Documentation Verification Report

PairReduction

πŸ“ Source: Mathlib/Topology/EMetricSpace/PairReduction.lean

Statistics

MetricCount
DefinitionslogSizeBallSeq, logSizeBallStruct, ball, finset, point, radius, smallBall, logSizeRadius, pairSet, pairSetSeq
10
Theoremspair_reduction, antitone_logSizeBallSeq_add_one_subset, card_finset_logSizeBallSeq_add_one_lt, card_finset_logSizeBallSeq_card_eq_zero, card_finset_logSizeBallSeq_le, card_le_logSizeRadius_le_pow_logSizeRadius, card_pairSetSeq_le_logSizeRadius_mul, card_pairSet_le, disjoint_smallBall_logSizeBallSeq, edist_le_of_mem_pairSet, exists_radius_le, finset_logSizeBallSeq_add_one, finset_logSizeBallSeq_add_one_ssubset, finset_logSizeBallSeq_add_one_subset, finset_logSizeBallSeq_subset_logSizeBallSeq_init, finset_logSizeBallSeq_zero, iSup_edist_pairSet, logSizeRadius_le_card_smallBall, one_le_logSizeRadius, one_le_radius_logSizeBallSeq, pairSet_empty_eq_empty, pairSet_subset, point_logSizeBallSeq_add_one, point_logSizeBallSeq_zero, point_mem_finset_logSizeBallSeq, point_mem_logSizeBallSeq_init, point_notMem_finset_logSizeBallSeq_add_one, pow_logSizeRadius_le_card_le_logSizeRadius, radius_logSizeBallSeq_add_one, radius_logSizeBallSeq_le, radius_logSizeBallSeq_zero
31
Total41

EMetric

Theorems

NameKindAssumesProvesValidatesDepends On
pair_reduction πŸ“–mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Finset.card
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
ENNReal.instCommSemiring
Finset
Finset.instHasSubset
SProd.sprod
Finset.instSProd
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
EDist.edist
PseudoEMetricSpace.toEDist
iSup
SetLike.instMembership
Finset.instSetLike
CompletePartialOrder.toSupSet
CompleteLattice.toCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
ENNReal.instCompleteLinearOrder
instPseudoEMetricSpaceSubtype
instOfNatAtLeastTwo
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
le_or_gt
isEmpty_or_nonempty
Finset.product_empty
CharP.cast_eq_zero
CharP.ofCharZero
ENNReal.instCharZero
MulZeroClass.mul_zero
ENNReal.instCanonicallyOrderedAdd
instIsEmptyFalse
Finset.card_eq_one
le_antisymm
LE.le.trans
one_pow
ENNReal.pow_le_pow_left
Nat.cast_one
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
ENNReal.instIsOrderedRing
Finset.one_le_card
Finset.nonempty_coe_sort
Prod.mk_left_injective
Finset.product_singleton
Finset.map_singleton
Finset.card_singleton
mul_one
ciSup_unique
PseudoEMetricSpace.edist_self
PairReduction.pairSet_subset
PairReduction.card_pairSet_le
PairReduction.edist_le_of_mem_pairSet
PairReduction.iSup_edist_pairSet

PairReduction

Definitions

NameCategoryTheorems
logSizeBallSeq πŸ“–CompOp
18 mathmath: point_notMem_finset_logSizeBallSeq_add_one, card_pairSetSeq_le_logSizeRadius_mul, finset_logSizeBallSeq_zero, point_mem_logSizeBallSeq_init, disjoint_smallBall_logSizeBallSeq, finset_logSizeBallSeq_add_one, card_finset_logSizeBallSeq_le, radius_logSizeBallSeq_add_one, card_finset_logSizeBallSeq_card_eq_zero, one_le_radius_logSizeBallSeq, finset_logSizeBallSeq_add_one_subset, antitone_logSizeBallSeq_add_one_subset, finset_logSizeBallSeq_subset_logSizeBallSeq_init, point_logSizeBallSeq_add_one, point_logSizeBallSeq_zero, logSizeRadius_le_card_smallBall, radius_logSizeBallSeq_le, radius_logSizeBallSeq_zero
logSizeBallStruct πŸ“–CompDataβ€”
logSizeRadius πŸ“–CompOp
5 mathmath: one_le_logSizeRadius, pow_logSizeRadius_le_card_le_logSizeRadius, card_le_logSizeRadius_le_pow_logSizeRadius, radius_logSizeBallSeq_add_one, radius_logSizeBallSeq_zero
pairSet πŸ“–CompOp
4 mathmath: pairSet_empty_eq_empty, card_pairSet_le, pairSet_subset, iSup_edist_pairSet
pairSetSeq πŸ“–CompOp
1 mathmath: card_pairSetSeq_le_logSizeRadius_mul

