Documentation Verification Report

Lipschitz

šŸ“ Source: Mathlib/Topology/EMetricSpace/Lipschitz.lean

Statistics

MetricCount
DefinitionsLipschitzOnWith, LipschitzWith, LocallyLipschitz, LocallyLipschitzOn
4
Theoremscomp, continuousOn, ediam_image2_le, edist_le_mul_of_le, edist_lt_of_edist_lt_div, mapsToRestrict, mono, prodMk, to_restric_mapsTo, to_restrict, uniformContinuousOn, zero_iff, comp, comp_lipschitzOnWith, const, const', continuous, ediam_image_le, edist_iterate_succ_le_geometric, edist_le_mul, edist_le_mul_of_le, edist_lt_mul_of_lt, edist_lt_of_edist_lt_div, edist_lt_top, eval, id, iterate, lipschitzOnWith, list_prod, locallyLipschitz, mapsTo_closedEBall, mapsTo_eball, mapsTo_emetric_ball, mapsTo_emetric_closedBall, mul_edist_le, mul_end, of_edist_le, pow_end, prodMk, prodMk_left, prodMk_right, prod_fst, prod_snd, restrict, subtype_mk, subtype_val, uncurry, uniformContinuous, weaken, zero_iff, comp, const, continuous, id, iterate, locallyLipschitzOn, mul_end, pow_end, prodMk, prodMk_left, prodMk_right, continuousOn, mono, restrict, lipschitzOnWith_iff_restrict, continuousOn_prod_of_continuousOn_lipschitzOnWith, continuousOn_prod_of_continuousOn_lipschitzOnWith', continuousOn_prod_of_subset_closure_continuousOn_lipschitzOnWith, continuousOn_prod_of_subset_closure_continuousOn_lipschitzOnWith', continuous_prod_of_continuous_lipschitzWith, continuous_prod_of_continuous_lipschitzWith', continuous_prod_of_dense_continuous_lipschitzWith, continuous_prod_of_dense_continuous_lipschitzWith', lipschitzOnWith_empty, lipschitzOnWith_iff_restrict, lipschitzOnWith_restrict, lipschitzOnWith_univ, locallyLipschitzOn_empty, locallyLipschitzOn_iff_restrict, locallyLipschitzOn_univ
80
Total84

LipschitzOnWith

Theorems

NameKindAssumesProvesValidatesDepends On
comp šŸ“–mathematicalLipschitzOnWith
Set.MapsTo
NNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
—lipschitzOnWith_iff_restrict
LipschitzWith.comp
to_restrict
mapsToRestrict
continuousOn šŸ“–mathematicalLipschitzOnWithContinuousOn
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
—UniformContinuousOn.continuousOn
uniformContinuousOn
ediam_image2_le šŸ“–mathematicalLipschitzOnWithENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
Metric.ediam
Set.image2
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
Distrib.toMul
ENNReal.ofNNReal
—LE.le.trans
PseudoEMetricSpace.edist_triangle
add_le_add
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
mul_right_mono
IsOrderedMonoid.toMulLeftMono
ENNReal.instIsOrderedMonoid
Metric.edist_le_ediam_of_mem
edist_le_mul_of_le šŸ“–mathematicalLipschitzOnWith
Set
Set.instMembership
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.ofNNReal
—LE.le.trans
mul_right_mono
IsOrderedMonoid.toMulLeftMono
ENNReal.instIsOrderedMonoid
edist_lt_of_edist_lt_div šŸ“–ā€”LipschitzOnWith
Set
Set.instMembership
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
DivInvMonoid.toDiv
ENNReal.instDivInvMonoid
ENNReal.ofNNReal
——LipschitzWith.edist_lt_of_edist_lt_div
to_restrict
mapsToRestrict šŸ“–mathematicalSet.MapsTo
LipschitzOnWith
LipschitzWith
Set.Elem
instPseudoEMetricSpaceSubtype
Set
Set.instMembership
Set.MapsTo.restrict
—Set.MapsTo.lipschitzOnWith_iff_restrict
mono šŸ“–ā€”LipschitzOnWith
Set
Set.instHasSubset
———
prodMk šŸ“–mathematicalLipschitzOnWithProd.pseudoEMetricSpaceMax
NNReal
NNReal.instMax
—Monotone.map_max
ENNReal.coe_mono
Prod.edist_eq
max_mul
covariant_swap_mul_of_covariant_mul
IsOrderedMonoid.toMulLeftMono
ENNReal.instIsOrderedMonoid
max_le_max
to_restric_mapsTo šŸ“–mathematicalSet.MapsTo
LipschitzOnWith
LipschitzWith
Set.Elem
instPseudoEMetricSpaceSubtype
Set
Set.instMembership
Set.MapsTo.restrict
—mapsToRestrict
to_restrict šŸ“–mathematicalLipschitzOnWithLipschitzWith
Set.Elem
instPseudoEMetricSpaceSubtype
Set
Set.instMembership
Set.restrict
—lipschitzOnWith_iff_restrict
uniformContinuousOn šŸ“–mathematicalLipschitzOnWithUniformContinuousOn
PseudoEMetricSpace.toUniformSpace
—uniformContinuousOn_iff_restrict
LipschitzWith.uniformContinuous
to_restrict
zero_iff šŸ“–mathematical—LipschitzOnWith
EMetricSpace.toPseudoEMetricSpace
NNReal
instZeroNNReal
—MulZeroClass.zero_mul
ENNReal.instCanonicallyOrderedAdd

