, isOpen_ball, isOpen_iff, mem_ball, mem_ball', mem_ball_comm, mem_ball_self, mem_closedBall, mem_closedBall', mem_closedBall_comm, mem_closedBall_self, mem_closure_iff, mem_nhdsWithin_iff, mem_nhds_iff, mk_uniformity_basis, mk_uniformity_basis_le, nhdsWithin_basis_closed_eball, nhdsWithin_basis_eball, nhds_basis_closed_eball, nhds_basis_eball, nhds_eq, ordConnected_setOf_ball_subset, ordConnected_setOf_closedBall_subset, pos_of_mem_ball, tendsto_atTop, tendsto_nhds, tendsto_nhdsWithin_nhds, tendsto_nhdsWithin_nhdsWithin, tendsto_nhds_nhds, uniformContinuousOn_iff, uniformContinuous_iff, eq_of_edist_eq_zero, ext, ext_iff, closedEBall_mem_nhds, closedEBall_prod_same, closedEBall_subset_closedEBall, closedEBall_top, closedEBall_zero, eball_disjoint, eball_eq_empty_iff, eball_mem_nhds, eball_prod_same, eball_subset, eball_subset_closedEBall, eball_subset_eball, eball_zero, exists_eball_subset_eball, isClosed_eball_top, isOpen_eball, mem_closedEBall, mem_closedEBall', mem_closedEBall_comm, mem_closedEBall_self, mem_eball, mem_eball', mem_eball_comm, mem_eball_self, nhdsWithin_basis_closedEBall, nhdsWithin_basis_eball, nhds_basis_closedEBall, nhds_basis_eball, ordConnected_setOf_closedEBall_subset, ordConnected_setOf_eball_subset, pos_of_mem_eball, edist_op, edist_unop, edist_eq, edist_comm, edist_self, edist_triangle, ext, ext_iff, uniformity_edist, edist_eq, edist_mk_mk, image_closedEBall, image_eball, image_emetricBall, image_emetricClosedBall, preimage_closedEBall, preimage_eball, preimage_emetricBall, preimage_emetricClosedBall, edist_eq, edist_up_up, edist_congr, edist_congr_left, edist_congr_right, edist_eq_zero, edist_le_zero, edist_mem_uniformity, edist_ofAdd, edist_ofDual, edist_ofMul, edist_pos, edist_toAdd, edist_toDual, edist_toMul, edist_triangle4, edist_triangle_left, edist_triangle_right, eq_of_forall_edist_le, mem_uniformity_edist, uniformSpace_edist, uniformity_basis_edist, uniformity_basis_edist', uniformity_basis_edist_inv_nat, uniformity_basis_edist_inv_two_pow, uniformity_basis_edist_le, uniformity_basis_edist_le', uniformity_basis_edist_nnreal, uniformity_basis_edist_nnreal_le, uniformity_dist_of_mem_uniformity, uniformity_edist, uniformity_pseudoedist, zero_eq_edist
137
Total177

AddOpposite

Definitions

NameCategoryTheorems
instPseudoEMetricSpace 📖CompOp
3 mathmath: edist_op, instIsIsometricVAddAddOpposite, edist_unop

Theorems

NameKindAssumesProvesValidatesDepends On
edist_op 📖mathematicalEDist.edist
AddOpposite
PseudoEMetricSpace.toEDist
instPseudoEMetricSpace
op
edist_unop 📖mathematicalEDist.edist
PseudoEMetricSpace.toEDist
unop
AddOpposite
instPseudoEMetricSpace

EDist

Definitions

NameCategoryTheorems
edist 📖CompOp
362 mathmath: WithLp.prod_edist_eq_card, edist_eq_enorm_sub, Prod.edist_eq, eVariationOn.sum_le_of_monotoneOn_Icc, PseudoEMetricSpace.edist_comm, Set.Finite.einfsep, MeasureTheory.hausdorffMeasure_segment, WithLp.edist_fst_le, Set.einfsep_of_fintype, Metric.isSeparated_insert_of_notMem, PiLp.edist_self, Set.einfsep_pair_le_left, EMetric.le_infEdist, MeasureTheory.MeasuredSets.sub_le_edist, ContractingWith.edist_le_of_fixedPoint, edist_mem_uniformity, MeasureTheory.Lp.edist_def, edist_div_right, UniformFun.edist_eval_le, Congruent.pairwise_edist_eq, edist_le_pi_edist, nndist_edist, Metric.mem_closedEBall, uniformity_basis_edist, edist_zero_left, MeasureTheory.LevyProkhorov.edist_measure_def, lintegral_fderiv_lineMap_eq_edist, edist_zero_eq_enorm, Metric.isSeparated_iff_setRelIsSeparated, AffineIsometryEquiv.edist_map, Metric.infEDist_le_edist_of_mem, Isometry.edist_eq, TopologicalSpace.Compacts.edist_eq, MeasureTheory.SimpleFunc.nearestPtInd_succ, EMetric.diam_pair, DilationEquiv.edist_eq', EMetric.diam_le_iff, Metric.ediam_triple, Metric.PiNatEmbed.edist_def, measurable_edist_right, Set.einfsep_zero, EMetric.mem_ball, MeasureTheory.Integrable.edist_toL1_zero, Metric.infEDist_le_infEDist_add_edist, EMetric.mem_closedBall, congruent_iff_pairwise_edist_eq, Set.Finset.coe_einfsep, EMetric.exists_edist_lt_of_hausdorffEdist_lt, uniformity_basis_edist_le, EMetric.isUniformEmbedding_iff, MulOpposite.edist_op, PiCountable.min_edist_le_edist_pi, MeasureTheory.Lp.dist_edist, Set.einfsep_le_edist_of_mem, DilationClass.edist_eq', PiCountable.edist_eq_tsum, edist_div_left, edist_ofDual, AddOpposite.edist_op, MeasureTheory.Lp.edist_toLp_toLp, MeasureTheory.StronglyMeasurable.edist, EMetric.diam_insert, ContractingWith.apriori_edist_iterate_efixedPoint_le', PairReduction.pow_logSizeRadius_le_card_le_logSizeRadius, EMetric.uniformContinuous_iff, IsometryEquiv.edist_eq, MeasureTheory.Integrable.norm_toL1, LinearIsometry.edist_map, MeasureTheory.Lp.edist_toLp_zero, edist_le_ofReal, edist_neg, EMetric.cauchySeq_iff, MeasureTheory.edist_indicatorConstLp_eq_enorm, PairReduction.card_le_logSizeRadius_le_pow_logSizeRadius, EMetric.tendsto_nhds, edist_lt_ofReal, uniformity_basis_edist_le', WithLp.edist_toLp_snd, Dilation.edist_eq', EMetric.mk_uniformity_basis_le, PiLp.edist_eq_sum, similar_iff_exists_edist_eq, Metric.isSeparated_insert, DomMulAct.edist_smul_Lp, unitInterval.volume_uIcc, MeasureTheory.lintegral_edist_triangle, variationOnFromTo.eq_zero_iff_of_le, unitInterval.volume_uIoo, WithLp.prod_edist_eq_of_L2, MulOpposite.edist_unop, EMetric.infEdist_singleton, eVariationOn.sum_le_of_monotoneOn_Iic, UniformOnFun.edist_eval_le, WithLp.prod_edist_eq_sup, MeasureTheory.lintegral_edist_lt_top, Dilation.edist_eq, MeasureTheory.LevyProkhorov.edist_finiteMeasure_def, MeasureTheory.hasFiniteIntegral_iff_edist, ContractingWith.edist_efixedPoint_lt_top', edist_mul_mul_le, edist_mul_right, continuous_edist, EMetric.controlled_of_isUniformEmbedding, PairReduction.edist_le_of_mem_pairSet, edist_sub_left, AddOpposite.edist_unop, MeasureTheory.ExistsSeqTendstoAe.seqTendstoAeSeq_spec, Metric.ediam_eq_sSup, ContractingWith.edist_efixedPoint_le', AEMeasurable.edist, MeasureTheory.SimpleFunc.edist_approxOn_y0_le, coe_nnreal_ennreal_nndist, LipschitzWith.edist_iterate_succ_le_geometric, SeparationQuotient.edist_mk, Set.einfsep_insert, uniformity_basis_edist_inv_nat, MeasureTheory.SimpleFunc.edist_approxOn_mono, EuclideanSpace.edist_single_same, Set.einfsep_lt_iff, ProbabilityTheory.IsKolmogorovProcess.measurable_edist, Metric.mem_closedEBall', TopologicalSpace.Closeds.edist_eq, LipschitzWith.edist_le_mul, ProbabilityTheory.IsAEKolmogorovProcess.kolmogorovCondition, ProbabilityTheory.IsKolmogorovProcess.kolmogorovCondition, EMetric.mem_hausdorffEntourage_of_hausdorffEdist_lt, Set.einfsep_insert_le, Metric.le_infEDist, edist_neg_neg, Set.einfsep_top, edist_vadd_left, ProbabilityTheory.IsAEKolmogorovProcess.edist_eq_zero_of_const_eq_zero, edist_one_right, EMetric.tendsto_nhds_nhds, Metric.edist_le_ediam_of_mem, edist_toAdd, Set.le_einfsep_iff, UniformFun.edist_le, PseudoEMetricSpace.edist_self, edist_triangle4, edist_triangle_right, edist_toMul, ProbabilityTheory.IsKolmogorovProcess.stronglyMeasurable_edist, ProbabilityTheory.IsKolmogorovProcess.edist_eq_zero_of_const_eq_zero, LipschitzWith.mul_edist_le, Metric.edist_le_infEDist_add_ediam, EMetric.mem_ball', Set.relatively_discrete_of_finite, EMetric.infEdist_le_edist_add_infEdist, edist_one_eq_enorm, edist_smul₀, uniformity_basis_edist_nnreal_le, Inseparable.edist_eq_zero, edist_eq_enorm_div, EMetric.isUniformEmbedding_iff', EMetric.pair_reduction, ContractingWith.exists_fixedPoint, PiLp.edist_eq_iSup, variationOnFromTo.eq_zero_iff_of_ge, uniformity_basis_edist_inv_two_pow, EMetric.tendsto_atTop, edist_lt_coe, EMetric.edist_le_infEdist_add_ediam, edist_add_add_le, similar_iff_exists_pairwise_edist_eq, PiLp.edist_apply_le, edist_sub_right, AntilipschitzWith.edist_lt_top, eVariationOn.edist_le, Metric.mem_thickening_iff_exists_edist_lt, UniformOnFun.edist_def', EMetric.edist_le_diam_of_mem, PiCountable.edist_le_two, LinearIsometryEquiv.edist_map, EMetric.cauchySeq_iff_le_tendsto_0, MeasureTheory.LevyProkhorov.edist_probabilityMeasure_def, ContractingWith.edist_inequality, Set.Finite.relatively_discrete, measurable_edist_left, Metric.ediam_pair, MeasureTheory.L1.dist_def, Set.einfsep_lt_top, Set.einfsep_eq_iInf, edist_dist, UniformFun.edist_def, edist_le_zero, uniformity_edist, hasConstantSpeedOnWith_zero_iff, Set.einfsep_pair_eq_inf, edist_ofAdd, Set.infsep_pair_le_toReal_inf, DomAddAct.edist_vadd_Lp, EMetric.infEdist_le_edist_of_mem, edist_add_left, eVariationOn.sum_le, eVariationOn.add_point, edist_smul_left, edist_le_coe, WithLp.prod_edist_eq_of_L1, EMetric.diam_image_le_iff, Congruent.edist_eq, edist_lt_top, UniformOnFun.edist_eq_pi_restrict, Metric.Snowflaking.edist_toSnowflaking_toSnowflaking, UniformOnFun.edist_def, eventually_riemannianEDist_le_edist_extChartAt, variationOnFromTo.edist_zero_of_eq_zero, Similar.exists_edist_eq, Metric.infEDist_singleton, WithLp.prod_edist_self, DilationEquivClass.edist_eq', Set.einfsep_pair_le_right, ContractingWith.exists_fixedPoint', BoundedContinuousFunction.edist_eq_iSup, ContractingWith.edist_efixedPoint_lt_top, ext_iff, PiCountable.edist_lt_top, Metric.uniformity_edist, EMetric.mem_closedBall', edist_mul_left, MeasureTheory.tendstoInMeasure_iff_tendsto_toNNReal, PiLp.edist_eq_card, Metric.ediam_image_le_iff, EMetric.tendsto_nhdsWithin_nhds, UniformOnFun.edist_continuousRestrict, EMetric.cauchy_iff, EMetric.uniformContinuousOn_iff, edist_le_range_sum_edist, Set.le_edist_of_le_einfsep, MeasureTheory.Egorov.mem_notConvergentSeq_iff, PiLp.edist_toLp_single_same, Set.infsep_pair_eq_toReal, edist_add_right, EMetric.mk_uniformity_basis, Set.le_einfsep_image_iff, edist_vadd_vadd_le, Metric.exists_edist_lt_of_hausdorffEDist_lt, PairReduction.exists_radius_le, Set.einfsep_triple, EMetric.mem_closure_iff, IsometryClass.edist_eq, EMetric.infEdist_lt_iff, edist_zero_right, edist_pi_le_iff, Subtype.edist_mk_mk, edist_ofMul, MeasureTheory.lintegral_enorm_eq_lintegral_edist, tendsto_iff_edist_tendsto_0, EMetric.infEdist_le_infEdist_add_edist, Metric.Snowflaking.edist_ofSnowflaking_ofSnowflaking, Measurable.edist, edist_inv_inv, Metric.hausdorffEDist_singleton, zero_eq_edist, Set.einfsep_pair, EMetric.cauchySeq_iff_NNReal, Metric.ediam_union_le_add_edist, variationOnFromTo.eq_zero_iff, edist_pi_const_le, edist_pi_def, MeasureTheory.hausdorffMeasure_affineSegment, IsCompact.exists_infEdist_eq_edist, Set.le_einfsep_pair, AffineIsometry.edist_map, ULift.edist_up_up, ContractingWith.eq_or_edist_eq_top_of_fixedPoints, Metric.mem_hausdorffEntourage_of_hausdorffEDist_lt, HolderOnWith.edist_le, EMetric.tendsto_nhdsWithin_nhdsWithin, edist_inv, Metric.Snowflaking.edist_def, WithLp.edist_toLp_fst, Set.Nontrivial.einfsep_exists_of_finite, HolderWith.edist_le, UniformOnFun.edist_eq_restrict_sUnion, ConvexBody.hausdorffEDist_coe, MeasureTheory.ExistsSeqTendstoAe.exists_nat_measure_lt_two_inv, MeasureTheory.lintegral_norm_eq_lintegral_edist, EMetric.diam_eq_sSup, Subtype.edist_eq, ConvexBody.hausdorffEdist_coe, AntilipschitzWith.mul_le_edist, edist_pi_const, EMetric.Closeds.edist_eq, uniformity_basis_edist_nnreal, edist_triangle_left, edist_nndist, EMetric.diam_union, UniformOnFun.edist_continuousRestrict_of_singleton, dist_edist, Complex.edist_of_re_eq, edist_le_Ico_sum_edist, ProbabilityTheory.IsAEKolmogorovProcess.aemeasurable_edist, unitInterval.volume_uIoc, edist_toDual, EMetric.cauchySeq_iff', measurable_edist, IsRiemannianManifold.out, Complex.edist_of_im_eq, UniformOnFun.edist_le, EMetric.diam_triple, edist_vsub_vsub_le, UniformFun.edist_continuousMapMk, MeasureTheory.SimpleFunc.edist_nearestPt_le, LipschitzWith.edist_lt_top, IsCompact.exists_infEDist_eq_edist, edist_one_left, EMetric.hausdorffEdist_singleton, uniformity_basis_edist', PairReduction.iSup_edist_pairSet, ProbabilityTheory.IsAEKolmogorovProcess.aestronglyMeasurable_edist, MeasureTheory.SimpleFunc.edist_approxOn_le, congruent_iff_edist_eq, PseudoEMetricSpace.uniformity_edist, MeasureTheory.MeasuredSets.edist_def, MeasureTheory.L1.edist_def, Set.einfsep_pos, Filter.Tendsto.edist, EuclideanSpace.edist_eq, ULift.edist_eq, MeasureTheory.Lp.edist_dist, edist_smul_le, Metric.ediam_le_iff, edist_pos, UniformSpace.Completion.edist_eq, EMetric.isUniformInducing_iff, edist_eq_zero, EMetric.inseparable_iff, ContractingWith.apriori_edist_iterate_efixedPoint_le, Fin.edist_append_eq_max_edist, MeasureTheory.AEStronglyMeasurable.edist, Metric.mem_eball', PiLp.edist_eq_of_L1, edist_indicator, ContractingWith.edist_efixedPoint_le, Metric.edist_le_of_ediam_le, MeasureTheory.Integrable.edist_toL1_toL1, uniformity_pseudoedist, WithLp.prod_edist_eq_add, Metric.infEDist_lt_iff, EMetric.exists_pos_forall_lt_edist, Similar.exists_pairwise_edist_eq, uniformSpace_edist, PiLp.edist_comm, ContinuousMap.edist_eq_iSup, WithLp.edist_snd_le, eVariationOn.eq_zero_iff, Metric.mem_eball, Metric.boundedSpace_iff_edist, Metric.exists_pos_forall_lt_edist, PiLp.edist_eq_of_L2, edist_naturalParameterization_eq_zero, BoundedContinuousFunction.lintegral_le_edist_mul, Metric.ediam_insert, Set.Finite.einfsep_exists_of_nontrivial, Metric.infEDist_le_edist_add_infEDist, EMetric.edist_le_of_diam_le, TensorProduct.edist_tmul_le, edist_mulIndicator, Continuous.edist, WithLp.prod_edist_comm, PseudoEMetricSpace.edist_triangle