Theorems

NameKindAssumesProvesValidatesDepends On
antitone_logSizeBallSeq_add_one_subset πŸ“–mathematicalFinset.NonemptyAntitone
Finset
Nat.instPreorder
PartialOrder.toPreorder
Finset.partialOrder
logSizeBallStruct.finset
logSizeBallSeq
β€”antitone_nat_of_succ_le
finset_logSizeBallSeq_add_one_subset
card_finset_logSizeBallSeq_add_one_lt πŸ“–mathematicalFinset.Nonempty
logSizeBallStruct.finset
logSizeBallSeq
Finset.cardβ€”finset_logSizeBallSeq_add_one_ssubset
card_finset_logSizeBallSeq_card_eq_zero πŸ“–mathematicalFinset.NonemptyFinset.card
logSizeBallStruct.finset
logSizeBallSeq
β€”tsub_self
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
card_finset_logSizeBallSeq_le
card_finset_logSizeBallSeq_le πŸ“–mathematicalFinset.NonemptyFinset.card
logSizeBallStruct.finset
logSizeBallSeq
β€”tsub_zero
Nat.instOrderedSub
card_finset_logSizeBallSeq_add_one_lt
le_trans
Finset.card_le_card
finset_logSizeBallSeq_add_one_subset
not_ne_iff
Iff.not
Finset.card_ne_zero
Nat.instCanonicallyOrderedAdd
card_le_logSizeRadius_le_pow_logSizeRadius πŸ“–mathematicalENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Preorder.toLE
AddMonoidWithOne.toNatCast
Finset.card
Finset.filter
EDist.edist
PseudoEMetricSpace.toEDist
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
logSizeRadius
LinearOrder.toDecidableLE
ENNReal.instLinearOrder
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”exists_radius_le
logSizeRadius.eq_1
Nat.find_spec
card_pairSetSeq_le_logSizeRadius_mul πŸ“–mathematicalFinset.Nonempty
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Preorder.toLE
AddMonoidWithOne.toNatCast
Finset.card
pairSetSeq
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
logSizeBallStruct.finset
logSizeBallSeq
Finset.decidableNonempty
instZeroENNReal
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
logSizeBallStruct.radius
β€”Prod.mk_right_injective
Finset.singleton_product
Finset.card_map
one_mul
card_le_logSizeRadius_le_pow_logSizeRadius
Finset.filter.congr_simp
Finset.filter_empty
Finset.product_empty
CharP.cast_eq_zero
CharP.ofCharZero
ENNReal.instCharZero
MulZeroClass.zero_mul
card_pairSet_le πŸ“–mathematicalENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Preorder.toLE
AddMonoidWithOne.toNatCast
Finset.card
pairSet
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
β€”le_imp_le_of_le_of_le
Nat.mono_cast
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
ENNReal.instIsOrderedRing
Finset.card_biUnion_le
le_refl
Nat.cast_sum
Finset.sum_le_sum
card_pairSetSeq_le_logSizeRadius_mul
mul_le_mul_right
IsOrderedMonoid.toMulLeftMono
ENNReal.instIsOrderedMonoid
pow_le_pow_rightβ‚€
IsOrderedRing.toPosMulMono
LT.lt.le
le_tsub_add
Nat.instOrderedSub
pow_add
pow_one
mul_assoc
mul_comm
Finset.mul_sum
logSizeRadius_le_card_smallBall
Finset.card_biUnion
disjoint_smallBall_logSizeBallSeq
Finset.card_le_card
Finset.biUnion_subset_iff_forall_subset
HasSubset.Subset.trans
Finset.instIsTransSubset
Finset.filter_subset
finset_logSizeBallSeq_subset_logSizeBallSeq_init
Finset.not_nonempty_iff_eq_empty
CharP.cast_eq_zero
CharP.ofCharZero
ENNReal.instCharZero
MulZeroClass.mul_zero
disjoint_smallBall_logSizeBallSeq πŸ“–mathematicalFinset.NonemptyDisjoint
Finset
Finset.partialOrder
Finset.instOrderBot
logSizeBallStruct.smallBall
logSizeBallSeq
β€”Finset.disjoint_of_subset_right
HasSubset.Subset.trans
Finset.instIsTransSubset
Finset.filter_subset
antitone_logSizeBallSeq_add_one_subset
Disjoint.symm
ne_iff_lt_iff_le
edist_le_of_mem_pairSet πŸ“–mathematicalENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Preorder.toLE
AddMonoidWithOne.toNatCast
Finset.card
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
ENNReal.instCommSemiring
Finset
Finset.instMembership
pairSet
EDist.edist
PseudoEMetricSpace.toEDist
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
β€”Finset.card_pos
Prod.mk_right_injective
Finset.singleton_product
le_imp_le_of_le_of_le
le_refl
mul_le_mul_left
covariant_swap_mul_of_covariant_mul
IsOrderedMonoid.toMulLeftMono
ENNReal.instIsOrderedMonoid
Nat.mono_cast