LipschitzWith

Theorems

NameKindAssumesProvesValidatesDepends On
comp šŸ“–mathematicalLipschitzWithNNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
—mul_right_mono
IsOrderedMonoid.toMulLeftMono
ENNReal.instIsOrderedMonoid
mul_assoc
ENNReal.coe_mul
comp_lipschitzOnWith šŸ“–mathematicalLipschitzWith
LipschitzOnWith
NNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
—lipschitzOnWith_iff_restrict
comp
LipschitzOnWith.to_restrict
const šŸ“–mathematical—LipschitzWith
NNReal
instZeroNNReal
—PseudoEMetricSpace.edist_self
ENNReal.instCanonicallyOrderedAdd
const' šŸ“–mathematical—LipschitzWith—PseudoEMetricSpace.edist_self
ENNReal.instCanonicallyOrderedAdd
continuous šŸ“–mathematicalLipschitzWithContinuous
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
—UniformContinuous.continuous
uniformContinuous
ediam_image_le šŸ“–mathematicalLipschitzWithENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
Metric.ediam
Set.image
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.ofNNReal
—Metric.ediam_le
edist_le_mul_of_le
Metric.edist_le_ediam_of_mem
edist_iterate_succ_le_geometric šŸ“–mathematicalLipschitzWithENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
Nat.iterate
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
ENNReal.ofNNReal
—Function.iterate_succ
mul_comm
iterate
edist_le_mul šŸ“–mathematicalLipschitzWithENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.ofNNReal
——
edist_le_mul_of_le šŸ“–mathematicalLipschitzWith
ENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.ofNNReal
—LE.le.trans
mul_right_mono
IsOrderedMonoid.toMulLeftMono
ENNReal.instIsOrderedMonoid
edist_lt_mul_of_lt šŸ“–mathematicalLipschitzWith
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.ofNNReal
—lt_imp_lt_of_le_of_le
le_refl
ENNReal.mul_lt_mul_right
ne_of_gt
ENNReal.coe_pos
lt_of_le_of_ne'
zero_le
NNReal.instCanonicallyOrderedAdd
edist_lt_of_edist_lt_div šŸ“–ā€”LipschitzWith
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
DivInvMonoid.toDiv
ENNReal.instDivInvMonoid
ENNReal.ofNNReal
——ENNReal.mul_lt_of_lt_div'
edist_lt_top šŸ“–mathematicalLipschitzWithENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
Top.top
instTopENNReal
—LE.le.trans_lt
Ne.lt_top
ENNReal.mul_ne_top
ENNReal.coe_ne_top
eval šŸ“–mathematical—LipschitzWith
pseudoEMetricSpacePi
NNReal
instOneNNReal
Function.eval
—of_edist_le
edist_le_pi_edist
id šŸ“–mathematical—LipschitzWith
NNReal
instOneNNReal
—of_edist_le
le_rfl
iterate šŸ“–mathematicalLipschitzWithNNReal
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiringNNReal
Nat.iterate
—pow_zero
id
pow_succ
comp
lipschitzOnWith šŸ“–mathematicalLipschitzWithLipschitzOnWith——
list_prod šŸ“–mathematicalLipschitzWithNNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
instOneNNReal
Function.End
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
instMonoidEnd
MulOne.toOne
—id
mul_end
locallyLipschitz šŸ“–mathematicalLipschitzWithLocallyLipschitz—Filter.univ_mem
lipschitzOnWith_univ
mapsTo_closedEBall šŸ“–mathematicalLipschitzWithSet.MapsTo
Metric.closedEBall
ENNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.ofNNReal
—edist_le_mul_of_le
mapsTo_eball šŸ“–mathematicalLipschitzWithSet.MapsTo
Metric.eball
ENNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.ofNNReal
—edist_lt_mul_of_lt
mapsTo_emetric_ball šŸ“–mathematicalLipschitzWithSet.MapsTo
Metric.eball
ENNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.ofNNReal
—mapsTo_eball
mapsTo_emetric_closedBall šŸ“–mathematicalLipschitzWithSet.MapsTo
Metric.closedEBall
ENNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.ofNNReal
—mapsTo_closedEBall
mul_edist_le šŸ“–mathematicalLipschitzWithENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
ENNReal.instInv
ENNReal.ofNNReal
EDist.edist
PseudoEMetricSpace.toEDist
—mul_comm
div_eq_mul_inv
ENNReal.div_le_of_le_mul'
mul_end šŸ“–mathematicalLipschitzWithNNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
Function.End
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
instMonoidEnd
—comp
of_edist_le šŸ“–mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
LipschitzWith
NNReal
instOneNNReal
—one_mul
pow_end šŸ“–mathematicalLipschitzWithNNReal
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiringNNReal
Function.End
instMonoidEnd
—pow_zero
id
pow_succ
mul_end
prodMk šŸ“–mathematicalLipschitzWithProd.pseudoEMetricSpaceMax
NNReal
NNReal.instMax
—Monotone.map_max
ENNReal.coe_mono
Prod.edist_eq
max_mul
covariant_swap_mul_of_covariant_mul
IsOrderedMonoid.toMulLeftMono
ENNReal.instIsOrderedMonoid
max_le_max
prodMk_left šŸ“–mathematical—LipschitzWith
Prod.pseudoEMetricSpaceMax
NNReal
instOneNNReal
—max_eq_right
zero_le_one
LinearOrderedCommMonoidWithZero.toZeroLeOneClass
prodMk
const
id
prodMk_right šŸ“–mathematical—LipschitzWith
Prod.pseudoEMetricSpaceMax
NNReal
instOneNNReal
—max_eq_left
zero_le_one
LinearOrderedCommMonoidWithZero.toZeroLeOneClass
prodMk
id
const
prod_fst šŸ“–mathematical—LipschitzWith
Prod.pseudoEMetricSpaceMax
NNReal
instOneNNReal
—of_edist_le
le_max_left
prod_snd šŸ“–mathematical—LipschitzWith
Prod.pseudoEMetricSpaceMax
NNReal
instOneNNReal
—of_edist_le
le_max_right
restrict šŸ“–mathematicalLipschitzWithSet.Elem
instPseudoEMetricSpaceSubtype
Set
Set.instMembership
Set.restrict
——
subtype_mk šŸ“–mathematicalLipschitzWithinstPseudoEMetricSpaceSubtype——
subtype_val šŸ“–mathematical—LipschitzWith
Set
Set.instMembership
instPseudoEMetricSpaceSubtype
NNReal
instOneNNReal
—of_edist_le
le_rfl
uncurry šŸ“–mathematicalLipschitzWithProd.pseudoEMetricSpaceMax
NNReal
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
—add_mul
Distrib.rightDistribClass
le_trans
PseudoEMetricSpace.edist_triangle
add_le_add
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
mul_right_mono
IsOrderedMonoid.toMulLeftMono
ENNReal.instIsOrderedMonoid
le_max_left
le_max_right
uniformContinuous šŸ“–mathematicalLipschitzWithUniformContinuous
PseudoEMetricSpace.toUniformSpace
—EMetric.uniformContinuous_iff
ENNReal.div_pos_iff
ne_of_gt
ENNReal.coe_ne_top
edist_lt_of_edist_lt_div
weaken šŸ“–ā€”LipschitzWith
NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
——le_trans
mul_left_mono
covariant_swap_mul_of_covariant_mul
IsOrderedMonoid.toMulLeftMono
ENNReal.instIsOrderedMonoid
ENNReal.coe_le_coe
zero_iff šŸ“–mathematical—LipschitzWith
EMetricSpace.toPseudoEMetricSpace
NNReal
instZeroNNReal
—MulZeroClass.zero_mul
ENNReal.instCanonicallyOrderedAdd