Theorems

NameKindAssumesProvesValidatesDepends On
ext 📖edist
ext_iff 📖mathematicaledistext

EMetric

Definitions

NameCategoryTheorems
ball 📖CompOp
closedBall 📖CompOp
edistLtTopSetoid 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
ball_disjoint 📖mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
EDist.edist
PseudoEMetricSpace.toEDist
Disjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
Metric.eball
Metric.eball_disjoint
ball_eq_empty_iff 📖mathematicalMetric.eball
Set
Set.instEmptyCollection
ENNReal
instZeroENNReal
Metric.eball_eq_empty_iff
ball_mem_nhds 📖mathematicalENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
Set
Filter
Filter.instMembership
nhds
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
Metric.eball
Metric.eball_mem_nhds
ball_prod_same 📖mathematicalSProd.sprod
Set
Set.instSProd
Metric.eball
Prod.pseudoEMetricSpaceMax
Metric.eball_prod_same
ball_subset 📖mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
EDist.edist
PseudoEMetricSpace.toEDist
Set
Set.instHasSubset
Metric.eball
Metric.eball_subset
ball_subset_ball 📖mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
Set
Set.instHasSubset
Metric.eball
Metric.eball_subset_eball
ball_subset_closedBall 📖mathematicalSet
Set.instHasSubset
Metric.eball
Metric.closedEBall
Metric.eball_subset_closedEBall
ball_zero 📖mathematicalMetric.eball
ENNReal
instZeroENNReal
Set
Set.instEmptyCollection
Metric.eball_zero
closedBall_mem_nhds 📖mathematicalENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
Set
Filter
Filter.instMembership
nhds
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
Metric.closedEBall
Metric.closedEBall_mem_nhds
closedBall_prod_same 📖mathematicalSProd.sprod
Set
Set.instSProd
Metric.closedEBall
Prod.pseudoEMetricSpaceMax
Metric.closedEBall_prod_same
closedBall_subset_closedBall 📖mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
Set
Set.instHasSubset
Metric.closedEBall
Metric.closedEBall_subset_closedEBall
closedBall_top 📖mathematicalMetric.closedEBall
Top.top
ENNReal
instTopENNReal
Set.univ
Metric.closedEBall_top
closedBall_zero 📖mathematicalMetric.closedEBall
EMetricSpace.toPseudoEMetricSpace
ENNReal
instZeroENNReal
Set
Set.instSingletonSet
Metric.closedEBall_zero
dense_iff 📖mathematicalDense
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
Set.Nonempty
Set
Set.instInter
Metric.eball
exists_ball_subset_ball 📖mathematicalSet
Set.instMembership
Metric.eball
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
Set.instHasSubset
Metric.exists_eball_subset_eball
instIsCountablyGeneratedUniformity 📖mathematicalFilter.IsCountablyGenerated
uniformity
PseudoEMetricSpace.toUniformSpace
Filter.isCountablyGenerated_of_seq
Filter.HasBasis.eq_iInf
uniformity_basis_edist_inv_nat
isClosed_ball_top 📖mathematicalIsClosed
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
Metric.eball
Top.top
ENNReal
instTopENNReal
Metric.isClosed_eball_top
isOpen_ball 📖mathematicalIsOpen
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
Metric.eball
Metric.isOpen_eball
isOpen_iff 📖mathematicalIsOpen
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
Set
Set.instHasSubset
Metric.eball
mem_ball 📖mathematicalSet
Set.instMembership
Metric.eball
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
Metric.mem_eball
mem_ball' 📖mathematicalSet
Set.instMembership
Metric.eball
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
Metric.mem_eball'
mem_ball_comm 📖mathematicalSet
Set.instMembership
Metric.eball
Metric.mem_eball_comm
mem_ball_self 📖mathematicalENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
Set
Set.instMembership
Metric.eball
Metric.mem_eball_self
mem_closedBall 📖mathematicalSet
Set.instMembership
Metric.closedEBall
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
Metric.mem_closedEBall
mem_closedBall' 📖mathematicalSet
Set.instMembership
Metric.closedEBall
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
Metric.mem_closedEBall'
mem_closedBall_comm 📖mathematicalSet
Set.instMembership
Metric.closedEBall
Metric.mem_closedEBall_comm
mem_closedBall_self 📖mathematicalSet
Set.instMembership
Metric.closedEBall
Metric.mem_closedEBall_self
mem_closure_iff 📖mathematicalSet
Set.instMembership
closure
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
mem_closure_iff_nhds_basis
Metric.nhds_basis_eball
PseudoEMetricSpace.edist_comm
mem_nhdsWithin_iff 📖mathematicalSet
Filter
Filter.instMembership
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
Set.instHasSubset
Set.instInter
Metric.eball
Filter.HasBasis.mem_iff
Metric.nhdsWithin_basis_eball
mem_nhds_iff 📖mathematicalSet
Filter
Filter.instMembership
nhds
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
Set.instHasSubset
Metric.eball
Filter.HasBasis.mem_iff
Metric.nhds_basis_eball
mk_uniformity_basis 📖mathematicalENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
Preorder.toLE
Filter.HasBasis
uniformity
PseudoEMetricSpace.toUniformSpace
setOf
EDist.edist
PseudoEMetricSpace.toEDist
Filter.HasBasis.mem_iff
uniformity_basis_edist
lt_of_lt_of_le
Membership.mem.out
mk_uniformity_basis_le 📖mathematicalENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
Preorder.toLE
Filter.HasBasis
uniformity
PseudoEMetricSpace.toUniformSpace
setOf
EDist.edist
PseudoEMetricSpace.toEDist
Filter.HasBasis.mem_iff
uniformity_basis_edist
exists_between
ENNReal.instDenselyOrdered
lt_of_le_of_lt
le_trans
Membership.mem.out
le_of_lt
nhdsWithin_basis_closed_eball 📖mathematicalFilter.HasBasis
ENNReal
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
Set
Set.instInter
Metric.closedEBall
Metric.nhdsWithin_basis_closedEBall
nhdsWithin_basis_eball 📖mathematicalFilter.HasBasis
ENNReal
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
Set
Set.instInter
Metric.eball
Metric.nhdsWithin_basis_eball
nhds_basis_closed_eball 📖mathematicalFilter.HasBasis
ENNReal
nhds
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
Metric.closedEBall
Metric.nhds_basis_closedEBall
nhds_basis_eball 📖mathematicalFilter.HasBasis
ENNReal
nhds
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
Metric.eball
Metric.nhds_basis_eball
nhds_eq 📖mathematicalnhds
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
iInf
Filter
ENNReal
Filter.instInfSet
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
Filter.principal
Metric.eball
Filter.HasBasis.eq_biInf
Metric.nhds_basis_eball
ordConnected_setOf_ball_subset 📖mathematicalSet.OrdConnected
ENNReal
PartialOrder.toPreorder
ENNReal.instPartialOrder
setOf
Set
Set.instHasSubset
Metric.eball
Metric.ordConnected_setOf_eball_subset
ordConnected_setOf_closedBall_subset 📖mathematicalSet.OrdConnected
ENNReal
PartialOrder.toPreorder
ENNReal.instPartialOrder
setOf
Set
Set.instHasSubset
Metric.closedEBall
Metric.ordConnected_setOf_closedEBall_subset
pos_of_mem_ball 📖mathematicalSet
Set.instMembership
Metric.eball
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
Metric.pos_of_mem_eball
tendsto_atTop 📖mathematicalFilter.Tendsto
Filter.atTop
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
nhds
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
ENNReal
Preorder.toLT
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
Filter.HasBasis.tendsto_iff
Filter.atTop_basis
SemilatticeSup.instIsDirectedOrder
Metric.nhds_basis_eball
tendsto_nhds 📖mathematicalFilter.Tendsto
nhds
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
Filter.Eventually
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
Filter.HasBasis.tendsto_right_iff
Metric.nhds_basis_eball
tendsto_nhdsWithin_nhds 📖mathematicalFilter.Tendsto
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
nhds
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
EDist.edist
PseudoEMetricSpace.toEDist
nhdsWithin_univ
tendsto_nhdsWithin_nhdsWithin
tendsto_nhdsWithin_nhdsWithin 📖mathematicalFilter.Tendsto
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
Set
Set.instMembership
EDist.edist
PseudoEMetricSpace.toEDist
Filter.HasBasis.tendsto_iff
Metric.nhdsWithin_basis_eball
tendsto_nhds_nhds 📖mathematicalFilter.Tendsto
nhds
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
EDist.edist
PseudoEMetricSpace.toEDist
Filter.HasBasis.tendsto_iff
Metric.nhds_basis_eball
uniformContinuousOn_iff 📖mathematicalUniformContinuousOn
PseudoEMetricSpace.toUniformSpace
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
EDist.edist
PseudoEMetricSpace.toEDist
Filter.HasBasis.uniformContinuousOn_iff
uniformity_basis_edist
uniformContinuous_iff 📖mathematicalUniformContinuous
PseudoEMetricSpace.toUniformSpace
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
EDist.edist
PseudoEMetricSpace.toEDist
Filter.HasBasis.uniformContinuous_iff
uniformity_basis_edist