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
ENNReal.instIsOrderedRing
radius_logSizeBallSeq_le
Finset.mem_product
pairSet_subset
Finset.card_le_one_iff
pow_zero
ENNReal.instCharZero
PseudoEMetricSpace.edist_self
zero_le
ENNReal.instCanonicallyOrderedAdd
exists_radius_le πŸ“–mathematicalENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Preorder.toLE
AddMonoidWithOne.toNatCast
Finset.card
Finset.filter
EDist.edist
PseudoEMetricSpace.toEDist
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
LinearOrder.toDecidableLE
ENNReal.instLinearOrder
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
β€”ENNReal.tendsto_nhds_top_iff_nat
Filter.Tendsto.comp
ENNReal.tendsto_rpow_atTop_of_one_lt_base
tendsto_natCast_atTop_atTop
Real.instIsOrderedRing
Real.instArchimedean
ENNReal.rpow_natCast
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
le_max_right
le_trans
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
ENNReal.instIsOrderedRing
ENNReal.instCharZero
Finset.card_filter_le
LT.lt.le
le_max_left
finset_logSizeBallSeq_add_one πŸ“–mathematicalFinset.NonemptylogSizeBallStruct.finset
logSizeBallSeq
Finset
Finset.instSDiff
logSizeBallStruct.smallBall
β€”β€”
finset_logSizeBallSeq_add_one_ssubset πŸ“–mathematicalFinset.Nonempty
logSizeBallStruct.finset
logSizeBallSeq
Finset
Finset.instHasSSubset
β€”ssubset_of_subset_not_subset
Finset.instIsNonstrictStrictOrderSubsetSSubset
Set.not_subset
point_mem_finset_logSizeBallSeq
point_notMem_finset_logSizeBallSeq_add_one
finset_logSizeBallSeq_add_one_subset πŸ“–mathematicalFinset.NonemptyFinset
Finset.instHasSubset
logSizeBallStruct.finset
logSizeBallSeq
β€”β€”
finset_logSizeBallSeq_subset_logSizeBallSeq_init πŸ“–mathematicalFinset.NonemptyFinset
Finset.instHasSubset
logSizeBallStruct.finset
logSizeBallSeq
β€”subset_trans
Finset.instIsTransSubset
antitone_logSizeBallSeq_add_one_subset
zero_le
Nat.instCanonicallyOrderedAdd
Finset.instReflSubset
finset_logSizeBallSeq_zero πŸ“–mathematicalFinset.NonemptylogSizeBallStruct.finset
logSizeBallSeq
β€”β€”
iSup_edist_pairSet πŸ“–mathematicalENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Preorder.toLE
iSup
Finset
SetLike.instMembership
Finset.instSetLike
CompletePartialOrder.toSupSet
CompleteLattice.toCompletePartialOrder
CompletelyDistribLattice.toCompleteLattice
CompleteLinearOrder.toCompletelyDistribLattice
ENNReal.instCompleteLinearOrder
EDist.edist
PseudoEMetricSpace.toEDist
instPseudoEMetricSpaceSubtype
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
Nat.instAtLeastTwoHAddOfNat
pairSet
β€”Nat.instAtLeastTwoHAddOfNat
iSup_le_iff
Nat.findGreatest_spec
zero_le
Nat.instCanonicallyOrderedAdd
le_imp_le_of_le_of_le
le_refl
mul_le_mul_left
covariant_swap_mul_of_covariant_mul
IsOrderedMonoid.toMulLeftMono
ENNReal.instIsOrderedMonoid
tsub_le_self
ENNReal.instCanonicallyOrderedAdd
ENNReal.instOrderedSub
le_trans
PseudoEMetricSpace.edist_triangle
add_le_add
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
one_mul
add_mul
Distrib.rightDistribClass
ENNReal.sub_add_eq_add_sub
Nat.cast_one
Nat.mono_cast
IsOrderedRing.toZeroLEOneClass
ENNReal.instIsOrderedRing
one_le_radius_logSizeBallSeq
ENNReal.one_ne_top
ENNReal.add_sub_cancel_right
Prod.mk_right_injective
Finset.singleton_product
iSup_subtype
iSup_congr_Prop
le_iSup_of_le
Finset.mem_biUnion
Finset.mem_range
lt_of_le_of_lt
Nat.findGreatest_le
Finset.card_pos
zero_lt_one
Nat.instZeroLEOneClass
le_rfl
two_mul
PseudoEMetricSpace.edist_comm
Order.one_le_iff_pos
add_le_add_left
Nat.instIsOrderedAddMonoid
Nat.instOrderedSub
Finset.card_eq_zero
card_finset_logSizeBallSeq_le
Nat.findGreatest_is_greatest
lt_add_one
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
logSizeBallSeq.congr_simp
Nat.findGreatest.congr_simp
logSizeRadius_le_card_smallBall πŸ“–mathematicalFinset.Nonempty
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Preorder.toLE
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
logSizeBallStruct.finset
logSizeBallSeq
Finset.decidableNonempty
instZeroENNReal