LocallyLipschitz

Theorems

NameKindAssumesProvesValidatesDepends On
comp šŸ“–ā€”LocallyLipschitz——Filter.inter_mem
Continuous.continuousAt
continuous
LipschitzOnWith.comp
LipschitzOnWith.mono
Set.inter_subset_left
Set.MapsTo.mono_left
Set.mapsTo_preimage
Set.inter_subset_right
const šŸ“–mathematical—LocallyLipschitz—LipschitzWith.locallyLipschitz
LipschitzWith.const
continuous šŸ“–mathematicalLocallyLipschitzContinuous
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
—continuous_iff_continuousAt
ContinuousOn.continuousAt
LipschitzOnWith.continuousOn
id šŸ“–mathematical—LocallyLipschitz—LipschitzWith.locallyLipschitz
LipschitzWith.id
iterate šŸ“–mathematicalLocallyLipschitzNat.iterate—id
Function.iterate_add
Function.iterate_one
comp
locallyLipschitzOn šŸ“–mathematicalLocallyLipschitzLocallyLipschitzOn—LocallyLipschitzOn.mono
locallyLipschitzOn_univ
Set.subset_univ
mul_end šŸ“–mathematicalLocallyLipschitzFunction.End
MulOne.toMul
MulOneClass.toMulOne
Monoid.toMulOneClass
instMonoidEnd
—comp
pow_end šŸ“–mathematicalLocallyLipschitzFunction.End
Monoid.toNatPow
instMonoidEnd
—pow_zero
id
pow_succ
mul_end
prodMk šŸ“–mathematicalLocallyLipschitzProd.pseudoEMetricSpaceMax—Filter.inter_mem
LipschitzOnWith.prodMk
LipschitzOnWith.mono
Set.inter_subset_left
Set.inter_subset_right
prodMk_left šŸ“–mathematical—LocallyLipschitz
Prod.pseudoEMetricSpaceMax
—LipschitzWith.locallyLipschitz
LipschitzWith.prodMk_left
prodMk_right šŸ“–mathematical—LocallyLipschitz
Prod.pseudoEMetricSpaceMax
—LipschitzWith.locallyLipschitz
LipschitzWith.prodMk_right

LocallyLipschitzOn

Theorems

NameKindAssumesProvesValidatesDepends On
continuousOn šŸ“–mathematicalLocallyLipschitzOnContinuousOn
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
—continuousOn_iff_continuous_restrict
LocallyLipschitz.continuous
restrict
mono šŸ“–ā€”LocallyLipschitzOn
Set
Set.instHasSubset
——nhdsWithin_mono
restrict šŸ“–mathematicalLocallyLipschitzOnLocallyLipschitz
Set.Elem
instPseudoEMetricSpaceSubtype
Set
Set.instMembership
Set.restrict
—locallyLipschitzOn_iff_restrict

Set.MapsTo

Theorems

NameKindAssumesProvesValidatesDepends On
lipschitzOnWith_iff_restrict šŸ“–mathematicalSet.MapsToLipschitzOnWith
LipschitzWith
Set.Elem
instPseudoEMetricSpaceSubtype
Set
Set.instMembership
restrict
—lipschitzOnWith_iff_restrict