EMetricSpace

Definitions

NameCategoryTheorems
induced 📖CompOp
1 mathmath: isometry_induced
replaceTopology 📖CompOp
replaceUniformity 📖CompOp
toPseudoEMetricSpace 📖CompOp
423 mathmath: MeasureTheory.OuterMeasure.IsMetric.borel_le_caratheodory, ContinuousLinearEquiv.antilipschitz, EMetric.diam_pos_iff', Unitization.isometry_inr, NumberField.InfinitePlace.Completion.isometry_extensionEmbeddingOfIsReal, IsometryEquiv.dimH_preimage, LightCondensed.isoFinYonedaComponents_hom_apply, EuclideanGeometry.side_angle_side, NonUnitalIsometricContinuousFunctionalCalculus.isometric, HasFPowerSeriesOnBall.tendstoLocallyUniformlyOn, MeasureTheory.hausdorffMeasure_segment, ConvexOn.continuousOn_tfae, ConcaveOn.locallyLipschitz, IsometryEquiv.toRealLinearIsometryEquiv_symm_apply, ext_iff, ApproximatesLinearOn.lipschitz, ContractingWith.edist_le_of_fixedPoint, NumberField.InfinitePlace.isometry_embedding, GromovHausdorff.isometry_optimalGHInjr, MeasureTheory.UniformIntegrable.uniformIntegrable_of_tendstoInMeasure, EMetric.NonemptyCompacts.lipschitz_prod, LightCondSet.continuous_coinducingCoprod, Complex.lipschitz_equivRealProd, IsometryEquiv.toRealLinearIsometryEquiv_apply, Metric.exists_forall_closedEBall_subset_aux₂, TopologicalSpace.Compacts.lipschitz_prod, ODE.FunSpace.range_toContinuousMap, Delone.DeloneSet.isCover_coveringRadius, Real.ediam_eq, EMetric.NonemptyCompacts.isometry_toCloseds, MeasureTheory.SimpleFunc.tendsto_approxOn_range_L1_enorm, lintegral_fderiv_lineMap_eq_edist, Real.volume_closedEBall, ContinuousLinearMap.isometry_mul_flip, Delone.DeloneSet.mapIsometry_trans, Set.infsep_zero_iff_subsingleton_of_finite, UpperHalfPlane.isometry_real_vadd, TopologicalSpace.Compacts.edist_eq, EMetric.Closeds.isometry_singleton, ContDiff.lipschitzWith_of_hasCompactSupport, HasFPowerSeriesWithinOnBall.tendstoLocallyUniformlyOn, ContinuousMapZero.isometry_toContinuousMap, TopologicalSpace.NonemptyCompacts.isClosed_in_closeds, MeasureTheory.Measure.mkMetric_apply, HasFPowerSeriesWithinOnBall.isBigO_image_sub_image_sub_deriv_principal, GromovHausdorff.toGHSpace_eq_toGHSpace_iff_isometryEquiv, ConcaveOn.locallyLipschitzOn_interior, eHolderNorm_eq_zero, Perfect.small_diam_splitting, MeasureTheory.Measure.hausdorffMeasure_le_liminf_sum, UpperHalfPlane.isometry_vertical_line, TopologicalSpace.NonemptyCompacts.isometry_singleton, MeasureTheory.Integrable.edist_toL1_zero, Complex.isometry_conj, Metric.t4Space, WithAbs.isometry_of_comp, ApproximatesLinearOn.approximatesLinearOn_iff_lipschitzOnWith, Finset.infsep_pos_iff_nontrivial, HasFiniteFPowerSeriesOnBall.cpolynomialOn, UnitAddTorus.mFourierCoeff_toLp, lipschitzWith_sup_right, MeasureTheory.tendsto_integral_approxOn_of_measurable, TopologicalSpace.Compacts.lipschitz_sup, MeasureTheory.Measure.mkMetric_le_liminf_tsum, MeasureTheory.tendstoInMeasure_iff_tendsto_Lp, HasFPowerSeriesWithinOnBall.differentiableOn, DomAddAct.instIsIsometricVAddSubtypeAEEqFunMemAddAddSubgroupLp, Metric.ediam_pos_iff', ContinuousLinearMap.antilipschitz_of_isEmbedding, metrizableSpace, hasFPowerSeriesWithinOnBall_iff_exists_hasFPowerSeriesOnBall, NumberField.InfinitePlace.Completion.isometry_extensionEmbedding, MeasureTheory.Integrable.norm_toL1, antilipschitzWith_mul_right, Real.ediam_Ioc, LinearMap.exists_antilipschitzWith, IsometryEquiv.hausdorffMeasure_image, ConvexOn.locallyLipschitz, LipschitzWith.dist_left, Delone.DeloneSet.mapIsometry_symm_apply_carrier, HasFPowerSeriesWithinOnBall.analyticOn, LipschitzWith.of_le_add, MeasureTheory.SimpleFunc.nnnorm_approxOn_le, lipschitzOnWith_cfc_fun_of_subset, Dilation.isClosedEmbedding, EMetric.closedBall_zero, Metric.isPreconnected_closedEBall, Real.volume_emetric_closedBall, IsLowerSet.cthickening, HasFPowerSeriesOnBall.differentiableOn, Metric.isPathConnected_closedEBall, MeasureTheory.UnifIntegrable.unifIntegrable_of_tendstoInMeasure, Isometry.completion_map, holderWith_zero_iff, LipschitzWith.projIcc, BoundedContinuousFunction.Lp_nnnorm_le, unitInterval.volume_uIcc, lipschitzWith_thickenedIndicator, TopologicalSpace.NonemptyCompacts.lipschitz_prod, MeasureTheory.lintegral_edist_triangle, unitInterval.volume_uIoo, Set.Finite.infsep_pos_iff_nontrivial, MeasureTheory.tendsto_integral_approxOn_of_measurable_of_range_subset, MonotoneOn.locallyBoundedVariationOn, MeasureTheory.lintegral_edist_lt_top, IsPicardLindelof.lipschitzOnWith, MeasureTheory.hasFiniteIntegral_iff_edist, EMetric.exists_forall_closedBall_subset_aux₂, HasFTaylorSeriesUpToOn.exists_lipschitzOnWith_of_nnnorm_lt, isometry_cfcₙHom, HasStrictFDerivAt.exists_lipschitzOnWith, Complex.antilipschitz_equivRealProd, Complex.isometry_ofReal, lipschitzWith_one_norm', MeasureTheory.SimpleFunc.norm_approxOn_y₀_le, MeasureTheory.SimpleFunc.memLp_approxOn_range, DilationEquiv.mulRight_symm_apply, algebraMap_isometry, MeasureTheory.tendsto_setToFun_approxOn_of_measurable_of_range_subset, IsUpperSet.thickening', TopologicalSpace.Closeds.lipschitz_sup, Metric.coveringNumber_zero, DilationEquiv.mulLeft_symm_apply, IsometryEquiv.map_midpoint, Dilation.isUniformEmbedding, NumberField.mixedEmbedding.euclidean.volumePreserving_toMixed, NNReal.lipschitzWith_sub, LightCondensed.isoFinYonedaComponents_inv_comp, EuclideanSpace.edist_single_same, lipschitzWith_circleMap, HasFPowerSeriesWithinOnBall.continuousOn, MeasureTheory.Lp.mem_boundedContinuousFunction_iff, DilationEquiv.mulLeft_apply, Real.lipschitzWith_sin, TopologicalSpace.Closeds.edist_eq, Set.infsep_pos_iff_nontrivial_of_finite, MeasureTheory.tendstoInMeasure_of_tendsto_eLpNorm, TopologicalSpace.Closeds.isometry_singleton, lipschitzOnWith_cfc_fun, MeasureTheory.hausdorffMeasure_prod_real, AffineMap.lipschitzWith_of_finiteDimensional, ContinuousLinearMap.isClosed_range_iff_antilipschitz_of_injective, Convex.lipschitzOnWith_of_nnnorm_fderiv_le, LightCondensed.isoLocallyConstantOfIsColimit_inv, Real.volume_pi_le_prod_diam, UniformSpace.Completion.coe_isometry, LipschitzWith.coordinate, HasFiniteFPowerSeriesOnBall.differentiableOn, TopologicalSpace.Compacts.isometry_singleton, Delone.DeloneSet.mapIsometry_symm, Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le, Metric.isPreconnected_eball, IsometryEquiv.map_hausdorffMeasure, MeasureTheory.Lp.lipschitzWith_pos_part, PiNat.exists_lipschitz_retraction_of_isClosed, fourierCoeff_toLp, Convex.lipschitzOnWith_of_nnnorm_hasDerivWithin_le, HasFPowerSeriesWithinOnBall.tendstoLocallyUniformlyOn', Isometry.completion_extension, Metric.ediam_pos_iff, GromovHausdorff.ghDist_eq_hausdorffDist, ContinuousLinearMap.opNorm_extend_le, ApproximatesLinearOn.lipschitz_sub, HasFPowerSeriesOnBall.isBigO_image_sub_image_sub_deriv_principal, Set.relatively_discrete_of_finite, ContractingWith.tendsto_iterate_efixedPoint, DilationEquiv.mulRight_apply, lipschitzOnWith_cfcₙ_fun, Delone.DeloneSet.mapIsometry_refl, BoundedContinuousFunction.mem_Lp, BoundedContinuousFunction.Lp_norm_le, IsometryEquiv.hausdorffMeasure_preimage, TopologicalSpace.Closeds.continuous_infEDist, KuratowskiEmbedding.embeddingOfSubset_isometry, EMetric.isUniformEmbedding_iff', ContractingWith.exists_fixedPoint, RCLike.lipschitzWith_re, instIsRiemannianManifoldModelWithCornersSelfReal, TopologicalSpace.NonemptyCompacts.isometry_toCloseds, UpperHalfPlane.instIsIsometricSMulSpecialLinearGroupFinOfNatNatReal, ApproximatesLinearOn.antilipschitz, Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt, IsometryEquiv.measurePreserving_hausdorffMeasure, IsUpperSet.thickening, EMetric.subsingleton_iff_indiscreteTopology, isometry_induced, TopologicalSpace.Closeds.instCompleteSpace, EuclideanGeometry.similar_of_side_angle_side, Metric.isSeparated_zero, GromovHausdorff.AuxGluingStruct.isom, Real.lipschitzWith_one_mulExpNegMulSq, ContinuousLinearMap.antilipschitz_of_injective_of_isClosed_range, HasFiniteFPowerSeriesOnBall.continuousOn, MeasureTheory.SimpleFunc.memLp_approxOn, memHolder_iff_holderWith, ContractingWith.toLipschitzWith, ContDiff.locallyLipschitz, HasFTaylorSeriesUpToOn.exists_lipschitzOnWith, MeasureTheory.MeasuredSets.lipschitzWith_measureReal, MeasureTheory.Measure.hausdorffMeasure_le_liminf_tsum, eHolderNorm_nsmul, LipschitzWith.dist_right, ConvexOn.locallyLipschitzOn_iff_continuousOn, Metric.closedEBall_zero, HasFPowerSeriesOnBall.analyticOnNhd, Set.Finite.infsep_zero_iff_subsingleton, IsometryEquiv.dimH_image, EMetric.NonemptyCompacts.isClosed_in_closeds, ContractingWith.edist_inequality, Set.Finite.relatively_discrete, Real.volume_eball, LipschitzWith.completion_map, Real.volume_le_diam, MeasureTheory.L1.dist_def, NumberField.InfinitePlace.isometry_embedding_of_isReal, edist_le_zero, FormalMultilinearSeries.analyticOnNhd, ContDiffAt.exists_lipschitzOnWith_of_nnnorm_lt, uniformity_edist, LipschitzOnWith.coordinate, LipschitzOnWith.iff_le_add_mul, Metric.isCompact_closure_iff_exists_finite_isCover, AbsoluteValue.Completion.isClosedEmbedding_extensionEmbedding_of_comp, EMetric.diam_pos_iff, lipschitzWith_negPart, MeasureTheory.OuterMeasure.isometryEquiv_map_mkMetric, ContinuousMap.coe_toLp, Real.lipschitzWith_toNNReal, DomMulAct.instIsIsometricSMulSubtypeAEEqFunMemAddSubgroupLp, MeasureTheory.SimpleFunc.integrable_approxOn_range, Set.einfsep_pos_of_finite, ConvexOn.locallyLipschitzOn_interior, LipschitzWith.of_le_add_mul, lipschitzWith_of_nnnorm_fderiv_le, lipschitzWith_one_nnnorm, eventually_riemannianEDist_le_edist_extChartAt, EuclideanGeometry.similar_of_angle_angle, MeasureTheory.FiniteMeasure.testAgainstNN_lipschitz, lipschitzOnWith_cfcₙ_fun_of_subset, ProbabilityTheory.condExp_ae_eq_integral_condDistrib', EMetric.nontrivial_iff_nontrivialTopology, HasFPowerSeriesOnBall.unique, AbsoluteValue.Completion.isometry_extensionEmbedding_of_comp, Metric.isometry_inl, LipschitzWith.iff_le_add_mul, ContractingWith.edist_efixedPoint_lt_top, EuclideanGeometry.triangle_congruent_iff_dist_eq, Convex.lipschitz_gauge, MeasureTheory.tendstoInMeasure_of_tendsto_Lp, antilipschitzWith_mul_left, ProbabilityTheory.eq_condKernel_of_measure_eq_compProd_real, Real.ediam_Ioo, LipschitzOnWith.zero_iff, TopologicalSpace.NonemptyCompacts.instCompleteSpace, Dilation.ratio_comp, MeasureTheory.SimpleFunc.integrable_approxOn, ConvexOn.locallyLipschitzOn, Submodule.lipschitzWith_starProjection, Real.volume_pi_le_diam_pow, Finset.infsep_zero_iff_subsingleton, LipschitzOnWith.of_le_add, TopologicalSpace.NonemptyCompacts.lipschitz_sup, Metric.contractibleSpace_eball, ConcaveOn.locallyLipschitzOn, Metric.isConnected_closedEBall, GromovHausdorff.toGHSpace_lipschitz, NonUnitalStarAlgHom.isometry, IsometryEquiv.coeFn_toRealAffineIsometryEquiv, IsLowerSet.thickening, ContDiffOn.exists_lipschitzOnWith, eHolderNorm_add_le, Convex.lipschitzWith_gauge, ConcaveOn.exists_lipschitzOnWith_of_isBounded, MeasureTheory.lintegral_enorm_eq_lintegral_edist, HasFPowerSeriesWithinOnBall.unique, MeasureTheory.SimpleFunc.norm_approxOn_zero_le, EuclideanGeometry.angle_side_angle, MeasureTheory.Measure.hausdorffMeasure_apply, RCLike.lipschitzWith_ofReal, zero_eq_edist, ConvexOn.exists_lipschitzOnWith_of_isBounded, Metric.lipschitz_infDist_pt, MeasureTheory.hausdorffMeasure_orthogonalProjection_le, instT0Space, EuclideanGeometry.angle_angle_side, Submodule.lipschitzWith_orthogonalProjection, EuclideanGeometry.side_side_side, lipschitzWith_of_nnnorm_deriv_le, Real.lipschitzWith_cos, MeasureTheory.Measure.mkMetric_le_liminf_sum, Metric.ediam_eq_zero_iff, Metric.lipschitz_infDist, NormedSpace.continuousOn_exp, EMetric.Closeds.lipschitz_sup, MeasureTheory.hausdorffMeasure_affineSegment, EMetric.NonemptyCompacts.isometry_singleton, Metric.eball_contractible, MonotoneOn.eVariationOn_le, NumberField.InfinitePlace.Completion.isometry_extensionEmbedding_of_isReal, MeasureTheory.ProbabilityMeasure.testAgainstNN_lipschitz, ContractingWith.eq_or_edist_eq_top_of_fixedPoints, Metric.isPathConnected_eball, Dilation.mulRight_toFun, MeasureTheory.BoundedContinuousFunction.inner_toLp, tendsto_measure_cthickening_of_isCompact, Metric.contractibleSpace_closedEBall, HasFPowerSeriesOnBall.continuousOn, EMetric.instNontrivialTopologyOfNontrivial, ConcaveOn.continuousOn_tfae, lp.isometry_single, Delone.DeloneSet.isSeparated_packingRadius, LipschitzOnWith.of_le_add_mul', Set.Finite.einfsep_pos, Metric.lipschitz_infDist_set, Metric.packingNumber_zero, Unitization.antilipschitzWith_addEquiv, Metric.Sigma.isometry_mk, IsUpperSet.cthickening', MeasureTheory.lintegral_norm_eq_lintegral_edist, Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt, MeasureTheory.tendsto_setToFun_approxOn_of_measurable, gelfandTransform_isometry, MeasureTheory.isometry_lpMeasSubgroupToLpTrim, NumberField.mixedEmbedding.euclidean.volumePreserving_toMixed_symm, EMetric.Closeds.edist_eq, LinearMap.antilipschitz_of_comap_nhds_le, IsPicardLindelof.exists_forall_mem_closedBall_eq_hasDerivWithinAt_lipschitzOnWith, bsupr_limsup_dimH, IsLowerSet.thickening', lipschitzWith_one_nnnorm', KuratowskiEmbedding.exists_isometric_embedding, Metric.isConnected_eball, Complex.edist_of_re_eq, EMetric.t4Space, Complex.exists_cthickening_tendstoUniformlyOn, unitInterval.volume_uIoc, lipschitzWith_max, Metric.isometry_inr, lipschitzWith_lineMap, Dilation.mulLeft_toFun, MeasureTheory.SimpleFunc.tendsto_approxOn_L1_enorm, Unitization.lipschitzWith_addEquiv, Complex.edist_of_im_eq, EMetric.diam_eq_zero_iff, IsometricContinuousFunctionalCalculus.isometric, Metric.PiNatEmbed.isUniformEmbedding_embed, Dilation.isEmbedding, MeasureTheory.ContinuousMap.inner_toLp, lipschitzWith_posPart, HasFPowerSeriesOnBall.tendstoLocallyUniformlyOn', MetricSpace.isometry_induced, Metric.isCover_zero, MeasureTheory.tendsto_integral_norm_approxOn_sub, AffineMap.antilipschitzWith_of_finiteDimensional, AbsoluteValue.Completion.extensionEmbedding_dist_eq_of_comp, MeasureTheory.L1.edist_def, antilipschitzWith_lineMap, LinearMap.injective_iff_antilipschitz, UpperHalfPlane.isometry_pos_mul, ContDiffOn.locallyLipschitzOn, eHolderNorm_smul, ContinuousLinearMap.bijective_iff_dense_range_and_antilipschitz, EuclideanSpace.edist_eq, ApproximatesLinearOn.lipschitzOnWith, edist_pos, UniformSpace.Completion.edist_eq, FormalMultilinearSeries.continuousOn, edist_eq_zero, EMetric.NonemptyCompacts.lipschitz_sup, ContractingWith.apriori_edist_iterate_efixedPoint_le, ContDiffAt.exists_lipschitzOnWith, ContDiffWithinAt.exists_lipschitzOnWith, TopologicalSpace.Compacts.isometry_toCloseds, lipschitzWith_min, MeasureTheory.SimpleFunc.tendsto_approxOn_range_Lp, MeasureTheory.tendstoInMeasure_iff_tendsto_Lp_finite, TopologicalSpace.NonemptyCompacts.isometry_toCompacts, ContractingWith.edist_efixedPoint_le, IsLowerSet.cthickening', Convex.lipschitzOnWith_of_nnnorm_deriv_le, GromovHausdorff.isometry_optimalGHInjl, AbsoluteValue.Completion.extensionEmbedding_of_comp_coe, Metric.lipschitz_infNndist_pt, MeasureTheory.Integrable.edist_toL1_toL1, WithLp.unitization_isometry_inr, MeasureTheory.L1.setToL1_lipschitz, GromovHausdorff.eq_toGHSpace_iff, LipschitzOnWith.of_le_add_mul, LipschitzWith.zero_iff, MeasureTheory.SimpleFunc.tendsto_approxOn_Lp_eLpNorm, Metric.externalCoveringNumber_zero, IsUniformEmbedding.to_isometry, MeasureTheory.Lp.isometry_compMeasurePreserving, iSup_limsup_dimH, MemHolder.smul_iff, ODE.FunSpace.lipschitzWith, ConcaveOn.locallyLipschitzOn_iff_continuousOn, Convex.lipschitzOnWith_of_nnnorm_fderivWithin_le, LipschitzWith.of_le_add_mul', RCLike.lipschitzWith_im, EMetric.continuous_infEdist_hausdorffEdist, MeasureTheory.SimpleFunc.tendsto_approxOn_range_Lp_eLpNorm, BoundedContinuousFunction.lintegral_le_edist_mul, Real.ediam_Icc, IsUpperSet.cthickening, ConvexOn.lipschitzOnWith_of_abs_le, HasStrictFDerivAt.exists_lipschitzOnWith_of_nnnorm_lt, StarAlgEquiv.isometry, Delone.DeloneSet.mapIsometry_apply_carrier, TopologicalSpace.NonemptyCompacts.instSecondCountableTopology, Convex.lipschitzOnWith_of_nnnorm_derivWithin_le, Complex.isometry_intCast, kuratowskiEmbedding.isometry, Real.ediam_Ico, ContinuousLinearMap.antilipschitz_of_forall_le_inner_map, TensorProduct.edist_tmul_le, LipschitzWith.dist, isometry_cfcHom, Real.volume_emetric_ball, MeasureTheory.OuterMeasure.isometryEquiv_comap_mkMetric, lipschitzWith_one_norm, ConcaveOn.lipschitzOnWith_of_abs_le, IsCoercive.antilipschitz

