Documentation Verification Report

Paracompact

📁 Source: Mathlib/Topology/EMetricSpace/Paracompact.lean

Statistics

MetricCount
Definitions0
Theoremst4Space, instParacompactSpace, t4Space
3
Total3

EMetric

Theorems

NameKindAssumesProvesValidatesDepends On
t4Space 📖mathematicalT4Space
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
EMetricSpace.toPseudoEMetricSpace
Metric.t4Space

Metric

Theorems

NameKindAssumesProvesValidatesDepends On
instParacompactSpace 📖mathematicalParacompactSpace
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
Nat.instAtLeastTwoHAddOfNat
ENNReal.pow_pos
ENNReal.inv_pos
ENNReal.ofNat_ne_top
pow_le_pow_right_of_le_one'
IsOrderedMonoid.toMulLeftMono
ENNReal.instIsOrderedMonoid
ENNReal.inv_le_one
LT.lt.le
ENNReal.one_lt_two
pow_succ'
ENNReal.mul_inv_cancel
two_ne_zero
ZeroLEOneClass.neZero.two
IsOrderedRing.toZeroLEOneClass
ENNReal.instIsOrderedRing
NeZero.one
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
one_mul
exists_wellOrder
wellFounded_lt
WellFounded.min_mem
WellFounded.not_lt_min
Set.iUnion_congr_Prop
Nat.strongRecOn'_beta
EMetric.isOpen_iff
ENNReal.div_pos_iff
LT.lt.ne'
GT.gt.lt
ENNReal.coe_ne_top
ENNReal.exists_inv_two_pow_lt
Set.Subset.trans
eball_subset_eball
mul_comm
ENNReal.mul_lt_of_lt_div
mem_eball_self
isOpen_iUnion
isOpen_eball
LT.lt.trans_le
le_mul_of_one_le_left'
covariant_swap_mul_of_covariant_mul
Mathlib.Meta.NormNum.isNat_le_true
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Meta.NormNum.instAtLeastTwo
Set.iUnion_eq_univ_iff
IsOpen.mem_nhds
Filter.HasBasis.mem_iff
nhds_basis_uniformity
uniformity_basis_edist_inv_two_pow
eball_mem_nhds
disjoint_iff_inf_le
edist_triangle_left
ENNReal.add_lt_add
add_le_add
covariant_swap_add_of_covariant_add
two_mul
PseudoEMetricSpace.edist_triangle
add_comm
mul_le_mul_right
add_le_add_right
Nat.instIsOrderedAddMonoid
le_rfl
mul_add
Distrib.leftDistribClass
two_add_one_eq_three
add_mul
Distrib.rightDistribClass
Ne.lt_or_gt
Set.Finite.biUnion'
Set.finite_le_nat
Set.Subsingleton.finite
Set.finite_singleton
Set.Finite.subset
not_lt
Disjoint.le_bot
t4Space 📖mathematicalT4Space
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
EMetricSpace.toPseudoEMetricSpace
T4Space.of_paracompactSpace_t2Space
T25Space.t2Space
T3Space.t25Space
instT3Space
EMetricSpace.instT0Space
UniformSpace.to_regularSpace
instParacompactSpace

---

← Back to Index