Documentation Verification Report

Basic

πŸ“ Source: Mathlib/Topology/FiberBundle/Basic.lean

Statistics

MetricCount
DefinitionsFiberBundle, trivializationAt, trivializationAt', trivializationAtlas, trivializationAtlas', FiberBundleCore, TotalSpace, baseSet, coordChange, fiberBundle, indexAt, localTriv, localTrivAsPartialEquiv, localTrivAt, proj, toTopologicalSpace, topologicalSpaceFiber, trivChange, FiberPrebundle, pretrivializationAt, pretrivializationAtlas, toFiberBundle, totalSpaceTopology, trivializationOfMemPretrivializationAtlas, MemTrivializationAtlas
25
TheoremscontinuousAt_totalSpace, continuousWithinAt_totalSpace, continuous_proj, continuous_totalSpaceMk, exists_trivialization_Icc_subset, isOpenMap_proj, isQuotientMap_proj, map_proj_nhds, mem_baseSet_trivializationAt, mem_baseSet_trivializationAt', mem_trivializationAt_proj_source, surjective_proj, totalSpaceMk_isClosedEmbedding, totalSpaceMk_isEmbedding, totalSpaceMk_isInducing, totalSpaceMk_isInducing', trivializationAt_proj_fst, trivialization_mem_atlas, trivialization_mem_atlas', baseSet_at, continuousOn_coordChange, continuous_const_section, continuous_proj, continuous_totalSpaceMk, coordChange_comp, coordChange_self, isOpenMap_proj, isOpen_baseSet, localTrivAsPartialEquiv_apply, localTrivAsPartialEquiv_coe, localTrivAsPartialEquiv_source, localTrivAsPartialEquiv_symm, localTrivAsPartialEquiv_target, localTrivAsPartialEquiv_trans, localTrivAt_apply, localTrivAt_apply_mk, localTrivAt_def, localTrivAt_snd, localTriv_apply, localTriv_symm_apply, mem_baseSet_at, mem_localTrivAsPartialEquiv_source, mem_localTrivAsPartialEquiv_target, mem_localTrivAt_baseSet, mem_localTrivAt_source, mem_localTrivAt_target, mem_localTriv_source, mem_localTriv_target, mem_trivChange_source, mk_mem_localTrivAt_source, open_source', continuousOn_of_comp_right, continuous_proj, continuous_symm_of_mem_pretrivializationAtlas, continuous_totalSpaceMk, continuous_trivChange, inducing_totalSpaceMk_of_inducing_comp, instMemTrivializationAtlasTrivializationOfMemPretrivializationAtlas, isOpen_source, isOpen_target_of_mem_pretrivializationAtlas_inter, mem_base_pretrivializationAt, mem_pretrivializationAt_source, pretrivialization_mem_atlas, totalSpaceMk_isInducing, totalSpaceMk_preimage_source, out, instMemTrivializationAtlasTrivializationAt, memTrivializationAtlas_iff
68
Total93