(root)

Definitions

NameCategoryTheorems
LipschitzOnWith šŸ“–MathDef
55 mathmath: isClosed_setOf_lipschitzOnWith, lipschitzOnWith_closure_iff, ApproximatesLinearOn.approximatesLinearOn_iff_lipschitzOnWith, lipschitzOnWith_iff_restrict, LipschitzOnWith.of_dist_le_mul, lipschitzOnWith_cfc_fun_of_subset, IsPicardLindelof.lipschitzOnWith, HasFTaylorSeriesUpToOn.exists_lipschitzOnWith_of_nnnorm_lt, HasStrictFDerivAt.exists_lipschitzOnWith, lipschitzOnWith_iff_norm_div_le, LipschitzOnWith.mk_one, lipschitzOnWith_cfc_fun, Convex.lipschitzOnWith_of_nnnorm_fderiv_le, lipschitzOnWith_neg_iff, Convex.lipschitzOnWith_of_nnnorm_hasFDerivWithin_le, Convex.lipschitzOnWith_of_nnnorm_hasDerivWithin_le, lipschitzOnWith_cfcā‚™_fun, Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt, HasFTaylorSeriesUpToOn.exists_lipschitzOnWith, ContDiffAt.exists_lipschitzOnWith_of_nnnorm_lt, LipschitzOnWith.coordinate, LipschitzOnWith.iff_le_add_mul, UniformOnFun.lipschitzOnWith_iff, lipschitzOnWith_cfcā‚™_fun_of_subset, LipschitzOnWith.zero_iff, lipschitzOnWith_inv_iff, Set.MapsTo.lipschitzOnWith_iff_restrict, lipschitzOnWith_iff_dist_le_mul, lipschitzOnWith_univ, LipschitzOnWith.of_le_add, ContDiffOn.exists_lipschitzOnWith, ConcaveOn.exists_lipschitzOnWith_of_isBounded, ConvexOn.exists_lipschitzOnWith_of_isBounded, holderOnWith_one, lipschitzOnWith_restrict, UniformFun.lipschitzOnWith_ofFun_iff, LipschitzWith.lipschitzOnWith, LipschitzOnWith.of_le_add_mul', Convex.exists_nhdsWithin_lipschitzOnWith_of_hasFDerivWithinAt_of_nnnorm_lt, IsPicardLindelof.exists_forall_mem_closedBall_eq_hasDerivWithinAt_lipschitzOnWith, UniformFun.lipschitzOnWith_iff, ApproximatesLinearOn.lipschitzOnWith, ContDiffAt.exists_lipschitzOnWith, ContDiffWithinAt.exists_lipschitzOnWith, LipschitzOnWith.of_dist_le', Convex.lipschitzOnWith_of_nnnorm_deriv_le, LocallyLipschitzOn.exists_lipschitzOnWith_of_compact, LipschitzOnWith.of_le_add_mul, lipschitzOnWith_iff_norm_sub_le, Convex.lipschitzOnWith_of_nnnorm_fderivWithin_le, ConvexOn.lipschitzOnWith_of_abs_le, HasStrictFDerivAt.exists_lipschitzOnWith_of_nnnorm_lt, Convex.lipschitzOnWith_of_nnnorm_derivWithin_le, lipschitzOnWith_empty, ConcaveOn.lipschitzOnWith_of_abs_le
LipschitzWith šŸ“–MathDef
