Documentation Verification Report

ExtremallyDisconnected

πŸ“ Source: Mathlib/Topology/ExtremallyDisconnected.lean

Statistics

MetricCount
DefinitionsExtremallyDisconnected, homeoCompactToT2
2
Theoremsprojective, extremallyDisconnected, projective_iff_extremallyDisconnected, disjoint_closure_of_disjoint_isOpen, open_closure, projective, exists_compact_surjective_zorn_subset, extremallyDisconnected_of_homeo, image_subset_closure_compl_image_compl_of_isOpen, instExtremallyDisconnected, instTotallySeparatedSpaceOfExtremallyDisconnectedOfT2Space
11
Total13

CompactT2

Theorems

NameKindAssumesProvesValidatesDepends On
projective_iff_extremallyDisconnected πŸ“–mathematicalβ€”Projective
ExtremallyDisconnected
β€”Projective.extremallyDisconnected
ExtremallyDisconnected.projective

CompactT2.ExtremallyDisconnected

Theorems

NameKindAssumesProvesValidatesDepends On
projective πŸ“–mathematicalβ€”CompactT2.Projectiveβ€”isCompact_iff_compactSpace
IsClosed.isCompact
instCompactSpaceProd
isClosed_eq
Continuous.comp
continuous_fst
continuous_snd
continuous_subtype_val
exists_compact_surjective_zorn_subset
T2Space.t1Space
ContinuousOn.restrict
Continuous.continuousOn
Set.mem_univ
instT2SpaceSubtype
Prod.t2Space
Homeomorph.continuous
Subtype.mem
Function.comp_assoc
Homeomorph.self_comp_symm

CompactT2.Projective

Theorems

NameKindAssumesProvesValidatesDepends On
extremallyDisconnected πŸ“–mathematicalCompactT2.ProjectiveExtremallyDisconnectedβ€”Set.disjoint_left
IsClosed.prod
IsOpen.isClosed_compl
T1Space.t1
T2Space.t1Space
DiscreteTopology.toT2Space
instDiscreteTopologyBool
isClosed_closure
T4Space.toT1Space
instT4SpaceOfT1SpaceOfNormalSpace
NormalSpace.of_compactSpace_r1Space
Finite.compactSpace
Bool.instFinite
T2Space.r1Space
IsClosed.union
Continuous.comp
continuous_fst
continuous_subtype_val
subset_closure
Set.mem_singleton
isCompact_iff_compactSpace
IsClosed.isCompact
instCompactSpaceProd
instT2SpaceSubtype
Prod.t2Space
continuous_id
HasSubset.Subset.antisymm
Set.instAntisymmSubset
closure_minimal
IsClosed.preimage
Set.preimage_comp
isClosed_compl_iff
Set.preimage_compl
Set.preimage_subtype_coe_eq_compl
Set.Subset.rfl
Disjoint.inter_eq
Set.inter_empty

ExtremallyDisconnected

Definitions

NameCategoryTheorems
homeoCompactToT2 πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
disjoint_closure_of_disjoint_isOpen πŸ“–mathematicalDisjoint
Set
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
HeytingAlgebra.toOrderBot
Order.Frame.toHeytingAlgebra
CompleteDistribLattice.toFrame
CompleteBooleanAlgebra.toCompleteDistribLattice
IsOpen
closureβ€”Disjoint.closure_left
Disjoint.closure_right
open_closure
open_closure πŸ“–mathematicalIsOpenclosureβ€”β€”

StoneCech

Theorems

NameKindAssumesProvesValidatesDepends On
projective πŸ“–mathematicalβ€”CompactT2.Projective
StoneCech
instTopologicalSpaceStoneCech
β€”continuous_of_discreteTopology
continuous_stoneCechExtend
DenseRange.equalizer
denseRange_stoneCechUnit
Continuous.comp
Function.comp_assoc
stoneCechExtend_extends

(root)