FiberBundle

Definitions

NameCategoryTheorems
trivializationAt πŸ“–CompOp
46 mathmath: TangentBundle.continuousLinearMapAt_model_space, mdifferentiableWithinAt_totalSpace, TangentBundle.symmL_trivializationAt, continuousAt_totalSpace, prod_trivializationAt', TangentBundle.symmL_trivializationAt_eq_core, mdifferentiableWithinAt_section, TangentBundle.continuousLinearMapAt_trivializationAt_eq_core, continuousWithinAt_totalSpace, pullback_trivializationAt', TangentBundle.trivializationAt_fst, instMemTrivializationAtlasTrivializationAt, mdifferentiableAt_totalSpace, chartedSpace_chartAt, TangentBundle.trivializationAt_apply, writtenInExtChartAt_trivializationAt, trivializationAt_model_space_apply, chartedSpace'_chartAt, Bundle.contMDiffWithinAt_totalSpace, TangentBundle.trivializationAt_source, extChartAt, trivializationAt_proj_fst, eventually_norm_symmL_trivializationAt_self_comp_lt, hom_trivializationAt, Bundle.contMDiffAt_totalSpace, TangentBundle.continuousLinearMapAt_trivializationAt, eventually_norm_symmL_trivializationAt_comp_self_lt, eventually_norm_symmL_trivializationAt_lt, TangentBundle.trivializationAt_eq_localTriv, TangentBundle.symmL_model_space, hom_trivializationAt_source, mem_trivializationAt_proj_source, extChartAt_target, mdifferentiableAt_section, writtenInExtChartAt_trivializationAt_symm, trivialization_mem_atlas, Bundle.contMDiffAt_section, TangentBundle.trivializationAt_baseSet, VectorBundleCore.trivializationAt, hom_trivializationAt_apply, Bundle.contMDiffWithinAt_section, hom_trivializationAt_baseSet, mem_baseSet_trivializationAt, eventually_norm_trivializationAt_lt, hom_trivializationAt_target, TangentBundle.trivializationAt_target
trivializationAt' πŸ“–CompOp
5 mathmath: trivialization_mem_atlas', mem_baseSet_trivializationAt', prod_trivializationAt', pullback_trivializationAt', Bundle.Trivial.fiberBundle_trivializationAt'
trivializationAtlas πŸ“–CompOp
3 mathmath: MemTrivializationAtlas.out, memTrivializationAtlas_iff, trivialization_mem_atlas
trivializationAtlas' πŸ“–CompOp
4 mathmath: trivialization_mem_atlas', Bundle.Trivial.fiberBundle_trivializationAtlas', pullback_trivializationAtlas', prod_trivializationAtlas'

