Documentation Verification Report

Pi

📁 Source: Mathlib/Topology/EMetricSpace/Pi.lean

Statistics

MetricCount
DefinitionsemetricSpacePi, instEDistForall, pseudoEMetricSpacePi
3
Theoremsedist_le_pi_edist, edist_pi_const, edist_pi_const_le, edist_pi_def, edist_pi_le_iff
5
Total8

(root)

Definitions

NameCategoryTheorems
emetricSpacePi 📖CompOp
7 mathmath: MeasureTheory.hausdorffMeasure_measurePreserving_piFinTwo, Real.dimH_univ_pi_fin, Real.dimH_ball_pi, MeasureTheory.hausdorffMeasure_pi_real, MeasureTheory.hausdorffMeasure_measurePreserving_funUnique, Real.dimH_univ_pi, Real.dimH_ball_pi_fin
instEDistForall 📖CompOp
8 mathmath: edist_le_pi_edist, UniformOnFun.edist_eq_pi_restrict, edist_pi_le_iff, edist_pi_const_le, edist_pi_def, edist_pi_const, Fin.edist_append_eq_max_edist, Set.le_einfsep_pi_of_le
pseudoEMetricSpacePi 📖CompOp
33 mathmath: PiLp.lipschitzWith_toLp, IsometryEquiv.sumArrowIsometryEquivProdArrow_toHomeomorph, Isometry.single, Pi.isIsometricVAdd', EMetric.diam_pi_le_of_le, IsometryEquiv.piCongrLeft'_apply, Fin.appendIsometry_symm_apply, PiLp.antilipschitzWith_toLp, Pi.isIsometricSMul'', Isometry.piMap, instIsIsometricSMulForall, Fin.appendIsometryOfEq_apply, Pi.isIsometricSMul', PiLp.lipschitzWith_ofLp, Metric.ediam_pi_le_of_le, IsometryEquiv.piFinTwo_symm_apply, Fin.appendIsometry_toHomeomorph, IsometryEquiv.sumArrowIsometryEquivProdArrow_symm_apply, IsometryEquiv.piCongrLeft_symm_apply, IsometryEquiv.funUnique_apply, PiLp.antilipschitzWith_ofLp, IsometryEquiv.piCongrLeft_apply, Fin.appendIsometryOfEq_symm_apply, LipschitzWith.eval, IsometryEquiv.piCongrLeft'_symm_apply, Real.volume_pi_le_diam_pow, instIsIsometricVAddForall, IsometryEquiv.funUnique_symm_apply, PiLp.isometry_ofLp_infty, IsometryEquiv.piFinTwo_apply, Fin.appendIsometry_apply, Pi.isIsometricVAdd'', IsometryEquiv.sumArrowIsometryEquivProdArrow_apply

Theorems

NameKindAssumesProvesValidatesDepends On
edist_le_pi_edist 📖mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
instEDistForall
Finset.le_sup
Finset.mem_univ
edist_pi_const 📖mathematicalEDist.edist
instEDistForall
PseudoEMetricSpace.toEDist
Finset.sup_const
Finset.univ_nonempty
edist_pi_const_le 📖mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
instEDistForall
PseudoEMetricSpace.toEDist
edist_pi_le_iff
le_rfl
edist_pi_def 📖mathematicalEDist.edist
instEDistForall
Finset.sup
ENNReal
instSemilatticeSupENNReal
ENNReal.instOrderBot
Finset.univ
edist_pi_le_iff 📖mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
EDist.edist
instEDistForall
Finset.sup_le_iff

---

← Back to Index