Theorems

NameKindAssumesProvesValidatesDepends On
eq_of_edist_eq_zero 📖EDist.edist
PseudoEMetricSpace.toEDist
toPseudoEMetricSpace
ENNReal
instZeroENNReal
ext 📖PseudoEMetricSpace.toEDist
toPseudoEMetricSpace
PseudoEMetricSpace.ext
ext_iff 📖mathematicalPseudoEMetricSpace.toEDist
toPseudoEMetricSpace
ext

Metric

Definitions

NameCategoryTheorems
closedEBall 📖CompOp
100 mathmath: closedEBall_mem_nhds, IsometryEquiv.image_emetric_closedBall, Dilation.mapsTo_closedEBall, exists_continuous_real_forall_closedEBall_subset, EMetric.nhdsWithin_basis_closed_eball, mem_closedEBall, exists_forall_closedEBall_subset_aux₂, ediam_closedEBall_le, Real.volume_closedEBall, emetric_closedBall, Isometry.preimage_closedEBall, IsometryEquiv.preimage_emetric_closedBall, EMetric.preimage_mul_right_closedBall, preimage_mul_right_closedEBall, EMetric.exists_continuous_nnreal_forall_closedBall_subset, smul_closedEBall, EMetric.mem_closedBall, closedEBall_ofReal, Snowflaking.image_toSnowflaking_emetricClosedBall, IsometryEquiv.image_closedEBall, EMetric.closedBall_mem_nhds, Isometry.mapsTo_closedEBall, EMetric.preimage_mul_left_closedBall, preimage_smul_closedEBall, exists_forall_closedEBall_subset_aux₁, Snowflaking.preimage_toSnowflaking_emetricClosedBall, EMetric.closedBall_zero, isPreconnected_closedEBall, Real.volume_emetric_closedBall, isPathConnected_closedEBall, eball_subset_closedEBall, preimage_vadd_closedEBall, EMetric.exists_forall_closedBall_subset_aux₂, Subtype.preimage_closedEBall, mem_closedEBall_self, Isometry.mapsTo_emetric_closedBall, IsometryEquiv.preimage_closedEBall, preimage_add_left_closedEBall, Dilation.mapsTo_emetric_closedBall, disjoint_closedEBall_of_lt_infEDist, Snowflaking.image_ofSnowflaking_closedEBall, mem_closedEBall', EMetric.ordConnected_setOf_closedBall_subset, Subtype.image_emetricClosedBall, ordConnected_setOf_closedEBall_subset, exists_continuous_nnreal_forall_closedEBall_subset, preimage_mul_left_closedEBall, Emetric.exists_contMDiffMap_forall_closedBall_subset, EMetric.exists_forall_closedBall_subset_aux₁, EMetric.mem_closedBall_self, convex_closedEBall, EMetric.ball_subset_closedBall, EMetric.closedBall_subset_closedBall, measure_closedEBall_pos, Snowflaking.preimage_toSnowflaking_closedEBall, nhdsWithin_basis_closedEBall, closedEBall_zero, vadd_closedEBall, exists_continuous_ennreal_forall_closedEBall_subset, EMetric.exists_continuous_real_forall_closedBall_subset, EMetric.mem_closedBall_comm, EMetric.vadd_closedBall, EMetric.closedBall_top, emetric_closedBall_nnreal, EMetric.mem_closedBall', mem_closedEBall_comm, EMetric.nhds_basis_closed_eball, EMetric.preimage_smul_closedBall, preimage_add_right_closedEBall, isConnected_closedEBall, Snowflaking.image_ofSnowflaking_emetricClosedBall, EMetric.disjoint_closedBall_of_lt_infEdist, Snowflaking.image_toSnowflaking_closedEBall, closedEBall_top, isCover_iff_subset_iUnion_closedEBall, LipschitzWith.mapsTo_emetric_closedBall, contractibleSpace_closedEBall, nhds_basis_closedEBall, Emetric.exists_smooth_forall_closedBall_subset, closedEBall_subset_closedEBall, EMetric.exists_continuous_eNNReal_forall_closedBall_subset, closedEBall_prod_same, Snowflaking.preimage_ofSnowflaking_emetricClosedBall, EMetric.isClosed_closedBall, EMetric.closedBall_prod_same, isCover_iff_subset_iUnion_emetricClosedBall, closedEBall_coe, EMetric.smul_closedBall, EMetric.preimage_add_left_closedBall, EMetric.measure_closedBall_pos, Snowflaking.preimage_ofSnowflaking_closedEBall, Isometry.preimage_emetric_closedBall, Subtype.preimage_emetricClosedBall, isClosed_closedEBall, Subtype.image_closedEBall, LipschitzWith.mapsTo_closedEBall, EMetric.diam_closedBall, exists_contMDiffMap_forall_closedEBall_subset, EMetric.preimage_add_right_closedBall, EMetric.preimage_vadd_closedBall
eball 📖CompOp
134 mathmath: nhdsWithin_basis_eball, isOpen_eball, HasFPowerSeriesOnBall.tendstoLocallyUniformlyOn, Dilation.mapsTo_eball, EMetric.mem_ball_self, eball_subset_eball, eball_top_eq_univ, lebesgue_number_lemma_of_emetric_nhds, EMetric.isOpen_iff, EMetric.dense_iff, EMetric.ball_prod_same, EMetric.smul_ball, eball_ofReal, EMetric.ball_disjoint, EMetric.vadd_ball, emetric_ball, HasFPowerSeriesWithinOnBall.tendstoLocallyUniformlyOn, HasFPowerSeriesWithinOnBall.isBigO_image_sub_image_sub_deriv_principal, IsCompact.uniform_oscillation, IsometryEquiv.image_emetric_ball, EMetric.mem_ball, Subtype.image_emetricBall, EMetric.isClosed_ball_top, Isometry.mapsTo_eball, HasFiniteFPowerSeriesOnBall.cpolynomialOn, EMetric.nhdsWithin_basis_eball, HasFPowerSeriesWithinOnBall.differentiableOn, hasFPowerSeriesWithinOnBall_iff_exists_hasFPowerSeriesOnBall, mem_eball_comm, HasFPowerSeriesWithinOnBall.analyticOn, EMetric.mem_ball_comm, Snowflaking.image_ofSnowflaking_eball, eball_subset, IsometryEquiv.preimage_emetric_ball, Snowflaking.image_toSnowflaking_eball, HasFPowerSeriesOnBall.differentiableOn, IsometryEquiv.image_eball, eball_subset_closedEBall, emetric_ball_top, EMetric.preimage_mul_left_ball, EMetric.diam_ball, eball_zero, EMetric.nhds_basis_eball, Isometry.mapsTo_emetric_ball, convex_eball, lebesgue_number_lemma_of_emetric_sUnion, preimage_smul_eball, HasFPowerSeriesWithinOnBall.continuousOn, EMetric.preimage_add_right_ball, preimage_mul_right_eball, emetric_ball_nnreal, mem_emetric_ball_one_iff, lebesgue_number_lemma_of_emetric_nhdsWithin', HasFiniteFPowerSeriesOnBall.differentiableOn, isPreconnected_eball, ediam_eball_le, HasFPowerSeriesWithinOnBall.tendstoLocallyUniformlyOn', EMetric.ball_zero, EMetric.ball_subset, HasFPowerSeriesOnBall.isBigO_image_sub_image_sub_deriv_principal, EMetric.mem_ball', eball_top, Snowflaking.preimage_toSnowflaking_eball, eball_prod_same, mem_eball_one_iff, EMetric.ball_subset_closedBall, HasFiniteFPowerSeriesOnBall.continuousOn, eball_mem_nhds, EMetric.preimage_mul_right_ball, HasFPowerSeriesOnBall.analyticOnNhd, Real.volume_eball, FormalMultilinearSeries.analyticOnNhd, lebesgue_number_lemma_of_emetric, LipschitzWith.mapsTo_emetric_ball, smul_eball, EMetric.mem_nhds_iff, lebesgue_number_lemma_of_emetric_nhdsWithin, EMetric.measure_ball_pos, isClosed_eball_top, HasFPowerSeriesOnBall.unique, preimage_mul_left_eball, measure_eball_pos, ordConnected_setOf_eball_subset, nhds_basis_eball, Subtype.preimage_eball, Subtype.image_eball, LipschitzWith.mapsTo_eball, eball_disjoint, EMetric.totallyBounded_iff, measurableSet_eball, contractibleSpace_eball, Subtype.preimage_emetricBall, EMetric.nhds_eq, HasFPowerSeriesWithinOnBall.unique, Snowflaking.preimage_ofSnowflaking_eball, EMetric.preimage_add_left_ball, NormedSpace.continuousOn_exp, eball_contractible, isPathConnected_eball, EMetric.ball_subset_ball, EMetric.ordConnected_setOf_ball_subset, HasFPowerSeriesOnBall.continuousOn, eball_eq_empty_iff, mem_emetric_ball_zero_iff, preimage_add_right_eball, Snowflaking.preimage_ofSnowflaking_emetricBall, vadd_eball, Dilation.mapsTo_emetric_ball, eball_coe, mem_eball_self, isConnected_eball, EMetric.preimage_smul_ball, EMetric.isOpen_ball, mem_eball_zero_iff, HasFPowerSeriesOnBall.tendstoLocallyUniformlyOn', lebesgue_number_lemma_of_emetric_nhds', preimage_vadd_eball, Snowflaking.image_ofSnowflaking_emetricBall, Isometry.preimage_eball, preimage_add_left_eball, EMetric.mem_nhdsWithin_iff, IsCompact.uniform_oscillationWithin, EMetric.totallyBounded_iff', FormalMultilinearSeries.continuousOn, mem_eball', Snowflaking.preimage_toSnowflaking_emetricBall, Isometry.preimage_emetric_ball, EMetric.ball_mem_nhds, EMetric.ball_eq_empty_iff, Snowflaking.image_toSnowflaking_emetricBall, EMetric.preimage_vadd_ball, mem_eball, IsometryEquiv.preimage_eball, Real.volume_emetric_ball
edistLtTopSetoid 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
closedEBall_mem_nhds 📖mathematicalENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
Set
Filter
Filter.instMembership
nhds
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
closedEBall
Filter.mem_of_superset
eball_mem_nhds
eball_subset_closedEBall
closedEBall_prod_same 📖mathematicalSProd.sprod
Set
Set.instSProd
closedEBall
Prod.pseudoEMetricSpaceMax
Set.ext
closedEBall_subset_closedEBall 📖mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
Set
Set.instHasSubset
closedEBall
le_trans
closedEBall_top 📖mathematicalclosedEBall
Top.top
ENNReal
instTopENNReal
Set.univ
Set.eq_univ_of_forall
Set.mem_setOf
le_top
closedEBall_zero 📖mathematicalclosedEBall
EMetricSpace.toPseudoEMetricSpace
ENNReal
instZeroENNReal
Set
Set.instSingletonSet
Set.ext
ENNReal.instCanonicallyOrderedAdd
eball_disjoint 📖mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
EDist.edist
PseudoEMetricSpace.toEDist
Disjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
eball
Set.disjoint_left
LE.le.not_gt
edist_triangle_left
LT.lt.trans_le
ENNReal.add_lt_add
eball_eq_empty_iff 📖mathematicaleball
Set
Set.instEmptyCollection
ENNReal
instZeroENNReal
Set.eq_empty_iff_forall_notMem
le_bot_iff
le_of_not_gt
mem_eball_self
not_lt_of_ge
le_of_eq
pos_of_mem_eball
eball_mem_nhds 📖mathematicalENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
Set
Filter
Filter.instMembership
nhds
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
eball
IsOpen.mem_nhds
isOpen_eball
mem_eball_self
eball_prod_same 📖mathematicalSProd.sprod
Set
Set.instSProd
eball
Prod.pseudoEMetricSpaceMax
Set.ext
eball_subset 📖mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
EDist.edist
PseudoEMetricSpace.toEDist
Set
Set.instHasSubset
eball
PseudoEMetricSpace.edist_triangle
add_comm
ENNReal.add_lt_add_left
eball_subset_closedEBall 📖mathematicalSet
Set.instHasSubset
eball
closedEBall
le_of_lt
Membership.mem.out
eball_subset_eball 📖mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
Set
Set.instHasSubset
eball
lt_of_lt_of_le
eball_zero 📖mathematicaleball
ENNReal
instZeroENNReal
Set
Set.instEmptyCollection
eball_eq_empty_iff
exists_eball_subset_eball 📖mathematicalSet
Set.instMembership
eball
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
Set.instHasSubset
ENNReal.instCanonicallyOrderedAdd
ENNReal.instOrderedSub
eball_subset
Eq.le
add_tsub_cancel_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
LT.lt.le
mem_eball
ne_top_of_lt
isClosed_eball_top 📖mathematicalIsClosed
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
eball
Top.top
ENNReal
instTopENNReal
isOpen_compl_iff
EMetric.isOpen_iff
ENNReal.coe_lt_top
isOpen_eball 📖mathematicalIsOpen
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
eball
EMetric.isOpen_iff
exists_eball_subset_eball
mem_closedEBall 📖mathematicalSet
Set.instMembership
closedEBall
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
mem_closedEBall' 📖mathematicalSet
Set.instMembership
closedEBall
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
PseudoEMetricSpace.edist_comm
mem_closedEBall
mem_closedEBall_comm 📖mathematicalSet
Set.instMembership
closedEBall
mem_closedEBall'
mem_closedEBall
mem_closedEBall_self 📖mathematicalSet
Set.instMembership
closedEBall
mem_closedEBall
PseudoEMetricSpace.edist_self
zero_le
ENNReal.instCanonicallyOrderedAdd
mem_eball 📖mathematicalSet
Set.instMembership
eball
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
mem_eball' 📖mathematicalSet
Set.instMembership
eball
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
PseudoEMetricSpace.edist_comm
mem_eball
mem_eball_comm 📖mathematicalSet
Set.instMembership
eball
mem_eball'
mem_eball
mem_eball_self 📖mathematicalENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
Set
Set.instMembership
eball
mem_eball
PseudoEMetricSpace.edist_self
nhdsWithin_basis_closedEBall 📖mathematicalFilter.HasBasis
ENNReal
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
Set
Set.instInter
closedEBall
nhdsWithin_hasBasis
nhds_basis_closedEBall
nhdsWithin_basis_eball 📖mathematicalFilter.HasBasis
ENNReal
nhdsWithin
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
Set
Set.instInter
eball
nhdsWithin_hasBasis
nhds_basis_eball
nhds_basis_closedEBall 📖mathematicalFilter.HasBasis
ENNReal
nhds
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
closedEBall
nhds_basis_uniformity
uniformity_basis_edist_le
nhds_basis_eball 📖mathematicalFilter.HasBasis
ENNReal
nhds
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
eball
nhds_basis_uniformity
uniformity_basis_edist
ordConnected_setOf_closedEBall_subset 📖mathematicalSet.OrdConnected
ENNReal
PartialOrder.toPreorder
ENNReal.instPartialOrder
setOf
Set
Set.instHasSubset
closedEBall
HasSubset.Subset.trans
Set.instIsTransSubset
closedEBall_subset_closedEBall
ordConnected_setOf_eball_subset 📖mathematicalSet.OrdConnected
ENNReal
PartialOrder.toPreorder
ENNReal.instPartialOrder
setOf
Set
Set.instHasSubset
eball
HasSubset.Subset.trans
Set.instIsTransSubset
eball_subset_eball
pos_of_mem_eball 📖mathematicalSet
Set.instMembership
eball
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
lt_of_le_of_lt
zero_le
ENNReal.instCanonicallyOrderedAdd

MulOpposite

Definitions

NameCategoryTheorems
instPseudoEMetricSpace 📖CompOp
4 mathmath: edist_op, isometry_opLinearEquiv, edist_unop, instIsIsometricSMulMulOpposite

Theorems

NameKindAssumesProvesValidatesDepends On
edist_op 📖mathematicalEDist.edist
MulOpposite
PseudoEMetricSpace.toEDist
instPseudoEMetricSpace
op
edist_unop 📖mathematicalEDist.edist
PseudoEMetricSpace.toEDist
unop
MulOpposite
instPseudoEMetricSpace

Prod

Definitions

NameCategoryTheorems
pseudoEMetricSpaceMax 📖CompOp
67 mathmath: edist_eq, LipschitzWith.prodMk_right, LocallyLipschitz.prodMk, IsometryEquiv.sumArrowIsometryEquivProdArrow_toHomeomorph, LipschitzWith.prod_snd, EMetric.NonemptyCompacts.lipschitz_prod, Complex.lipschitz_equivRealProd, TopologicalSpace.Compacts.lipschitz_prod, EMetric.ball_prod_same, lipschitzWith_lipschitz_const_add_edist, isIsometricVAdd'', HasFPowerSeriesWithinOnBall.isBigO_image_sub_image_sub_deriv_principal, Fin.appendIsometry_symm_apply, TopologicalSpace.Compacts.lipschitz_sup, LipschitzWith.prod_fst, TopologicalSpace.NonemptyCompacts.lipschitz_prod, Fin.appendIsometryOfEq_apply, LipschitzOnWith.prodMk, WithLp.prod_isometry_ofLp_infty, Complex.antilipschitz_equivRealProd, lipschitzWith_lipschitz_const_mul_edist, instIsIsometricSMul, TopologicalSpace.Closeds.lipschitz_sup, NNReal.lipschitzWith_sub, LipschitzWith.prodMk, WithLp.prod_antilipschitzWith_toLp, LipschitzMul.lipschitz_mul, WithLp.prod_lipschitzWith_ofLp, HasFPowerSeriesOnBall.isBigO_image_sub_image_sub_deriv_principal, LipschitzWith.uncurry, IsometryEquiv.piFinTwo_symm_apply, isIsometricSMul'', Fin.appendIsometry_toHomeomorph, WithLp.prod_lipschitzWith_toLp, IsometryEquiv.sumArrowIsometryEquivProdArrow_symm_apply, Metric.eball_prod_same, Isometry.prodMap, LocallyLipschitz.prodMk_left, Isometry.inl, Metric.infEDist_prod, Metric.hausdorffEDist_prod_le, LipschitzWith.prodMk_left, Fin.appendIsometryOfEq_symm_apply, SeminormedAddCommGroup.lipschitzWith_sub, TopologicalSpace.NonemptyCompacts.lipschitz_sup, EMetric.hausdorffEdist_prod_le, EMetric.infEdist_prod, Metric.lipschitz_infDist, Isometry.inr, EMetric.Closeds.lipschitz_sup, IsometryEquiv.piFinTwo_apply, Unitization.antilipschitzWith_addEquiv, Fin.appendIsometry_apply, Metric.closedEBall_prod_same, isIsometricSMul', EMetric.closedBall_prod_same, lipschitzWith_max, Unitization.lipschitzWith_addEquiv, instIsIsometricVAdd, IsometryEquiv.sumArrowIsometryEquivProdArrow_apply, EMetric.NonemptyCompacts.lipschitz_sup, lipschitzWith_min, LipschitzAdd.lipschitz_add, LipschitzWith.dist, WithLp.prod_antilipschitzWith_ofLp, LocallyLipschitz.prodMk_right, isIsometricVAdd'

Theorems

NameKindAssumesProvesValidatesDepends On
edist_eq 📖mathematicalEDist.edist
PseudoEMetricSpace.toEDist
pseudoEMetricSpaceMax
ENNReal
ENNReal.instMax