Theorems

NameKindAssumesProvesValidatesDepends On
continuousAt_totalSpace πŸ“–mathematicalβ€”ContinuousAt
Bundle.TotalSpace
Bundle.TotalSpace.proj
Trivialization.toFun'
trivializationAt
β€”Trivialization.tendsto_nhds_iff
mem_trivializationAt_proj_source
continuousWithinAt_totalSpace πŸ“–mathematicalβ€”ContinuousWithinAt
Bundle.TotalSpace
Bundle.TotalSpace.proj
Trivialization.toFun'
trivializationAt
β€”Trivialization.tendsto_nhds_iff
mem_trivializationAt_proj_source
continuous_proj πŸ“–mathematicalβ€”Continuous
Bundle.TotalSpace
Bundle.TotalSpace.proj
β€”continuous_iff_continuousAt
Eq.le
map_proj_nhds
continuous_totalSpaceMk πŸ“–mathematicalβ€”Continuous
Bundle.TotalSpace
β€”Topology.IsInducing.continuous
totalSpaceMk_isInducing
exists_trivialization_Icc_subset πŸ“–mathematicalβ€”Set
Set.instHasSubset
Set.Icc
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Trivialization.baseSet
Bundle.TotalSpace
Bundle.TotalSpace.proj
β€”mem_baseSet_trivializationAt
lt_or_ge
Set.Icc_eq_empty
Set.left_mem_Icc
Set.Icc_self
isLUB_csSup
LE.le.eq_or_lt
mem_nhdsLE_iff_exists_mem_Ico_Ioc_subset
mem_nhdsWithin_of_mem_nhds
IsOpen.mem_nhds
Trivialization.open_baseSet
IsLUB.exists_between
le_rfl
Set.subset_ite
LT.lt.trans
not_le
mem_nhdsGE_iff_exists_mem_Ioc_Ico_subset
HasSubset.Subset.trans
Set.instIsTransSubset
Set.Ico_subset_Icc_union_Ico
Set.union_subset
isOpen_Iio
instClosedIciTopology
OrderTopology.to_orderClosedTopology
isOpen_Ioi
instClosedIicTopology
Disjoint.mono
Set.inter_subset_right
Mathlib.Tactic.Push.not_forall_eq
Set.disjoint_left
LE.le.trans
LT.lt.le
Set.Icc_subset_Ico_right
LE.le.not_gt
isOpenMap_proj πŸ“–mathematicalβ€”IsOpenMap
Bundle.TotalSpace
Bundle.TotalSpace.proj
β€”IsOpenMap.of_nhds_le
Eq.ge
map_proj_nhds
isQuotientMap_proj πŸ“–mathematicalβ€”Topology.IsQuotientMap
Bundle.TotalSpace
Bundle.TotalSpace.proj
β€”IsOpenMap.isQuotientMap
isOpenMap_proj
continuous_proj
surjective_proj
map_proj_nhds πŸ“–mathematicalβ€”Filter.map
Bundle.TotalSpace
Bundle.TotalSpace.proj
nhds
β€”Trivialization.map_proj_nhds
Trivialization.mem_source
mem_baseSet_trivializationAt
mem_baseSet_trivializationAt πŸ“–mathematicalβ€”Set
Set.instMembership
Trivialization.baseSet
Bundle.TotalSpace
Bundle.TotalSpace.proj
trivializationAt
β€”mem_baseSet_trivializationAt'
mem_baseSet_trivializationAt' πŸ“–mathematicalβ€”Set
Set.instMembership
Trivialization.baseSet
Bundle.TotalSpace
Bundle.TotalSpace.proj
trivializationAt'
β€”β€”
mem_trivializationAt_proj_source πŸ“–mathematicalβ€”Bundle.TotalSpace
Set
Set.instMembership
PartialEquiv.source
OpenPartialHomeomorph.toPartialEquiv
instTopologicalSpaceProd
Trivialization.toOpenPartialHomeomorph
Bundle.TotalSpace.proj
trivializationAt
β€”Trivialization.mem_source
mem_baseSet_trivializationAt
surjective_proj πŸ“–mathematicalβ€”Bundle.TotalSpace
Bundle.TotalSpace.proj
β€”Trivialization.proj_surjOn_baseSet
mem_baseSet_trivializationAt
totalSpaceMk_isClosedEmbedding πŸ“–mathematicalβ€”Topology.IsClosedEmbedding
Bundle.TotalSpace
β€”totalSpaceMk_isEmbedding
IsClosed.preimage
continuous_proj
isClosed_singleton
totalSpaceMk_isEmbedding πŸ“–mathematicalβ€”Topology.IsEmbedding
Bundle.TotalSpace
β€”totalSpaceMk_isInducing
Bundle.TotalSpace.mk_injective
totalSpaceMk_isInducing πŸ“–mathematicalβ€”Topology.IsInducing
Bundle.TotalSpace
β€”totalSpaceMk_isInducing'
totalSpaceMk_isInducing' πŸ“–mathematicalβ€”Topology.IsInducing
Bundle.TotalSpace
β€”β€”
trivializationAt_proj_fst πŸ“–mathematicalβ€”Trivialization.toFun'
Bundle.TotalSpace
Bundle.TotalSpace.proj
trivializationAt
β€”Trivialization.coe_fst'
mem_baseSet_trivializationAt
trivialization_mem_atlas πŸ“–mathematicalβ€”Trivialization
Bundle.TotalSpace
Bundle.TotalSpace.proj
Set
Set.instMembership
trivializationAtlas
trivializationAt
β€”trivialization_mem_atlas'
trivialization_mem_atlas' πŸ“–mathematicalβ€”Trivialization
Bundle.TotalSpace
Bundle.TotalSpace.proj
Set
Set.instMembership
trivializationAtlas'
trivializationAt'
β€”β€”