137 mathmath: PiLp.lipschitzWith_toLp, LipschitzWith.id, LipschitzWith.prodMk_right, LinearIsometry.lipschitz, LipschitzOnWith.mapsToRestrict, ApproximatesLinearOn.lipschitz, LipschitzWith.mk_one, LipschitzWith.prod_snd, AddMonoidHomClass.lipschitz_of_bound_nnnorm, IsometryClass.lipschitz, EMetric.NonemptyCompacts.lipschitz_prod, Complex.lipschitz_equivRealProd, TopologicalSpace.Compacts.lipschitz_prod, ODE.FunSpace.range_toContinuousMap, lipschitzWith_lipschitz_const_add_edist, ContDiff.lipschitzWith_of_hasCompactSupport, AntilipschitzWith.to_rightInvOn, UniformOnFun.lipschitzWith_one_ofFun_toFun, AntilipschitzWith.to_rightInverse, lipschitzOnWith_iff_restrict, lipschitzWith_sup_right, LipschitzWith.of_edist_le, TopologicalSpace.Compacts.lipschitz_sup, SemilinearIsometryClass.lipschitz, AddMonoidHomClass.lipschitz_of_bound, LipschitzWith.dist_left, LipschitzWith.of_le_add, AffineIsometry.lipschitz, LipschitzWith.prod_fst, LipschitzWith.projIcc, lipschitzWith_thickenedIndicator, ContinuousLinearMap.lipschitz, TopologicalSpace.NonemptyCompacts.lipschitz_prod, lipschitzWith_one_norm', lipschitzWith_lipschitz_const_mul_edist, ContinuousLinearMap.lipschitz_apply, LipschitzWith.const', TopologicalSpace.Closeds.lipschitz_sup, NNReal.lipschitzWith_sub, lipschitzWith_circleMap, PiLp.lipschitzWith_ofLp, Real.lipschitzWith_sin, UniformOnFun.lipschitzWith_iff, AffineMap.lipschitzWith_of_finiteDimensional, LipschitzMul.lipschitz_mul, lipschitzWith_iff_norm_div_le, LipschitzOnWith.extend_real, MonoidHomClass.lipschitz_of_bound_nnnorm, ContinuousLinearMap.lipschitzWith_of_opNorm_le, LipschitzWith.coordinate, LipschitzOnWith.to_restric_mapsTo, LipschitzOnWith.extend_finite_dimension, LipschitzOnWith.extend_lp_infty, WithLp.prod_lipschitzWith_ofLp, MeasureTheory.Lp.lipschitzWith_pos_part, PiNat.exists_lipschitz_retraction_of_isClosed, lipschitzWith_iff_norm_sub_le, ContinuousLinearEquiv.lipschitz, UniformFun.lipschitzWith_ofFun_iff, ApproximatesLinearOn.lipschitz_sub, WithLp.prod_lipschitzWith_toLp, UniformOnFun.lipschitzWith_eval, RCLike.lipschitzWith_re, AntilipschitzWith.to_rightInvOn', lipschitzWith_inv_iff, Real.lipschitzWith_one_mulExpNegMulSq, ContractingWith.toLipschitzWith, MeasureTheory.MeasuredSets.lipschitzWith_measureReal, LipschitzWith.dist_right, Isometry.lipschitzWith_iff, LipschitzWith.prodMk_left, LipschitzOnWith.extend_pi, lipschitzWith_iff_dist_le_mul, lipschitzWith_negPart, Real.lipschitzWith_toNNReal, LipschitzWith.of_le_add_mul, lipschitzWith_of_nnnorm_fderiv_le, lipschitzWith_one_nnnorm, MeasureTheory.FiniteMeasure.testAgainstNN_lipschitz, UniformFun.lipschitzWith_iff, LipschitzWith.eval, LipschitzWith.iff_le_add_mul, Isometry.lipschitz, Convex.lipschitz_gauge, SeminormedAddCommGroup.lipschitzWith_sub, Submodule.lipschitzWith_starProjection, BoundedContinuousFunction.lipschitz_compContinuous, Set.MapsTo.lipschitzOnWith_iff_restrict, lipschitzOnWith_univ, TopologicalSpace.NonemptyCompacts.lipschitz_sup, GromovHausdorff.toGHSpace_lipschitz, Convex.lipschitzWith_gauge, NormedAddGroupHom.lipschitz, ContinuousLinearMap.opNorm_le_iff_lipschitz, RCLike.lipschitzWith_ofReal, Metric.lipschitz_infDist_pt, Submodule.lipschitzWith_orthogonalProjection, LipschitzOnWith.to_restrict, lipschitzWith_of_nnnorm_deriv_le, Real.lipschitzWith_cos, Metric.lipschitz_infDist, Dilation.lipschitz, EMetric.Closeds.lipschitz_sup, AffineIsometryEquiv.lipschitz, MeasureTheory.ProbabilityMeasure.testAgainstNN_lipschitz, LinearIsometryEquiv.lipschitz, Metric.lipschitz_infDist_set, BoundedContinuousFunction.lipschitz_eval_const, BoundedContinuousFunction.lipschitz_evalx, LipschitzWith.const, lipschitzWith_one_nnnorm', MonoidHomClass.lipschitz_of_bound, lipschitzWith_max, lipschitzWith_lineMap, Unitization.lipschitzWith_addEquiv, LipschitzWith.of_dist_le_mul, lipschitzWith_posPart, lipschitzWith_smul, EMetric.NonemptyCompacts.lipschitz_sup, isClosed_setOf_lipschitzWith, lipschitzWith_min, LipschitzAdd.lipschitz_add, LipschitzWith.of_dist_le', UniformOnFun.lipschitzWith_restrict, LipschitzWith.subtype_val, Metric.lipschitz_infNndist_pt, MeasureTheory.L1.setToL1_lipschitz, LipschitzWith.zero_iff, ODE.FunSpace.lipschitzWith, LipschitzWith.of_le_add_mul', RCLike.lipschitzWith_im, lipschitzWith_neg_iff, holderWith_one, UniformOnFun.lipschitzWith_one_ofFun_toFun', LipschitzWith.dist, lipschitzWith_one_norm, UniformFun.lipschitzWith_eval
LocallyLipschitz šŸ“–MathDef
13 mathmath: locallyLipschitz_neg_iff, ConcaveOn.locallyLipschitz, LipschitzWith.locallyLipschitz, locallyLipschitzOn_univ, LocallyLipschitz.id, ConvexOn.locallyLipschitz, LocallyLipschitzOn.restrict, LocallyLipschitz.prodMk_left, ContDiff.locallyLipschitz, locallyLipschitz_inv_iff, LocallyLipschitz.const, locallyLipschitzOn_iff_restrict, LocallyLipschitz.prodMk_right
LocallyLipschitzOn šŸ“–MathDef
15 mathmath: ConvexOn.continuousOn_tfae, locallyLipschitzOn_univ, ConcaveOn.locallyLipschitzOn_interior, locallyLipschitzOn_empty, locallyLipschitzOn_neg_iff, ConvexOn.locallyLipschitzOn_iff_continuousOn, LocallyLipschitz.locallyLipschitzOn, ConvexOn.locallyLipschitzOn_interior, ConvexOn.locallyLipschitzOn, ConcaveOn.locallyLipschitzOn, ConcaveOn.continuousOn_tfae, ContDiffOn.locallyLipschitzOn, locallyLipschitzOn_inv_iff, ConcaveOn.locallyLipschitzOn_iff_continuousOn, locallyLipschitzOn_iff_restrict