PseudoEMetricSpace

Definitions

NameCategoryTheorems
induced 📖CompOp
1 mathmath: isometry_induced
ofEDistOfTopology 📖CompOp
replaceUniformity 📖CompOp
toEDist 📖CompOp
343 mathmath: MeasureTheory.tendstoInMeasure_iff_measureReal_norm, edist_eq_enorm_sub, Prod.edist_eq, eVariationOn.sum_le_of_monotoneOn_Icc, edist_comm, MeasureTheory.hausdorffMeasure_segment, WithLp.edist_fst_le, Metric.isSeparated_insert_of_notMem, PiLp.edist_self, EMetricSpace.ext_iff, EMetric.le_infEdist, MeasureTheory.MeasuredSets.sub_le_edist, ContractingWith.edist_le_of_fixedPoint, edist_mem_uniformity, edist_div_right, UniformFun.edist_eval_le, Congruent.pairwise_edist_eq, MeasureTheory.UniformIntegrable.uniformIntegrable_of_tendstoInMeasure, Metric.mem_closedEBall, Set.le_einfsep_of_forall_dist_le, MeasureTheory.tendstoInMeasure_of_tendsto_eLpNorm_of_stronglyMeasurable, Set.einfsep_lt_top_iff, uniformity_basis_edist, edist_zero_left, MeasureTheory.LevyProkhorov.edist_measure_def, lintegral_fderiv_lineMap_eq_edist, edist_zero_eq_enorm, Metric.isSeparated_iff_setRelIsSeparated, AffineIsometryEquiv.edist_map, Set.infsep_zero_iff_subsingleton_of_finite, Metric.infEDist_le_edist_of_mem, Isometry.edist_eq, TopologicalSpace.Compacts.edist_eq, MeasureTheory.SimpleFunc.nearestPtInd_succ, EMetric.diam_pair, DilationEquiv.edist_eq', EMetric.diam_le_iff, Metric.ediam_triple, Metric.PiNatEmbed.edist_def, MeasureTheory.tendstoInMeasure_of_tendsto_eLpNorm_top, measurable_edist_right, EMetric.mem_ball, MeasureTheory.Integrable.edist_toL1_zero, Metric.infEDist_le_infEDist_add_edist, EMetric.mem_closedBall, congruent_iff_pairwise_edist_eq, EMetric.exists_edist_lt_of_hausdorffEdist_lt, Finset.infsep_pos_iff_nontrivial, uniformity_basis_edist_le, EMetric.isUniformEmbedding_iff, MulOpposite.edist_op, DilationClass.edist_eq', edist_div_left, MeasureTheory.tendstoInMeasure_iff_tendsto_Lp, AddOpposite.edist_op, Set.Finite.infsep_of_nontrivial, MeasureTheory.tendstoInMeasure_iff_norm, MeasureTheory.StronglyMeasurable.edist, EMetric.diam_insert, ContractingWith.apriori_edist_iterate_efixedPoint_le', PairReduction.pow_logSizeRadius_le_card_le_logSizeRadius, EMetric.uniformContinuous_iff, IsometryEquiv.edist_eq, MeasureTheory.Integrable.norm_toL1, LinearIsometry.edist_map, Finset.coe_infsep_of_offDiag_nonempty, Set.Nontrivial.infsep_of_fintype, Set.infsep_le_of_mem_of_edist_le, MeasureTheory.tendstoInMeasure_iff_measureReal_dist, Set.Finite.infsep, edist_neg, EMetric.cauchySeq_iff, PairReduction.card_le_logSizeRadius_le_pow_logSizeRadius, EMetric.tendsto_nhds, uniformity_basis_edist_le', WithLp.edist_toLp_snd, Dilation.edist_eq', EMetric.mk_uniformity_basis_le, similar_iff_exists_edist_eq, MeasureTheory.UnifIntegrable.unifIntegrable_of_tendstoInMeasure, Set.Nontrivial.infsep_eq_iInf, Metric.isSeparated_insert, unitInterval.volume_uIcc, MeasureTheory.lintegral_edist_triangle, MeasureTheory.tendstoInMeasure_iff_dist, variationOnFromTo.eq_zero_iff_of_le, unitInterval.volume_uIoo, Set.Finite.infsep_pos_iff_nontrivial, WithLp.prod_edist_eq_of_L2, MulOpposite.edist_unop, EMetric.infEdist_singleton, eVariationOn.sum_le_of_monotoneOn_Iic, UniformOnFun.edist_eval_le, MeasureTheory.lintegral_edist_lt_top, Dilation.edist_eq, MeasureTheory.LevyProkhorov.edist_finiteMeasure_def, MeasureTheory.hasFiniteIntegral_iff_edist, ContractingWith.edist_efixedPoint_lt_top', edist_mul_mul_le, edist_mul_right, continuous_edist, EMetric.controlled_of_isUniformEmbedding, PairReduction.edist_le_of_mem_pairSet, edist_sub_left, Set.infsep_eq_iInf, AddOpposite.edist_unop, Metric.ediam_eq_sSup, ContractingWith.edist_efixedPoint_le', AEMeasurable.edist, Set.infsep_pair, MeasureTheory.SimpleFunc.edist_approxOn_y0_le, Set.einfsep_eq_top_iff, LipschitzWith.edist_iterate_succ_le_geometric, SeparationQuotient.edist_mk, Set.einfsep_insert, uniformity_basis_edist_inv_nat, MeasureTheory.SimpleFunc.edist_approxOn_mono, EuclideanSpace.edist_single_same, ProbabilityTheory.IsKolmogorovProcess.measurable_edist, Set.Nontrivial.infsep_lt_iff, Metric.mem_closedEBall', TopologicalSpace.Closeds.edist_eq, LipschitzWith.edist_le_mul, ProbabilityTheory.IsAEKolmogorovProcess.kolmogorovCondition, Set.infsep_pos_iff_nontrivial_of_finite, MeasureTheory.tendstoInMeasure_of_tendsto_eLpNorm, ProbabilityTheory.IsKolmogorovProcess.kolmogorovCondition, EMetric.mem_hausdorffEntourage_of_hausdorffEdist_lt, Set.infsep_of_fintype, Metric.le_infEDist, edist_neg_neg, edist_vadd_left, ProbabilityTheory.IsAEKolmogorovProcess.edist_eq_zero_of_const_eq_zero, edist_one_right, EMetric.tendsto_nhds_nhds, Metric.edist_le_ediam_of_mem, Set.Finite.infsep_exists_of_nontrivial, UniformFun.edist_le, edist_self, edist_triangle4, edist_triangle_right, ProbabilityTheory.IsKolmogorovProcess.stronglyMeasurable_edist, ProbabilityTheory.IsKolmogorovProcess.edist_eq_zero_of_const_eq_zero, LipschitzWith.mul_edist_le, Metric.edist_le_infEDist_add_ediam, EMetric.mem_ball', Set.relatively_discrete_of_finite, EMetric.infEdist_le_edist_add_infEdist, Finset.coe_infsep, edist_one_eq_enorm, edist_smul₀, uniformity_basis_edist_nnreal_le, Inseparable.edist_eq_zero, edist_eq_enorm_div, EMetric.isUniformEmbedding_iff', EMetric.pair_reduction, ContractingWith.exists_fixedPoint, variationOnFromTo.eq_zero_iff_of_ge, uniformity_basis_edist_inv_two_pow, EMetric.tendsto_atTop, EMetric.edist_le_infEdist_add_ediam, edist_add_add_le, similar_iff_exists_pairwise_edist_eq, PiLp.edist_apply_le, edist_sub_right, AntilipschitzWith.edist_lt_top, eVariationOn.edist_le, Metric.mem_thickening_iff_exists_edist_lt, UniformOnFun.edist_def', EMetric.edist_le_diam_of_mem, LinearIsometryEquiv.edist_map, Set.Nontrivial.infsep_anti, EMetric.cauchySeq_iff_le_tendsto_0, Set.Finite.infsep_zero_iff_subsingleton, Finset.coe_infsep_of_offDiag_empty, MeasureTheory.LevyProkhorov.edist_probabilityMeasure_def, ContractingWith.edist_inequality, Set.Finite.relatively_discrete, measurable_edist_left, Metric.ediam_pair, MeasureTheory.tendstoInMeasure_iff_measureReal_enorm, MeasureTheory.L1.dist_def, Set.Nontrivial.infsep_exists_of_finite, UniformFun.edist_def, edist_le_zero, uniformity_edist, hasConstantSpeedOnWith_zero_iff, EMetric.infEdist_le_edist_of_mem, edist_add_left, eVariationOn.sum_le, Set.infsep_triple, eVariationOn.add_point, Set.einfsep_pos_of_finite, edist_smul_left, WithLp.prod_edist_eq_of_L1, EMetric.diam_image_le_iff, Congruent.edist_eq, Set.infsep_le_dist_of_mem, UniformOnFun.edist_def, eventually_riemannianEDist_le_edist_extChartAt, variationOnFromTo.edist_zero_of_eq_zero, Similar.exists_edist_eq, Metric.infEDist_singleton, WithLp.prod_edist_self, DilationEquivClass.edist_eq', ContractingWith.exists_fixedPoint', BoundedContinuousFunction.edist_eq_iSup, ContractingWith.edist_efixedPoint_lt_top, MeasureTheory.tendstoInMeasure_of_tendsto_Lp, EMetric.mem_closedBall', edist_mul_left, Metric.ediam_image_le_iff, EMetric.tendsto_nhdsWithin_nhds, Finset.infsep_zero_iff_subsingleton, UniformOnFun.edist_continuousRestrict, EMetric.cauchy_iff, EMetric.uniformContinuousOn_iff, edist_le_range_sum_edist, MeasureTheory.Egorov.mem_notConvergentSeq_iff, PiLp.edist_toLp_single_same, Set.infsep_pair_eq_toReal, edist_add_right, EMetric.mk_uniformity_basis, edist_vadd_vadd_le, Metric.exists_edist_lt_of_hausdorffEDist_lt, PairReduction.exists_radius_le, Set.einfsep_triple, EMetric.mem_closure_iff, IsometryClass.edist_eq, EMetric.infEdist_lt_iff, Set.Nontrivial.le_infsep, edist_zero_right, Subtype.edist_mk_mk, MeasureTheory.lintegral_enorm_eq_lintegral_edist, tendsto_iff_edist_tendsto_0, EMetric.infEdist_le_infEdist_add_edist, MeasureTheory.tendstoInMeasure_of_tendsto_eLpNorm_of_ne_top, Measurable.edist, edist_inv_inv, Metric.hausdorffEDist_singleton, zero_eq_edist, MeasureTheory.exists_seq_tendstoInMeasure_atTop_iff, Set.einfsep_pair, EMetric.cauchySeq_iff_NNReal, Metric.ediam_union_le_add_edist, variationOnFromTo.eq_zero_iff, edist_pi_const_le, MeasureTheory.hausdorffMeasure_affineSegment, IsCompact.exists_infEdist_eq_edist, AffineIsometry.edist_map, ULift.edist_up_up, ContractingWith.eq_or_edist_eq_top_of_fixedPoints, Metric.mem_hausdorffEntourage_of_hausdorffEDist_lt, HolderOnWith.edist_le, EMetric.tendsto_nhdsWithin_nhdsWithin, edist_inv, Set.Finite.einfsep_pos, WithLp.edist_toLp_fst, MeasureTheory.tendstoInMeasure_iff_enorm, HolderWith.edist_le, ConvexBody.hausdorffEDist_coe, MeasureTheory.lintegral_norm_eq_lintegral_edist, EMetric.diam_eq_sSup, Subtype.edist_eq, ConvexBody.hausdorffEdist_coe, AntilipschitzWith.mul_le_edist, Set.Nontrivial.einfsep_lt_top, edist_pi_const, EMetric.Closeds.edist_eq, uniformity_basis_edist_nnreal, edist_triangle_left, EMetric.diam_union, UniformOnFun.edist_continuousRestrict_of_singleton, Complex.edist_of_re_eq, edist_le_Ico_sum_edist, ProbabilityTheory.IsAEKolmogorovProcess.aemeasurable_edist, unitInterval.volume_uIoc, EMetric.cauchySeq_iff', measurable_edist, IsRiemannianManifold.out, Complex.edist_of_im_eq, UniformOnFun.edist_le, EMetric.diam_triple, edist_vsub_vsub_le, UniformFun.edist_continuousMapMk, MeasureTheory.SimpleFunc.edist_nearestPt_le, LipschitzWith.edist_lt_top, IsCompact.exists_infEDist_eq_edist, edist_one_left, MeasureTheory.tendstoInMeasure_of_tendsto_ae, EMetric.hausdorffEdist_singleton, uniformity_basis_edist', PairReduction.iSup_edist_pairSet, ProbabilityTheory.IsAEKolmogorovProcess.aestronglyMeasurable_edist, MeasureTheory.SimpleFunc.edist_approxOn_le, congruent_iff_edist_eq, uniformity_edist, MeasureTheory.MeasuredSets.edist_def, MeasureTheory.L1.edist_def, Filter.Tendsto.edist, EuclideanSpace.edist_eq, ULift.edist_eq, edist_smul_le, Metric.ediam_le_iff, edist_pos, UniformSpace.Completion.edist_eq, EMetric.isUniformInducing_iff, edist_eq_zero, EMetric.inseparable_iff, ContractingWith.apriori_edist_iterate_efixedPoint_le, Fin.edist_append_eq_max_edist, MeasureTheory.tendstoInMeasure_iff_tendsto_Lp_finite, MeasureTheory.AEStronglyMeasurable.edist, Metric.mem_eball', PiLp.edist_eq_of_L1, edist_indicator, ContractingWith.edist_efixedPoint_le, Metric.edist_le_of_ediam_le, MeasureTheory.Integrable.edist_toL1_toL1, uniformity_pseudoedist, Metric.infEDist_lt_iff, EMetric.exists_pos_forall_lt_edist, Similar.exists_pairwise_edist_eq, Set.Nontrivial.le_infsep_iff, uniformSpace_edist, PiLp.edist_comm, ext_iff, ContinuousMap.edist_eq_iSup, WithLp.edist_snd_le, eVariationOn.eq_zero_iff, Metric.mem_eball, Metric.exists_pos_forall_lt_edist, PiLp.edist_eq_of_L2, edist_naturalParameterization_eq_zero, BoundedContinuousFunction.lintegral_le_edist_mul, Metric.ediam_insert, Metric.infEDist_le_edist_add_infEDist, EMetric.edist_le_of_diam_le, TensorProduct.edist_tmul_le, edist_mulIndicator, Continuous.edist, WithLp.prod_edist_comm, edist_triangle
toUniformSpace 📖CompOp