FiberBundleCore

Definitions

NameCategoryTheorems
TotalSpace πŸ“–CompOp
20 mathmath: mem_localTrivAt_source, localTrivAsPartialEquiv_target, localTrivAsPartialEquiv_coe, mem_localTrivAsPartialEquiv_source, baseSet_at, continuous_const_section, localTriv_apply, mem_localTriv_source, localTrivAsPartialEquiv_apply, TangentBundle.chartAt, mem_localTriv_target, isOpenMap_proj, localTrivAsPartialEquiv_source, mem_localTrivAsPartialEquiv_target, continuous_proj, TangentBundle.chartAt_toPartialEquiv, localTrivAsPartialEquiv_symm, open_source', localTrivAsPartialEquiv_trans, localTriv_symm_apply
baseSet πŸ“–CompOp
8 mathmath: isOpen_baseSet, mem_localTrivAsPartialEquiv_source, baseSet_at, mem_localTrivAsPartialEquiv_target, continuousOn_coordChange, mem_baseSet_at, VectorBundleCore.toFiberBundleCore_baseSet, mem_trivChange_source
coordChange πŸ“–CompOp
9 mathmath: VectorBundleCore.toFiberBundleCore_coordChange, coordChange_self, localTriv_apply, VectorBundleCore.coe_coordChange, localTrivAsPartialEquiv_apply, continuousOn_coordChange, coordChange_comp, localTriv_symm_apply, localTrivAt_snd
fiberBundle πŸ“–CompOpβ€”
indexAt πŸ“–CompOp
7 mathmath: VectorBundleCore.toFiberBundleCore_indexAt, localTriv_apply, localTrivAsPartialEquiv_apply, localTrivAt_def, mem_baseSet_at, localTriv_symm_apply, localTrivAt_snd
localTriv πŸ“–CompOp
12 mathmath: localTrivAsPartialEquiv_target, localTrivAsPartialEquiv_coe, baseSet_at, localTriv_apply, mem_localTriv_source, TangentBundle.chartAt, mem_localTriv_target, localTrivAsPartialEquiv_source, TangentBundle.trivializationAt_eq_localTriv, localTrivAt_def, localTrivAsPartialEquiv_symm, localTriv_symm_apply
localTrivAsPartialEquiv πŸ“–CompOp
10 mathmath: localTrivAsPartialEquiv_target, localTrivAsPartialEquiv_coe, mem_localTrivAsPartialEquiv_source, localTrivAsPartialEquiv_apply, localTrivAsPartialEquiv_source, mem_localTrivAsPartialEquiv_target, TangentBundle.chartAt_toPartialEquiv, localTrivAsPartialEquiv_symm, open_source', localTrivAsPartialEquiv_trans
localTrivAt πŸ“–CompOp
8 mathmath: mk_mem_localTrivAt_source, mem_localTrivAt_source, localTrivAt_apply, mem_localTrivAt_target, localTrivAt_def, mem_localTrivAt_baseSet, localTrivAt_apply_mk, localTrivAt_snd
proj πŸ“–CompOp
12 mathmath: localTrivAsPartialEquiv_target, localTrivAsPartialEquiv_coe, baseSet_at, localTriv_apply, mem_localTriv_source, TangentBundle.chartAt, mem_localTriv_target, isOpenMap_proj, localTrivAsPartialEquiv_source, continuous_proj, localTrivAsPartialEquiv_symm, localTriv_symm_apply
toTopologicalSpace πŸ“–CompOp
22 mathmath: mk_mem_localTrivAt_source, mem_localTrivAt_source, localTrivAsPartialEquiv_target, localTrivAsPartialEquiv_coe, baseSet_at, continuous_const_section, localTriv_apply, mem_localTriv_source, localTrivAt_apply, mem_localTrivAt_target, TangentBundle.chartAt, mem_localTriv_target, isOpenMap_proj, localTrivAsPartialEquiv_source, continuous_proj, mem_localTrivAt_baseSet, localTrivAt_apply_mk, localTrivAsPartialEquiv_symm, open_source', continuous_totalSpaceMk, localTriv_symm_apply, localTrivAt_snd
topologicalSpaceFiber πŸ“–CompOp
1 mathmath: continuous_totalSpaceMk
trivChange πŸ“–CompOp
2 mathmath: localTrivAsPartialEquiv_trans, mem_trivChange_source