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
logSizeBallStruct.radius
AddMonoidWithOne.toNatCast
Finset.card
logSizeBallStruct.smallBall
β€”one_mul
pow_logSizeRadius_le_card_le_logSizeRadius
point_mem_finset_logSizeBallSeq
MulZeroClass.zero_mul
ENNReal.instCanonicallyOrderedAdd
one_le_logSizeRadius πŸ“–mathematicalENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
logSizeRadiusβ€”exists_radius_le
logSizeRadius.eq_1
Nat.find_spec
one_le_radius_logSizeBallSeq πŸ“–mathematicalFinset.Nonempty
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
logSizeBallStruct.radius
logSizeBallSeq
β€”one_le_logSizeRadius
pairSet_empty_eq_empty πŸ“–mathematicalβ€”pairSet
Finset
Finset.instEmptyCollection
β€”β€”
pairSet_subset πŸ“–mathematicalβ€”Finset
Finset.instHasSubset
pairSet
SProd.sprod
Finset.instSProd
β€”Finset.biUnion_subset_iff_forall_subset
Finset.product_subset_product
Finset.singleton_subset_iff
point_mem_logSizeBallSeq_init
HasSubset.Subset.trans
Finset.instIsTransSubset
Finset.filter_subset
finset_logSizeBallSeq_subset_logSizeBallSeq_init
point_logSizeBallSeq_add_one πŸ“–mathematicalFinset.NonemptylogSizeBallStruct.point
logSizeBallSeq
logSizeBallStruct.finset
Finset.decidableNonempty
Finset
Finset.instMembership
β€”β€”
point_logSizeBallSeq_zero πŸ“–mathematicalFinset.NonemptylogSizeBallStruct.point
logSizeBallSeq
Finset
Finset.instMembership
β€”β€”
point_mem_finset_logSizeBallSeq πŸ“–mathematicalFinset.Nonempty
logSizeBallStruct.finset
logSizeBallSeq
Finset
Finset.instMembership
logSizeBallStruct.point
β€”β€”
point_mem_logSizeBallSeq_init πŸ“–mathematicalFinset.NonemptyFinset
Finset.instMembership
logSizeBallStruct.point
logSizeBallSeq
β€”point_mem_finset_logSizeBallSeq
Finset.mem_of_subset
finset_logSizeBallSeq_subset_logSizeBallSeq_init
point_notMem_finset_logSizeBallSeq_add_one πŸ“–mathematicalFinset.NonemptyFinset
Finset.instMembership
logSizeBallStruct.finset
logSizeBallSeq
logSizeBallStruct.point
β€”PseudoEMetricSpace.edist_self
ENNReal.instCanonicallyOrderedAdd
pow_logSizeRadius_le_card_le_logSizeRadius πŸ“–mathematicalENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Finset
Finset.instMembership
Preorder.toLE
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
ENNReal.instCommSemiring
logSizeRadius
AddMonoidWithOne.toNatCast
Finset.card
Finset.filter
EDist.edist
PseudoEMetricSpace.toEDist
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
ENNReal.instSub
LinearOrder.toDecidableLE
ENNReal.instLinearOrder
β€”tsub_self
Nat.instCanonicallyOrderedAdd
Nat.instOrderedSub
pow_zero
Finset.filter.congr_simp
Nat.cast_one
ENNReal.instCanonicallyOrderedAdd
ENNReal.instOrderedSub
MulZeroClass.zero_mul
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
ENNReal.instIsOrderedRing
ENNReal.instCharZero
PseudoEMetricSpace.edist_self
exists_radius_le
logSizeRadius.eq_1
IsLeftCancelAdd.addLeftReflectLE_of_addLeftReflectLT
AddLeftCancelSemigroup.toIsLeftCancelAdd
contravariant_lt_of_covariant_le
Nat.instIsOrderedAddMonoid
CharP.cast_eq_zero
CharP.ofCharZero
instIsEmptyFalse
Nat.instZeroLEOneClass
Nat.find_min
LT.lt.le
ENNReal.natCast_sub
radius_logSizeBallSeq_add_one πŸ“–mathematicalFinset.NonemptylogSizeBallStruct.radius
logSizeBallSeq
logSizeRadius
logSizeBallStruct.point
logSizeBallStruct.finset
β€”β€”
radius_logSizeBallSeq_le πŸ“–mathematicalFinset.Nonempty
ENNReal
Preorder.toLT
PartialOrder.toPreorder
ENNReal.instPartialOrder
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Preorder.toLE
AddMonoidWithOne.toNatCast
Finset.card
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
ENNReal.instCommSemiring
logSizeBallStruct.radius
logSizeBallSeq
β€”exists_radius_le
Nat.find_min'
le_trans
Nat.mono_cast
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
ENNReal.instIsOrderedRing
Finset.card_le_card
Finset.filter_subset
HasSubset.Subset.trans
Finset.instIsTransSubset
finset_logSizeBallSeq_subset_logSizeBallSeq_init
radius_logSizeBallSeq_zero πŸ“–mathematicalFinset.NonemptylogSizeBallStruct.radius
logSizeBallSeq
logSizeRadius
Finset
Finset.instMembership
β€”β€”