Theorems

NameKindAssumesProvesValidatesDepends On
continuousOn_prod_of_continuousOn_lipschitzOnWith šŸ“–mathematicalContinuousOn
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
LipschitzOnWith
instTopologicalSpaceProd
SProd.sprod
Set
Set.instSProd
—continuousOn_prod_of_subset_closure_continuousOn_lipschitzOnWith
Set.Subset.rfl
subset_closure
continuousOn_prod_of_continuousOn_lipschitzOnWith' šŸ“–mathematicalLipschitzOnWith
ContinuousOn
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
instTopologicalSpaceProd
SProd.sprod
Set
Set.instSProd
—continuousOn_prod_of_continuousOn_lipschitzOnWith
ContinuousOn.comp
Continuous.continuousOn
continuous_swap
Set.mapsTo_swap_prod
continuousOn_prod_of_subset_closure_continuousOn_lipschitzOnWith šŸ“–mathematicalSet
Set.instHasSubset
closure
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
ContinuousOn
LipschitzOnWith
instTopologicalSpaceProd
SProd.sprod
Set.instSProd
—Filter.HasBasis.tendsto_right_iff
Metric.nhds_basis_closedEBall
Nat.instAtLeastTwoHAddOfNat
ENNReal.half_pos
LT.lt.ne'
ENNReal.exists_nnreal_pos_mul_lt
ENNReal.coe_ne_top
EMetric.mem_closure_iff
ENNReal.coe_pos
inter_mem_nhdsWithin
Metric.eball_mem_nhds
Filter.inter_mem
self_mem_nhdsWithin
Metric.closedEBall_mem_nhds
Filter.mp_mem
nhdsWithin_prod
Filter.univ_mem'
edist_triangle4
add_le_add
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
LipschitzOnWith.edist_le_mul_of_le
LE.le.trans
PseudoEMetricSpace.edist_triangle
le_of_lt
LT.lt.le
Eq.trans_le
PseudoEMetricSpace.edist_comm
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Ring.add_overlap_pf
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.mul_one
add_le_add_left
ENNReal.add_halves
continuousOn_prod_of_subset_closure_continuousOn_lipschitzOnWith' šŸ“–mathematicalSet
Set.instHasSubset
closure
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
LipschitzOnWith
ContinuousOn
instTopologicalSpaceProd
SProd.sprod
Set.instSProd
—continuousOn_prod_of_subset_closure_continuousOn_lipschitzOnWith
ContinuousOn.comp
Continuous.continuousOn
continuous_swap
Set.mapsTo_swap_prod
continuous_prod_of_continuous_lipschitzWith šŸ“–mathematicalContinuous
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
LipschitzWith
instTopologicalSpaceProd—continuous_prod_of_dense_continuous_lipschitzWith
dense_univ
continuous_prod_of_continuous_lipschitzWith' šŸ“–mathematicalLipschitzWith
Continuous
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
instTopologicalSpaceProd—continuous_prod_of_continuous_lipschitzWith
Continuous.comp
continuous_swap
continuous_prod_of_dense_continuous_lipschitzWith šŸ“–mathematicalDense
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
Continuous
LipschitzWith
instTopologicalSpaceProd—continuousOn_prod_of_subset_closure_continuousOn_lipschitzOnWith
Set.subset_univ
Eq.ge
Dense.closure_eq
continuous_prod_of_dense_continuous_lipschitzWith' šŸ“–mathematicalDense
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
LipschitzWith
Continuous
instTopologicalSpaceProd—continuous_prod_of_dense_continuous_lipschitzWith
Continuous.comp
continuous_swap
lipschitzOnWith_empty šŸ“–mathematical—LipschitzOnWith
Set
Set.instEmptyCollection
——
lipschitzOnWith_iff_restrict šŸ“–mathematical—LipschitzOnWith
LipschitzWith
Set.Elem
instPseudoEMetricSpaceSubtype
Set
Set.instMembership
Set.restrict
——
lipschitzOnWith_restrict šŸ“–mathematical—LipschitzOnWith
Set.Elem
instPseudoEMetricSpaceSubtype
Set
Set.instMembership
Set.restrict
Set.instInter
Set.image
—Set.image_val_inter_self_right_eq_coe
lipschitzOnWith_univ šŸ“–mathematical—LipschitzOnWith
Set.univ
LipschitzWith
——
locallyLipschitzOn_empty šŸ“–mathematical—LocallyLipschitzOn
Set
Set.instEmptyCollection
——
locallyLipschitzOn_iff_restrict šŸ“–mathematical—LocallyLipschitzOn
LocallyLipschitz
Set.Elem
instPseudoEMetricSpaceSubtype
Set
Set.instMembership
Set.restrict
—nhds_subtype_eq_comap_nhdsWithin
Set.Subset.rfl
LipschitzOnWith.mono
HasSubset.Subset.trans
Set.instIsTransSubset
Set.inter_subset_right
Set.image_preimage_subset
Filter.inter_mem
self_mem_nhdsWithin
locallyLipschitzOn_univ šŸ“–mathematical—LocallyLipschitzOn
Set.univ
LocallyLipschitz
—nhdsWithin_univ

---

← Back to Index