Theorems

NameKindAssumesProvesValidatesDepends On
baseSet_at πŸ“–mathematicalβ€”baseSet
Trivialization.baseSet
TotalSpace
toTopologicalSpace
proj
localTriv
β€”β€”
continuousOn_coordChange πŸ“–mathematicalβ€”ContinuousOn
instTopologicalSpaceProd
coordChange
SProd.sprod
Set
Set.instSProd
Set.instInter
baseSet
Set.univ
β€”β€”
continuous_const_section πŸ“–mathematicalcoordChangeContinuous
TotalSpace
toTopologicalSpace
β€”continuous_iff_continuousAt
IsOpen.mem_nhds
isOpen_baseSet
mem_baseSet_at
OpenPartialHomeomorph.continuousAt_iff_continuousAt_comp_left
ContinuousAt.prodMk
continuousAt_id
continuousOn_const
ContinuousOn.continuousAt
ContinuousOn.congr
continuous_proj πŸ“–mathematicalβ€”Continuous
TotalSpace
toTopologicalSpace
proj
β€”FiberBundle.continuous_proj
continuous_totalSpaceMk πŸ“–mathematicalβ€”Continuous
Fiber
Bundle.TotalSpace
topologicalSpaceFiber
toTopologicalSpace
β€”FiberBundle.continuous_totalSpaceMk
coordChange_comp πŸ“–mathematicalSet
Set.instMembership
Set.instInter
baseSet
coordChangeβ€”β€”
coordChange_self πŸ“–mathematicalSet
Set.instMembership
baseSet
coordChangeβ€”β€”
isOpenMap_proj πŸ“–mathematicalβ€”IsOpenMap
TotalSpace
toTopologicalSpace
proj
β€”FiberBundle.isOpenMap_proj
isOpen_baseSet πŸ“–mathematicalβ€”IsOpen
baseSet
β€”β€”
localTrivAsPartialEquiv_apply πŸ“–mathematicalβ€”PartialEquiv.toFun
TotalSpace
localTrivAsPartialEquiv
Bundle.TotalSpace.proj
Fiber
coordChange
indexAt
Bundle.TotalSpace.snd
β€”β€”
localTrivAsPartialEquiv_coe πŸ“–mathematicalβ€”PartialEquiv.toFun
TotalSpace
localTrivAsPartialEquiv
Trivialization.toFun'
proj
toTopologicalSpace
localTriv
β€”β€”
localTrivAsPartialEquiv_source πŸ“–mathematicalβ€”PartialEquiv.source
TotalSpace
localTrivAsPartialEquiv
OpenPartialHomeomorph.toPartialEquiv
toTopologicalSpace
instTopologicalSpaceProd
Trivialization.toOpenPartialHomeomorph
proj
localTriv
β€”β€”
localTrivAsPartialEquiv_symm πŸ“–mathematicalβ€”PartialEquiv.symm
TotalSpace
localTrivAsPartialEquiv
OpenPartialHomeomorph.toPartialEquiv
toTopologicalSpace
instTopologicalSpaceProd
Trivialization.toOpenPartialHomeomorph
proj
localTriv
β€”β€”
localTrivAsPartialEquiv_target πŸ“–mathematicalβ€”PartialEquiv.target
TotalSpace
localTrivAsPartialEquiv
OpenPartialHomeomorph.toPartialEquiv
toTopologicalSpace
instTopologicalSpaceProd
Trivialization.toOpenPartialHomeomorph
proj
localTriv
β€”β€”
localTrivAsPartialEquiv_trans πŸ“–mathematicalβ€”PartialEquiv
PartialEquiv.eqOnSourceSetoid
PartialEquiv.trans
TotalSpace
PartialEquiv.symm
localTrivAsPartialEquiv
OpenPartialHomeomorph.toPartialEquiv
instTopologicalSpaceProd
trivChange
β€”Set.ext
coordChange_comp
localTrivAt_apply πŸ“–mathematicalβ€”Trivialization.toFun'
Bundle.TotalSpace
Fiber
Bundle.TotalSpace.proj
toTopologicalSpace
localTrivAt
Bundle.TotalSpace.snd
β€”localTrivAt.eq_1
localTriv_apply
coordChange_self
mem_baseSet_at
localTrivAt_apply_mk πŸ“–mathematicalβ€”Trivialization.toFun'
Bundle.TotalSpace
Fiber
Bundle.TotalSpace.proj
toTopologicalSpace
localTrivAt
β€”localTrivAt_apply
localTrivAt_def πŸ“–mathematicalβ€”localTriv
indexAt
localTrivAt
β€”β€”