Definitions

NameCategoryTheorems
ExtremallyDisconnected πŸ“–CompData
29 mathmath: Stonean.instExtremallyDisconnectedCarrierToTop, Stonean.instProjective, CompHaus.toStonean_toTop, Stonean.instEffectivelyEnoughCompHausToCompHaus, extremallyDisconnected_of_homeo, Stonean.instHasExplicitFiniteCoproductsExtremallyDisconnectedCarrier, Stonean.effectiveEpiFamily_tfae, Stonean.epi_iff_surjective, Stonean.instPreregular, CompactT2.projective_iff_extremallyDisconnected, Stonean.forget.preservesLimits, CompactT2.Projective.extremallyDisconnected, Stonean.instHasPropExtremallyDisconnectedCarrier, Profinite.lift_lifts_assoc, Stonean.instHasExplicitPullbacksOfInclusionsExtremallyDisconnectedCarrier, Profinite.lift_lifts, Condensed.StoneanProfinite.instPreservesEffectiveEpisStoneanProfiniteToProfinite, Condensed.StoneanProfinite.instEffectivelyEnoughStoneanProfiniteToProfinite, CompHaus.presentation.epi_Ο€, Condensed.instPreservesFiniteProductsOppositeStoneanVal, Condensed.StoneanProfinite.instReflectsEffectiveEpisStoneanProfiniteToProfinite, Stonean.instReflectsEffectiveEpisCompHausToCompHaus, Stonean.instProjectiveCompHausCompHaus, CompHaus.Gleason, Stonean.instProjectiveProfiniteObjToProfinite, Profinite.presentation.epi_Ο€, CompHaus.instExtremallyDisconnectedCarrierToTopTrueOfProjective, Stonean.instPreservesEffectiveEpisCompHausToCompHaus, Stonean.effectiveEpi_tfae

Theorems

NameKindAssumesProvesValidatesDepends On
exists_compact_surjective_zorn_subset πŸ“–mathematicalContinuousCompactSpace
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
Set.image
Set.univ
β€”isClosed_iInter
Set.eq_univ_of_forall
Set.inter_nonempty_iff_exists_left
IsCompact.nonempty_iInter_of_directed_nonempty_isCompact_isClosed
IsChain.symm
Set.inter_subset_inter_left
Directed.mono_comp
directedOn_iff_directed
IsChain.directedOn
instReflGe
Set.image_inter_nonempty_iff
Subtype.mem
Set.univ_inter
Set.singleton_nonempty
IsClosed.isCompact
IsClosed.inter
IsClosed.preimage
T1Space.t1
Set.iInter_inter
Set.iInter_of_empty
not_nonempty_iff
Set.image_univ_of_surjective
Set.mem_iInter
zorn_superset
Minimal.prop
isCompact_iff_compactSpace
Mathlib.Tactic.Contrapose.contraposeβ‚„
Set.eq_univ_of_image_val_eq
Minimal.eq_of_subset
IsClosed.trans
Set.image_image_val_eq_restrict_image
Set.image_val_subset
extremallyDisconnected_of_homeo πŸ“–mathematicalβ€”ExtremallyDisconnectedβ€”Topology.IsInducing.closure_eq_preimage_closure_image
Homeomorph.isInducing
Homeomorph.isOpen_preimage
ExtremallyDisconnected.open_closure
Homeomorph.isOpen_image
image_subset_closure_compl_image_compl_of_isOpen πŸ“–mathematicalContinuous
IsOpen
Set
Set.instHasSubset
Set.image
closure
Compl.compl
Set.instCompl
β€”Set.image_empty
Set.empty_subset
mem_closure_iff
Set.mem_image
Set.mem_inter
Set.mem_preimage
IsOpen.inter
IsOpen.preimage
Set.compl_ne_univ
IsOpen.isClosed_compl
Set.nonempty_compl
Set.image_mono
Set.mem_image_of_mem
Set.mem_compl
Set.mem_of_mem_inter_right
instExtremallyDisconnected πŸ“–mathematicalExtremallyDisconnectedinstTopologicalSpaceSigmaβ€”isOpen_sigma_iff
IsOpenMap.preimage_closure_eq_closure_preimage
sigma_mk_preimage_image_eq_self
sigma_mk_preimage_image'
isOpen_empty
continuous_sigmaMk
instTotallySeparatedSpaceOfExtremallyDisconnectedOfT2Space πŸ“–mathematicalβ€”TotallySeparatedSpaceβ€”T2Space.t2
ExtremallyDisconnected.open_closure
subset_closure
Set.mem_compl_iff
mem_closure_iff
Mathlib.Tactic.Push.not_forall_eq
Set.disjoint_iff_inter_eq_empty
disjoint_comm
Set.union_compl_self
disjoint_compl_right

---

← Back to Index