302 mathmath: Metric.nhdsWithin_basis_eball, Matrix.l2_opNorm_toEuclideanCLM, MeasureTheory.OuterMeasure.IsMetric.borel_le_caratheodory, MeasureTheory.tendsto_integral_thickenedIndicator_of_isClosed, Metric.closedEBall_mem_nhds, Metric.cthickening_closure, Metric.isOpen_eball, Dilation.tendsto_nhds_iff, thickenedIndicator_mono_infEDist, IsometryEquiv.sumArrowIsometryEquivProdArrow_toHomeomorph, MeasureTheory.Egorov.tendstoUniformlyOn_diff_iUnionNotConvergentSeq, Matrix.cstar_nnnorm_def, DilationEquiv.coe_toHomeomorph, Metric.hausdorffEDist_closure, edist_mem_uniformity, thickenedIndicatorAux_tendsto_indicator_closure, Isometry.uniformContinuous, EMetric.nhdsWithin_basis_closed_eball, EMetric.isOpen_iff, EMetric.NonemptyCompacts.lipschitz_prod, LipschitzOnWith.uniformEquicontinuousOn, EMetric.dense_iff, TopologicalSpace.Compacts.lipschitz_prod, uniformity_basis_edist, HasMFDerivWithinAt.prodMk, EMetric.NonemptyCompacts.isometry_toCloseds, isClosed_setOf_lipschitzOnWith, cauchySeq_of_edist_le_of_tsum_ne_top, TopologicalSpace.Compacts.edist_eq, EMetric.Closeds.isometry_singleton, TopologicalSpace.NonemptyCompacts.isClosed_in_closeds, IsometryEquiv.coe_toHomeomorph, EMetric.infEdist_pos_iff_notMem_closure, Isometry.comp_continuous_iff, EMetric.tendstoLocallyUniformlyOn_iff, indicator_thickening_eventually_eq_indicator_closure, Metric.hausdorffEDist_closure_right, TopologicalSpace.NonemptyCompacts.isometry_singleton, Metric.hausdorffEDist_self_closure, Metric.t4Space, LipschitzOnWith.continuousOn, EMetric.isClosed_ball_top, DilationEquiv.coe_symm_toHomeomorph, EMetric.closedBall_mem_nhds, uniformity_basis_edist_le, thickenedIndicator_zero, EMetric.isUniformEmbedding_iff, MeasureTheory.tendsto_integral_approxOn_of_measurable, TopologicalSpace.Compacts.lipschitz_sup, Metric.isOpen_thickening, EMetric.nhdsWithin_basis_eball, Metric.ediam_closure, thickenedIndicator_le_one, HasMFDerivWithinAt.prodMap, MeasureTheory.integrable_thickenedIndicator, EMetricSpace.metrizableSpace, thickenedIndicatorAux_closure_eq, EMetric.mem_closure_iff_infEdist_zero, EMetric.uniformContinuous_iff, EMetric.tendstoUniformly_iff, Module.Basis.prod_addHaar, cauchySeq_of_edist_le_of_summable, Dilation.isClosedEmbedding, EMetric.cauchySeq_iff, IsometryEquiv.comp_continuousOn_iff, EMetric.infEdist_closure_pos_iff_notMem_closure, EMetric.tendsto_nhds, uniformity_basis_edist_le', EMetric.mk_uniformity_basis_le, HasFPowerSeriesWithinOnBall.prod, IsometryEquiv.completeSpace, cauchySeq_of_edist_le_geometric_two, Matrix.toEuclideanCLM_toLp, IsIsometricSMul.to_continuousConstSMul, lipschitzWith_thickenedIndicator, TopologicalSpace.NonemptyCompacts.lipschitz_prod, continuous_of_le_add_edist, MeasureTheory.tendsto_integral_approxOn_of_measurable_of_range_subset, Dilation.toContinuous, tendsto_measure_cthickening, Metric.frontier_thickening_subset, continuous_edist, Metric.cthickening_zero, MeasureTheory.SimpleFunc.memLp_approxOn_range, Isometry.tendsto_nhds_iff, EMetric.nhds_basis_eball, HasMFDerivAt.prodMap, MeasureTheory.tendsto_setToFun_approxOn_of_measurable_of_range_subset, TopologicalSpace.Closeds.lipschitz_sup, IsometryEquiv.completeSpace_iff, Dilation.isUniformEmbedding, SeparationQuotient.edist_mk, uniformity_basis_edist_inv_nat, NumberField.mixedEmbedding.euclidean.volumePreserving_toMixed, pseudoMetrizableSpace, indicator_le_thickenedIndicator, TopologicalSpace.Closeds.edist_eq, IsContDiffImplicitAt.implicitFunction_apply, Metric.closure_eq_iInter_cthickening, Oscillation.eq_zero_iff_continuousAt, TopologicalSpace.Closeds.isometry_singleton, tendsto_measure_thickening, MeasureTheory.hausdorffMeasure_prod_real, DilationEquiv.toHomeomorph_symm, EMetric.diam_closure, IsContDiffImplicitAt.implicitFunctionData_pt, EMetric.tendsto_nhds_nhds, Metric.mem_closure_iff_infEDist_zero, TopologicalSpace.Compacts.isometry_singleton, IsIsometricVAdd.to_continuousConstVAdd, Matrix.ofLp_toEuclideanCLM, measure_le_lintegral_thickenedIndicator, EMetric.instIsCountablyGeneratedUniformity, MeasureTheory.TendstoInMeasure.exists_seq_tendsto_ae, LocallyLipschitzOn.continuousOn, EMetric.subset_countable_closure_of_almost_dense_set, Isometry.isEmbedding, Metric.closure_thickening_subset_cthickening, Metric.infEDist_closure_pos_iff_notMem_closure, ContractingWith.tendsto_iterate_efixedPoint, nhds_eq_nhds_emetric_ball, Dilation.isUniformInducing, Metric.thickening_subset_interior_cthickening, MeasureTheory.measure_le_measure_closure_of_levyProkhorovEDist_eq_zero, Fin.appendIsometry_toHomeomorph, thickenedIndicator_tendsto_indicator_closure, uniformity_basis_edist_nnreal_le, TopologicalSpace.Closeds.continuous_infEDist, EMetric.isUniformEmbedding_iff', LipschitzWith.uniformContinuous, Dilation.comp_continuousOn_iff, ContractingWith.exists_fixedPoint, TopologicalSpace.NonemptyCompacts.isometry_toCloseds, IsContDiffImplicitAt.implicitFunctionData_rightFun_apply, uniformity_basis_edist_inv_two_pow, EMetric.tendstoLocallyUniformly_iff, EMetric.tendsto_atTop, EMetric.subsingleton_iff_indiscreteTopology, Matrix.coe_toEuclideanCLM_eq_toEuclideanLin, TopologicalSpace.Closeds.instCompleteSpace, Isometry.continuous, LipschitzWith.uniformEquicontinuous, HolderWith.uniformContinuous, MeasureTheory.SimpleFunc.memLp_approxOn, EMetric.secondCountable_of_sigmaCompact, Metric.hausdorffEDist_zero_iff_closure_eq_closure, Metric.cthickening_mem_nhdsSet, Metric.closure_subset_cthickening, Metric.eball_mem_nhds, LipschitzWith.continuous, EMetric.cauchySeq_iff_le_tendsto_0, EMetric.infEdist_closure, IsClopen.of_cthickening_subset_self, HasFPowerSeriesWithinAt.prod, Metric.nhdsWithin_basis_closedEBall, ProbabilityTheory.IsKolmogorovProcess.measurablePair, EMetric.NonemptyCompacts.isClosed_in_closeds, HolderOnWith.uniformContinuousOn, cauchySeq_of_edist_le_geometric, thickenedIndicator_subset, Dilation.comp_continuous_iff, uniformity_edist, HasFTaylorSeriesUpToOn.prodMk, LocallyLipschitz.continuous, Metric.frontier_thickening_disjoint, thickenedIndicator_apply, Metric.hausdorffEDist_closure_left, WithLp.isUniformInducing_toLp, indicator_cthickening_eventually_eq_indicator_closure, MeasureTheory.SimpleFunc.integrable_approxOn_range, IsometryEquiv.comp_continuous_iff', EMetric.mem_nhds_iff, Trivialization.continuousLinearEquivAt_prod, Isometry.comp_continuousOn_iff, EMetric.hausdorffEdist_zero_iff_closure_eq_closure, MeasureTheory.tendsto_lintegral_thickenedIndicator_of_isClosed, Metric.isClosed_eball_top, EMetric.nontrivial_iff_nontrivialTopology, PiLp.isUniformInducing_toLp, thickenedIndicator_mono_infEdist, IsClopen.of_thickening_subset_self, Metric.nhds_basis_eball, TopologicalSpace.NonemptyCompacts.instCompleteSpace, eVariationOn.lowerSemicontinuous_uniformOn, Metric.closure_eq_iInter_thickening', MeasureTheory.SimpleFunc.integrable_approxOn, measurableSet_of_continuousAt, Metric.frontier_cthickening_disjoint, Isometry.isClosedEmbedding, EMetric.tendsto_nhdsWithin_nhds, EMetric.nhds_basis_closed_eball, EMetric.cauchy_iff, EMetric.uniformContinuousOn_iff, HasFPowerSeriesOnBall.prod, Metric.instParacompactSpace, MeasureTheory.MeasuredSets.continuous_measure, EMetric.mk_uniformity_basis, TopologicalSpace.NonemptyCompacts.lipschitz_sup, EMetric.totallyBounded_iff, MeasureTheory.tendstoUniformlyOn_of_ae_tendsto_of_measurable_edist, tendsto_mulIndicator_thickening_mulIndicator_closure, Metric.infEDist_closure, Isometry.isUniformEmbedding, EMetric.mem_closure_iff, tendsto_indicator_cthickening_indicator_closure, EMetric.nhds_eq, tendsto_iff_edist_tendsto_0, IsContDiffImplicitAt.implicitFunctionData_rightFun_pt, EMetric.secondCountable_of_almost_dense_set, Metric.continuous_infEDist, Metric.isClosed_cthickening, IsContDiffImplicitAt.implicitFunctionData_leftFun_apply, MeasureTheory.hausdorffMeasure_orthogonalProjection_le, EMetricSpace.instT0Space, EMetric.cauchySeq_iff_NNReal, Metric.closure_eq_iInter_cthickening', EMetric.tendstoUniformlyOn_iff, EMetric.Closeds.lipschitz_sup, EMetric.NonemptyCompacts.isometry_singleton, HasFPowerSeriesAt.prod, AntilipschitzWith.comap_nhds_le, HasMFDerivAt.prodMk, EMetric.tendsto_nhdsWithin_nhdsWithin, EMetric.instNontrivialTopologyOfNontrivial, continuous_thickenedIndicatorAux, Metric.nhds_basis_closedEBall, Metric.cthickening_of_nonpos, Isometry.isUniformInducing, IsometryClass.toContinuousMapClass, thickenedIndicator_one, EMetric.hausdorffEdist_closure, uniformity_eq_of_bilipschitz, IsometryClass.continuous, MeasureTheory.tendsto_setToFun_approxOn_of_measurable, IsometryClass.toHomeomorphClass, HolderWith.continuous, IsContDiffImplicitAt.implicitFunction_def, IsometryEquiv.toEquiv_toHomeomorph, NumberField.mixedEmbedding.euclidean.volumePreserving_toMixed_symm, EMetric.isClosed_closedBall, EMetric.Closeds.edist_eq, uniformity_basis_edist_nnreal, Metric.frontier_cthickening_subset, Metric.thickening_mem_nhdsSet, bsupr_limsup_dimH, mulIndicator_cthickening_eventually_eq_mulIndicator_closure, Bundle.Prod.contMDiffVectorBundle, EMetric.t4Space, UniformOnFun.continuous_of_forall_lipschitzWith, Matrix.cstar_norm_def, EMetric.cauchySeq_iff', EMetric.isOpen_ball, Metric.closure_subset_thickening, MeasureTheory.tendsto_iff_forall_lipschitz_integral_tendsto, mulIndicator_thickening_eventually_eq_mulIndicator_closure, Metric.PiNatEmbed.isUniformEmbedding_embed, Dilation.isEmbedding, EMetric.hausdorffEdist_self_closure, uniformity_basis_edist', MeasureTheory.tendsto_integral_norm_approxOn_sub, IsometryEquiv.continuous, uniformity_edist, tendsto_mulIndicator_cthickening_mulIndicator_closure, EMetric.hausdorffEdist_closure₂, EMetric.mem_nhdsWithin_iff, EMetric.continuous_infEdist, EMetric.totallyBounded_iff', one_le_thickenedIndicator_apply, eVariationOn.lowerSemicontinuous, EMetric.isUniformInducing_iff, EMetric.NonemptyCompacts.lipschitz_sup, isClosed_setOf_lipschitzWith, EMetric.inseparable_iff, TopologicalSpace.Compacts.isometry_toCloseds, HolderOnWith.continuousOn, MeasureTheory.SimpleFunc.tendsto_approxOn_range_Lp, TopologicalSpace.NonemptyCompacts.isometry_toCompacts, tendsto_indicator_thickening_indicator_closure, uniformity_pseudoedist, VectorBundle.prod, uniformSpace_edist, MeasureTheory.TendstoInMeasure.exists_seq_tendsto_ae', EMetric.ball_mem_nhds, IsometryEquiv.coe_toHomeomorph_symm, OscillationWithin.eq_zero_iff_continuousWithinAt, mem_uniformity_edist, iSup_limsup_dimH, Metric.isClosed_closedEBall, EMetric.continuous_infEdist_hausdorffEdist, EMetric.hausdorffEdist_closure₁, IsContDiffImplicitAt.implicitFunctionData_leftFun_pt, MeasureTheory.SimpleFunc.tendsto_approxOn_range_Lp_eLpNorm, RCLike.restrict_toContinuousMap_eq_toContinuousMapStar_restrict, Metric.closure_eq_iInter_thickening, thickenedIndicator.coeFn_eq_comp, TopologicalSpace.NonemptyCompacts.instSecondCountableTopology, Metric.thickening_closure, IsometryEquiv.comp_continuous_iff, Metric.infEDist_pos_iff_notMem_closure, thickenedIndicator_mono, LipschitzOnWith.uniformContinuousOn, AntilipschitzWith.comap_uniformity_le