localTrivAt_snd πŸ“–mathematicalβ€”Trivialization.toFun'
Bundle.TotalSpace
Fiber
Bundle.TotalSpace.proj
toTopologicalSpace
localTrivAt
coordChange
indexAt
Bundle.TotalSpace.snd
β€”β€”
localTriv_apply πŸ“–mathematicalβ€”Trivialization.toFun'
TotalSpace
proj
toTopologicalSpace
localTriv
Bundle.TotalSpace.proj
Fiber
coordChange
indexAt
Bundle.TotalSpace.snd
β€”β€”
localTriv_symm_apply πŸ“–mathematicalβ€”OpenPartialHomeomorph.toFun'
TotalSpace
instTopologicalSpaceProd
toTopologicalSpace
OpenPartialHomeomorph.symm
Trivialization.toOpenPartialHomeomorph
proj
localTriv
Fiber
coordChange
indexAt
β€”β€”
mem_baseSet_at πŸ“–mathematicalβ€”Set
Set.instMembership
baseSet
indexAt
β€”β€”
mem_localTrivAsPartialEquiv_source πŸ“–mathematicalβ€”TotalSpace
Set
Set.instMembership
PartialEquiv.source
localTrivAsPartialEquiv
baseSet
Bundle.TotalSpace.proj
Fiber
β€”β€”
mem_localTrivAsPartialEquiv_target πŸ“–mathematicalβ€”Set
Set.instMembership
PartialEquiv.target
TotalSpace
localTrivAsPartialEquiv
baseSet
β€”localTrivAsPartialEquiv.eq_1
Set.mem_prod
mem_localTrivAt_baseSet πŸ“–mathematicalβ€”Set
Set.instMembership
Trivialization.baseSet
Bundle.TotalSpace
Fiber
toTopologicalSpace
Bundle.TotalSpace.proj
localTrivAt
β€”localTrivAt.eq_1
baseSet_at
mem_baseSet_at
mem_localTrivAt_source πŸ“–mathematicalβ€”TotalSpace
Set
Bundle.TotalSpace
Fiber
Set.instMembership
PartialEquiv.source
OpenPartialHomeomorph.toPartialEquiv
toTopologicalSpace
instTopologicalSpaceProd
Trivialization.toOpenPartialHomeomorph
Bundle.TotalSpace.proj
localTrivAt
Trivialization.baseSet
β€”β€”
mem_localTrivAt_target πŸ“–mathematicalβ€”Set
Set.instMembership
PartialEquiv.target
Bundle.TotalSpace
Fiber
OpenPartialHomeomorph.toPartialEquiv
toTopologicalSpace
instTopologicalSpaceProd
Trivialization.toOpenPartialHomeomorph
Bundle.TotalSpace.proj
localTrivAt
Trivialization.baseSet
β€”Trivialization.mem_target
mem_localTriv_source πŸ“–mathematicalβ€”TotalSpace
Set
Set.instMembership
PartialEquiv.source
OpenPartialHomeomorph.toPartialEquiv
toTopologicalSpace
instTopologicalSpaceProd
Trivialization.toOpenPartialHomeomorph
proj
localTriv
Trivialization.baseSet
Bundle.TotalSpace.proj
Fiber
β€”β€”
mem_localTriv_target πŸ“–mathematicalβ€”Set
Set.instMembership
PartialEquiv.target
TotalSpace
OpenPartialHomeomorph.toPartialEquiv
toTopologicalSpace
instTopologicalSpaceProd
Trivialization.toOpenPartialHomeomorph
proj
localTriv
Trivialization.baseSet
β€”Trivialization.mem_target
mem_trivChange_source πŸ“–mathematicalβ€”Set
Set.instMembership
PartialEquiv.source
OpenPartialHomeomorph.toPartialEquiv
instTopologicalSpaceProd
trivChange
Set.instInter
baseSet
β€”trivChange.eq_1
Set.mem_prod
mk_mem_localTrivAt_source πŸ“–mathematicalβ€”Bundle.TotalSpace
Fiber
Set
Set.instMembership
PartialEquiv.source
OpenPartialHomeomorph.toPartialEquiv
toTopologicalSpace
instTopologicalSpaceProd
Trivialization.toOpenPartialHomeomorph
Bundle.TotalSpace.proj
localTrivAt
β€”β€”
open_source' πŸ“–mathematicalβ€”IsOpen
TotalSpace
toTopologicalSpace
PartialEquiv.source
localTrivAsPartialEquiv
β€”IsOpen.prod
isOpen_baseSet
isOpen_univ
Set.ext