PairReduction.logSizeBallStruct

Definitions

NameCategoryTheorems
ball πŸ“–CompOpβ€”
finset πŸ“–CompOp
12 mathmath: PairReduction.point_notMem_finset_logSizeBallSeq_add_one, PairReduction.card_pairSetSeq_le_logSizeRadius_mul, PairReduction.finset_logSizeBallSeq_zero, PairReduction.finset_logSizeBallSeq_add_one, PairReduction.card_finset_logSizeBallSeq_le, PairReduction.radius_logSizeBallSeq_add_one, PairReduction.card_finset_logSizeBallSeq_card_eq_zero, PairReduction.finset_logSizeBallSeq_add_one_subset, PairReduction.antitone_logSizeBallSeq_add_one_subset, PairReduction.finset_logSizeBallSeq_subset_logSizeBallSeq_init, PairReduction.point_logSizeBallSeq_add_one, PairReduction.logSizeRadius_le_card_smallBall
point πŸ“–CompOp
6 mathmath: PairReduction.point_notMem_finset_logSizeBallSeq_add_one, PairReduction.point_mem_logSizeBallSeq_init, PairReduction.radius_logSizeBallSeq_add_one, PairReduction.point_mem_finset_logSizeBallSeq, PairReduction.point_logSizeBallSeq_add_one, PairReduction.point_logSizeBallSeq_zero
radius πŸ“–CompOp
6 mathmath: PairReduction.card_pairSetSeq_le_logSizeRadius_mul, PairReduction.radius_logSizeBallSeq_add_one, PairReduction.one_le_radius_logSizeBallSeq, PairReduction.logSizeRadius_le_card_smallBall, PairReduction.radius_logSizeBallSeq_le, PairReduction.radius_logSizeBallSeq_zero
smallBall πŸ“–CompOp
3 mathmath: PairReduction.disjoint_smallBall_logSizeBallSeq, PairReduction.finset_logSizeBallSeq_add_one, PairReduction.logSizeRadius_le_card_smallBall

---

← Back to Index