Theorems

NameKindAssumesProvesValidatesDepends On
edist_comm 📖mathematicalEDist.edist
toEDist
edist_self 📖mathematicalEDist.edist
toEDist
ENNReal
instZeroENNReal
edist_triangle 📖mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
toEDist
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ext 📖toEDistUniformSpace.ext
ext_iff 📖mathematicaltoEDistext
uniformity_edist 📖mathematicaluniformity
toUniformSpace
iInf
Filter
ENNReal
Filter.instInfSet
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
Filter.principal
setOf
EDist.edist
toEDist

PseudoEmetricSpace

Definitions

NameCategoryTheorems
ofEdistOfTopology 📖CompOp

Subtype

Theorems

NameKindAssumesProvesValidatesDepends On
edist_eq 📖mathematicalEDist.edist
PseudoEMetricSpace.toEDist
instPseudoEMetricSpaceSubtype
edist_mk_mk 📖mathematicalEDist.edist
PseudoEMetricSpace.toEDist
instPseudoEMetricSpaceSubtype
image_closedEBall 📖mathematicalSet.image
Metric.closedEBall
instPseudoEMetricSpaceSubtype
Set
Set.instInter
setOf
preimage_closedEBall
Set.image_preimage_eq_inter_range
range_val_subtype
image_eball 📖mathematicalSet.image
Metric.eball
instPseudoEMetricSpaceSubtype
Set
Set.instInter
setOf
preimage_eball
Set.image_preimage_eq_inter_range
range_val_subtype
image_emetricBall 📖mathematicalSet.image
Metric.eball
instPseudoEMetricSpaceSubtype
Set
Set.instInter
setOf
image_eball
image_emetricClosedBall 📖mathematicalSet.image
Metric.closedEBall
instPseudoEMetricSpaceSubtype
Set
Set.instInter
setOf
image_closedEBall
preimage_closedEBall 📖mathematicalSet.preimage
Metric.closedEBall
instPseudoEMetricSpaceSubtype
preimage_eball 📖mathematicalSet.preimage
Metric.eball
instPseudoEMetricSpaceSubtype
preimage_emetricBall 📖mathematicalSet.preimage
Metric.eball
instPseudoEMetricSpaceSubtype
preimage_eball
preimage_emetricClosedBall 📖mathematicalSet.preimage
Metric.closedEBall
instPseudoEMetricSpaceSubtype
preimage_closedEBall

ULift

Theorems

NameKindAssumesProvesValidatesDepends On
edist_eq 📖mathematicalEDist.edist
PseudoEMetricSpace.toEDist
instPseudoEMetricSpaceULift
edist_up_up 📖mathematicalEDist.edist
PseudoEMetricSpace.toEDist
instPseudoEMetricSpaceULift

(root)

Definitions

NameCategoryTheorems
EDist 📖CompData
EMetricSpace 📖CompData
PseudoEMetricSpace 📖CompData
instEDistAdditive 📖CompOp
2 mathmath: edist_toMul, edist_ofMul
instEDistMultiplicative 📖CompOp
2 mathmath: edist_toAdd, edist_ofAdd
instEDistOrderDual 📖CompOp
2 mathmath: edist_ofDual, edist_toDual
instEMetricSpaceAddOpposite 📖CompOp
instEMetricSpaceAdditive 📖CompOp
instEMetricSpaceMulOpposite 📖CompOp
instEMetricSpaceMultiplicative 📖CompOp
instEMetricSpaceOrderDual 📖CompOp
instEMetricSpaceSubtype 📖CompOp
3 mathmath: ContractingWith.restrict, dimH_orthogonalProjection_le, MeasureTheory.hausdorffMeasure_orthogonalProjection_le
instEMetricSpaceULift 📖CompOp
instPseudoEMetricSpaceAdditive 📖CompOp
2 mathmath: Additive.isIsIsometricVAdd', Additive.isIsIsometricVAdd''
instPseudoEMetricSpaceMultiplicative 📖CompOp
2 mathmath: Multiplicative.isIsIsometricVAdd'', Multiplicative.isIsometricSMul'
instPseudoEMetricSpaceOrderDual 📖CompOp
instPseudoEMetricSpaceSubtype 📖CompOp
43 mathmath: LipschitzOnWith.mapsToRestrict, ApproximatesLinearOn.lipschitz, ODE.FunSpace.range_toContinuousMap, AntilipschitzWith.to_rightInvOn, Subtype.image_emetricBall, lipschitzOnWith_iff_restrict, HolderOnWith.holderWith, LipschitzWith.projIcc, unitInterval.volume_uIcc, unitInterval.volume_uIoo, Subtype.preimage_closedEBall, LocallyLipschitzOn.restrict, Isometry.isometryEquivOnRange_toEquiv, LipschitzOnWith.to_restric_mapsTo, Subtype.image_emetricClosedBall, ApproximatesLinearOn.lipschitz_sub, EMetric.pair_reduction, Isometry.isometryEquivOnRange_apply, ApproximatesLinearOn.antilipschitz, AntilipschitzWith.subtype_coe, LipschitzWith.subtype_mk, LipschitzWith.restrict, HolderWith.restrict_iff, Subtype.preimage_eball, Subtype.image_eball, Set.MapsTo.lipschitzOnWith_iff_restrict, Subtype.preimage_emetricBall, Subtype.edist_mk_mk, AntilipschitzWith.restrict, Submodule.lipschitzWith_orthogonalProjection, LipschitzOnWith.to_restrict, lipschitzOnWith_restrict, Subtype.edist_eq, isometry_subtype_coe, MeasureTheory.isometry_lpMeasSubgroupToLpTrim, unitInterval.volume_uIoc, AntilipschitzWith.codRestrict, PairReduction.iSup_edist_pairSet, LipschitzWith.subtype_val, ODE.FunSpace.lipschitzWith, Subtype.preimage_emetricClosedBall, Subtype.image_closedEBall, locallyLipschitzOn_iff_restrict
instPseudoEMetricSpaceULift 📖CompOp
4 mathmath: ULift.isIsometricSMul', ULift.edist_up_up, ULift.isIsometricVAdd', ULift.edist_eq
uniformSpaceOfEDist 📖CompOp
1 mathmath: uniformSpace_edist
uniformSpaceOfEDistOfHasBasis 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
edist_congr 📖EDist.edist
PseudoEMetricSpace.toEDist
ENNReal
instZeroENNReal
edist_congr_right
edist_congr_left
edist_congr_left 📖EDist.edist
PseudoEMetricSpace.toEDist
ENNReal
instZeroENNReal
PseudoEMetricSpace.edist_comm
edist_congr_right
edist_congr_right 📖EDist.edist
PseudoEMetricSpace.toEDist
ENNReal
instZeroENNReal
le_antisymm
zero_add
PseudoEMetricSpace.edist_triangle
PseudoEMetricSpace.edist_comm
edist_eq_zero 📖mathematicalEDist.edist
PseudoEMetricSpace.toEDist
EMetricSpace.toPseudoEMetricSpace
ENNReal
instZeroENNReal
EMetricSpace.eq_of_edist_eq_zero
PseudoEMetricSpace.edist_self
edist_le_zero 📖mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
EMetricSpace.toPseudoEMetricSpace
instZeroENNReal
nonpos_iff_eq_zero
ENNReal.instCanonicallyOrderedAdd
edist_eq_zero
edist_mem_uniformity 📖mathematicalENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
Set
Filter
Filter.instMembership
uniformity
PseudoEMetricSpace.toUniformSpace
setOf
EDist.edist
PseudoEMetricSpace.toEDist
mem_uniformity_edist
edist_ofAdd 📖mathematicalEDist.edist
Multiplicative
instEDistMultiplicative
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Multiplicative.ofAdd
edist_ofDual 📖mathematicalEDist.edist
DFunLike.coe
Equiv
OrderDual
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.ofDual
instEDistOrderDual
edist_ofMul 📖mathematicalEDist.edist
Additive
instEDistAdditive
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Additive.ofMul
edist_pos 📖mathematicalENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
EDist.edist
PseudoEMetricSpace.toEDist
EMetricSpace.toPseudoEMetricSpace
ENNReal.instCanonicallyOrderedAdd
edist_toAdd 📖mathematicalEDist.edist
DFunLike.coe
Equiv
Multiplicative
EquivLike.toFunLike
Equiv.instEquivLike
Multiplicative.toAdd
instEDistMultiplicative
edist_toDual 📖mathematicalEDist.edist
OrderDual
instEDistOrderDual
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
OrderDual.toDual
edist_toMul 📖mathematicalEDist.edist
DFunLike.coe
Equiv
Additive
EquivLike.toFunLike
Equiv.instEquivLike
Additive.toMul
instEDistAdditive
edist_triangle4 📖mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
le_imp_le_of_le_of_le
PseudoEMetricSpace.edist_triangle
le_refl
add_le_add_left
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
edist_triangle_left 📖mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
PseudoEMetricSpace.edist_comm
PseudoEMetricSpace.edist_triangle
edist_triangle_right 📖mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
PseudoEMetricSpace.edist_comm
PseudoEMetricSpace.edist_triangle
eq_of_forall_edist_le 📖ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
EMetricSpace.toPseudoEMetricSpace
EMetricSpace.eq_of_edist_eq_zero
eq_of_le_of_forall_lt_imp_le_of_dense
ENNReal.instDenselyOrdered
bot_le
mem_uniformity_edist 📖mathematicalSet
Filter
Filter.instMembership
uniformity
PseudoEMetricSpace.toUniformSpace
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
Set.instMembership
Filter.HasBasis.mem_uniformity_iff
uniformity_basis_edist
uniformSpace_edist 📖mathematicalPseudoEMetricSpace.toUniformSpace
uniformSpaceOfEDist
EDist.edist
PseudoEMetricSpace.toEDist
PseudoEMetricSpace.edist_self
PseudoEMetricSpace.edist_comm
PseudoEMetricSpace.edist_triangle
UniformSpace.ext
PseudoEMetricSpace.edist_self
PseudoEMetricSpace.edist_comm
PseudoEMetricSpace.edist_triangle
uniformity_pseudoedist
uniformity_basis_edist 📖mathematicalFilter.HasBasis
ENNReal
uniformity
PseudoEMetricSpace.toUniformSpace
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
setOf
EDist.edist
PseudoEMetricSpace.toEDist
PseudoEMetricSpace.edist_self
PseudoEMetricSpace.edist_comm
PseudoEMetricSpace.edist_triangle
UniformSpace.hasBasis_ofFun
one_pos
IsOrderedRing.toZeroLEOneClass
ENNReal.instIsOrderedRing
NeZero.charZero_one
ENNReal.instCharZero
uniformSpace_edist
uniformity_basis_edist' 📖mathematicalENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
Filter.HasBasis
uniformity
PseudoEMetricSpace.toUniformSpace
Set
Set.instMembership
Set.Ioo
setOf
EDist.edist
PseudoEMetricSpace.toEDist
EMetric.mk_uniformity_basis
exists_between
ENNReal.instDenselyOrdered
lt_min
lt_of_le_of_lt
min_le_right
min_le_left
uniformity_basis_edist_inv_nat 📖mathematicalFilter.HasBasis
uniformity
PseudoEMetricSpace.toUniformSpace
setOf
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
ENNReal.instInv
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
EMetric.mk_uniformity_basis
ENNReal.inv_pos
ENNReal.natCast_ne_top
ENNReal.exists_inv_nat_lt
ne_of_gt
le_of_lt
uniformity_basis_edist_inv_two_pow 📖mathematicalFilter.HasBasis
uniformity
PseudoEMetricSpace.toUniformSpace
setOf
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.instInv
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Nat.instAtLeastTwoHAddOfNat
EMetric.mk_uniformity_basis
Nat.instAtLeastTwoHAddOfNat
ENNReal.pow_pos
ENNReal.inv_pos
ENNReal.ofNat_ne_top
ENNReal.exists_inv_two_pow_lt
ne_of_gt
le_of_lt
uniformity_basis_edist_le 📖mathematicalFilter.HasBasis
ENNReal
uniformity
PseudoEMetricSpace.toUniformSpace
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
setOf
Preorder.toLE
EDist.edist
PseudoEMetricSpace.toEDist
EMetric.mk_uniformity_basis_le
le_refl
uniformity_basis_edist_le' 📖mathematicalENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
Filter.HasBasis
uniformity
PseudoEMetricSpace.toUniformSpace
Set
Set.instMembership
Set.Ioo
setOf
Preorder.toLE
EDist.edist
PseudoEMetricSpace.toEDist
EMetric.mk_uniformity_basis_le
exists_between
ENNReal.instDenselyOrdered
lt_min
lt_of_le_of_lt
min_le_right
min_le_left
uniformity_basis_edist_nnreal 📖mathematicalFilter.HasBasis
NNReal
uniformity
PseudoEMetricSpace.toUniformSpace
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
setOf
ENNReal
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
ENNReal.ofNNReal
EMetric.mk_uniformity_basis
ENNReal.coe_pos
ENNReal.lt_iff_exists_nnreal_btwn
le_of_lt
uniformity_basis_edist_nnreal_le 📖mathematicalFilter.HasBasis
NNReal
uniformity
PseudoEMetricSpace.toUniformSpace
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
setOf
ENNReal
Preorder.toLE
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
ENNReal.ofNNReal
EMetric.mk_uniformity_basis_le
ENNReal.coe_pos
ENNReal.lt_iff_exists_nnreal_btwn
le_of_lt
uniformity_dist_of_mem_uniformity 📖mathematicalSet
Filter
Filter.instMembership
Set.instMembership
iInf
Filter.instInfSet
Filter.principal
setOf
Filter.HasBasis.eq_biInf
uniformity_edist 📖mathematicaluniformity
PseudoEMetricSpace.toUniformSpace
EMetricSpace.toPseudoEMetricSpace
iInf
Filter
ENNReal
Filter.instInfSet
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
Filter.principal
setOf
EDist.edist
PseudoEMetricSpace.toEDist
PseudoEMetricSpace.uniformity_edist
uniformity_pseudoedist 📖mathematicaluniformity
PseudoEMetricSpace.toUniformSpace
iInf
Filter
ENNReal
Filter.instInfSet
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
instZeroENNReal
Filter.principal
setOf
EDist.edist
PseudoEMetricSpace.toEDist
PseudoEMetricSpace.uniformity_edist
zero_eq_edist 📖mathematicalENNReal
instZeroENNReal
EDist.edist
PseudoEMetricSpace.toEDist
EMetricSpace.toPseudoEMetricSpace
edist_eq_zero

---

← Back to Index