FiberPrebundle

Definitions

NameCategoryTheorems
pretrivializationAt πŸ“–CompOp
5 mathmath: mem_pretrivializationAt_source, totalSpaceMk_isInducing, totalSpaceMk_preimage_source, mem_base_pretrivializationAt, pretrivialization_mem_atlas
pretrivializationAtlas πŸ“–CompOp
1 mathmath: pretrivialization_mem_atlas
toFiberBundle πŸ“–CompOp
1 mathmath: instMemTrivializationAtlasTrivializationOfMemPretrivializationAtlas
totalSpaceTopology πŸ“–CompOp
7 mathmath: continuous_symm_of_mem_pretrivializationAtlas, continuous_proj, inducing_totalSpaceMk_of_inducing_comp, continuous_totalSpaceMk, isOpen_source, instMemTrivializationAtlasTrivializationOfMemPretrivializationAtlas, continuousOn_of_comp_right
trivializationOfMemPretrivializationAtlas πŸ“–CompOp
1 mathmath: instMemTrivializationAtlasTrivializationOfMemPretrivializationAtlas

Theorems

NameKindAssumesProvesValidatesDepends On
continuousOn_of_comp_right πŸ“–mathematicalIsOpen
ContinuousOn
instTopologicalSpaceProd
Bundle.TotalSpace
PartialEquiv.toFun
PartialEquiv.symm
Pretrivialization.toPartialEquiv
Bundle.TotalSpace.proj
pretrivializationAt
SProd.sprod
Set
Set.instSProd
Set.instInter
Pretrivialization.baseSet
Set.univ
totalSpaceTopology
Set.preimage
β€”pretrivialization_mem_atlas
ContinuousAt.continuousWithinAt
Trivialization.continuousAt_of_comp_right
mem_base_pretrivializationAt
ContinuousOn.continuousAt
IsOpen.mem_nhds
IsOpen.prod
IsOpen.inter
Pretrivialization.open_baseSet
isOpen_univ
Trivialization.coe_fst
Trivialization.mem_source
Set.mem_univ
continuous_proj πŸ“–mathematicalβ€”Continuous
Bundle.TotalSpace
totalSpaceTopology
Bundle.TotalSpace.proj
β€”FiberBundle.continuous_proj
continuous_symm_of_mem_pretrivializationAtlas πŸ“–mathematicalPretrivialization
Bundle.TotalSpace
Bundle.TotalSpace.proj
Set
Set.instMembership
pretrivializationAtlas
ContinuousOn
instTopologicalSpaceProd
totalSpaceTopology
PartialEquiv.toFun
PartialEquiv.symm
Pretrivialization.toPartialEquiv
PartialEquiv.target
β€”preimage_nhdsWithin_coinduced'
Filter.le_def
nhds_mono
le_iSupβ‚‚
continuous_totalSpaceMk πŸ“–mathematicalβ€”Continuous
Bundle.TotalSpace
totalSpaceTopology
β€”pretrivialization_mem_atlas
OpenPartialHomeomorph.continuous_iff_continuous_comp_left
totalSpaceMk_preimage_source
continuous_iff_le_induced
Eq.le
Topology.IsInducing.eq_induced
totalSpaceMk_isInducing
continuous_trivChange πŸ“–mathematicalPretrivialization
Bundle.TotalSpace
Bundle.TotalSpace.proj
Set
Set.instMembership
pretrivializationAtlas
ContinuousOn
instTopologicalSpaceProd
Pretrivialization.toFun'
PartialEquiv.toFun
PartialEquiv.symm
Pretrivialization.toPartialEquiv
Set.instInter
PartialEquiv.target
Set.preimage
PartialEquiv.source
β€”β€”
inducing_totalSpaceMk_of_inducing_comp πŸ“–mathematicalTopology.IsInducing
instTopologicalSpaceProd
Bundle.TotalSpace
Pretrivialization.toFun'
Bundle.TotalSpace.proj
pretrivializationAt
totalSpaceTopologyβ€”Topology.IsInducing.of_codRestrict
mem_pretrivializationAt_source
Topology.IsInducing.of_comp
pretrivialization_mem_atlas
Continuous.codRestrict
continuous_totalSpaceMk
continuousOn_iff_continuous_restrict
Trivialization.continuousOn
Set.restrict_comp_codRestrict
instMemTrivializationAtlasTrivializationOfMemPretrivializationAtlas πŸ“–mathematicalPretrivialization
Bundle.TotalSpace
Bundle.TotalSpace.proj
Set
Set.instMembership
pretrivializationAtlas
MemTrivializationAtlas
totalSpaceTopology
toFiberBundle
trivializationOfMemPretrivializationAtlas
β€”β€”
isOpen_source πŸ“–mathematicalβ€”IsOpen
Bundle.TotalSpace
totalSpaceTopology
PartialEquiv.source
Pretrivialization.toPartialEquiv
Bundle.TotalSpace.proj
β€”isOpen_iSup_iff
isOpen_coinduced
isOpen_induced_iff
Pretrivialization.open_target
Set.ext
Pretrivialization.mem_target
Pretrivialization.mem_source
Pretrivialization.proj_symm_apply
isOpen_target_of_mem_pretrivializationAtlas_inter πŸ“–mathematicalPretrivialization
Bundle.TotalSpace
Bundle.TotalSpace.proj
Set
Set.instMembership
pretrivializationAtlas
IsOpen
instTopologicalSpaceProd
Set.instInter
PartialEquiv.target
Pretrivialization.toPartialEquiv
Set.preimage
PartialEquiv.toFun
PartialEquiv.symm
PartialEquiv.source
β€”continuousOn_iff'
continuous_symm_of_mem_pretrivializationAtlas
isOpen_source
Set.inter_comm
IsOpen.inter
Pretrivialization.open_target
mem_base_pretrivializationAt πŸ“–mathematicalβ€”Set
Set.instMembership
Pretrivialization.baseSet
Bundle.TotalSpace
Bundle.TotalSpace.proj
pretrivializationAt
β€”β€”
mem_pretrivializationAt_source πŸ“–mathematicalβ€”Bundle.TotalSpace
Set
Set.instMembership
PartialEquiv.source
Pretrivialization.toPartialEquiv
Bundle.TotalSpace.proj
pretrivializationAt
β€”Pretrivialization.source_eq
mem_base_pretrivializationAt
pretrivialization_mem_atlas πŸ“–mathematicalβ€”Pretrivialization
Bundle.TotalSpace
Bundle.TotalSpace.proj
Set
Set.instMembership
pretrivializationAtlas
pretrivializationAt
β€”β€”
totalSpaceMk_isInducing πŸ“–mathematicalβ€”Topology.IsInducing
instTopologicalSpaceProd
Bundle.TotalSpace
Pretrivialization.toFun'
Bundle.TotalSpace.proj
pretrivializationAt
β€”β€”
totalSpaceMk_preimage_source πŸ“–mathematicalβ€”Set.preimage
Bundle.TotalSpace
PartialEquiv.source
Pretrivialization.toPartialEquiv
Bundle.TotalSpace.proj
pretrivializationAt
Set.univ
β€”Set.eq_univ_of_forall
mem_pretrivializationAt_source

MemTrivializationAtlas

Theorems

NameKindAssumesProvesValidatesDepends On
out πŸ“–mathematicalβ€”Trivialization
Bundle.TotalSpace
Bundle.TotalSpace.proj
Set
Set.instMembership
FiberBundle.trivializationAtlas
β€”β€”

(root)

Definitions

NameCategoryTheorems
FiberBundle πŸ“–CompDataβ€”
FiberBundleCore πŸ“–CompDataβ€”
FiberPrebundle πŸ“–CompDataβ€”
MemTrivializationAtlas πŸ“–CompData
7 mathmath: instMemTrivializationAtlasTrivializationAt, FiberBundle.pullback_trivializationAtlas', memTrivializationAtlas_iff, FiberBundle.prod_trivializationAtlas', instMemTrivializationAtlasProdProd, Bundle.ContinuousLinearMap.memTrivializationAtlas, FiberPrebundle.instMemTrivializationAtlasTrivializationOfMemPretrivializationAtlas

Theorems

NameKindAssumesProvesValidatesDepends On
instMemTrivializationAtlasTrivializationAt πŸ“–mathematicalβ€”MemTrivializationAtlas
FiberBundle.trivializationAt
β€”FiberBundle.trivialization_mem_atlas
memTrivializationAtlas_iff πŸ“–mathematicalβ€”MemTrivializationAtlas
Trivialization
Bundle.TotalSpace
Bundle.TotalSpace.proj
Set
Set.instMembership
FiberBundle.trivializationAtlas
β€”β€”

---

← Back to Index