Documentation Verification Report

Filter

📁 Source: Mathlib/Topology/Filter.lean

Statistics

MetricCount
DefinitionsinstTopologicalSpace
1
Theoremsnhds, nhds, nhds, nhds, nhds, nhds', nhds, closure_singleton, continuous_nhds, instIsCountablyGeneratedNhds, instT0Space, isInducing_nhds, isOpen_Iic_principal, isOpen_iff, isOpen_setOf_mem, isTopologicalBasis_Iic_principal, mem_closure, mem_interior, mem_nhds_iff, mem_nhds_iff', monotone_nhds, nhds_atBot, nhds_atTop, nhds_bot, nhds_eq, nhds_eq', nhds_iInf, nhds_inf, nhds_mono, nhds_nhds, nhds_principal, nhds_pure, nhds_top, sInter_nhds, specializes_iff_le, tendsto_nhds, tendsto_nhds_atBot_iff, tendsto_nhds_atTop_iff, tendsto_pure_self
39
Total40

Continuous

Theorems

NameKindAssumesProvesValidatesDepends On
nhds 📖mathematicalContinuousFilter
Filter.instTopologicalSpace
nhds
comp
Filter.continuous_nhds

ContinuousAt

Theorems

NameKindAssumesProvesValidatesDepends On
nhds 📖mathematicalContinuousAtFilter
Filter.instTopologicalSpace
nhds
Filter.Tendsto.nhds

ContinuousOn

Theorems

NameKindAssumesProvesValidatesDepends On
nhds 📖mathematicalContinuousOnFilter
Filter.instTopologicalSpace
nhds
ContinuousWithinAt.nhds

ContinuousWithinAt

Theorems

NameKindAssumesProvesValidatesDepends On
nhds 📖mathematicalContinuousWithinAtFilter
Filter.instTopologicalSpace
nhds
Filter.Tendsto.nhds

Filter

Definitions

NameCategoryTheorems
instTopologicalSpace 📖CompOp
44 mathmath: tendsto_nhds_atBot_iff, nhds_atBot, nhds_eq', isInducing_nhds, nhds_top, mem_nhds_iff, HasBasis.nhds, tendsto_nhds_atBot, tendsto_nhds, nhds_inf, mem_closure, nhds_bot, Continuous.nhds, nhds_eq, Tendsto.nhds, ContinuousWithinAt.nhds, Tendsto.nhds_atBot, mem_nhds_iff', nhds_principal, isOpen_setOf_mem, nhds_pure, HasBasis.nhds', closure_singleton, nhds_mono, mem_interior, tendsto_nhds_atTop_iff, nhds_iInf, isProperMap_iff_isClosedMap_filter, monotone_nhds, instIsCountablyGeneratedNhds, isTopologicalBasis_Iic_principal, ContinuousAt.nhds, instT0Space, nhds_nhds, tendsto_nhds_atTop, Tendsto.nhds_atTop, nhds_atTop, ContinuousOn.nhds, continuous_nhds, sInter_nhds, isOpen_iff, isOpen_Iic_principal, specializes_iff_le, tendsto_pure_self

Theorems

NameKindAssumesProvesValidatesDepends On
closure_singleton 📖mathematicalclosure
Filter
instTopologicalSpace
Set
Set.instSingletonSet
Set.Ici
PartialOrder.toPreorder
instPartialOrder
Set.ext
continuous_nhds 📖mathematicalContinuous
Filter
instTopologicalSpace
nhds
Topology.IsInducing.continuous
isInducing_nhds
instIsCountablyGeneratedNhds 📖mathematicalIsCountablyGenerated
Filter
nhds
instTopologicalSpace
exists_antitone_basis
HasCountableBasis.isCountablyGenerated
HasBasis.nhds
HasAntitoneBasis.toHasBasis
Set.to_countable
SetCoe.countable
instCountableNat
instT0Space 📖mathematicalT0Space
Filter
instTopologicalSpace
LE.le.antisymm
specializes_iff_le
Inseparable.specializes
Inseparable.symm
isInducing_nhds 📖mathematicalTopology.IsInducing
Filter
instTopologicalSpace
nhds
Topology.isInducing_iff_nhds
nhds_def'
nhds_nhds
iInf_congr_Prop
Iic_principal
comap_iInf
comap_principal
IsOpen.interior_eq
isOpen_Iic_principal 📖mathematicalIsOpen
Filter
instTopologicalSpace
Set.Iic
PartialOrder.toPreorder
instPartialOrder
principal
Set.mem_range_self
isOpen_iff 📖mathematicalIsOpen
Filter
instTopologicalSpace
Set.iUnion
Set
Set.instMembership
Set.Iic
PartialOrder.toPreorder
instPartialOrder
principal
TopologicalSpace.IsTopologicalBasis.open_iff_eq_sUnion
isTopologicalBasis_Iic_principal
Set.image_congr
Set.sUnion_image
isOpen_setOf_mem 📖mathematicalIsOpen
Filter
instTopologicalSpace
setOf
Set
instMembership
Iic_principal
isOpen_Iic_principal
isTopologicalBasis_Iic_principal 📖mathematicalTopologicalSpace.IsTopologicalBasis
Filter
instTopologicalSpace
Set.range
Set
Set.Iic
PartialOrder.toPreorder
instPartialOrder
principal
Set.Iic_inter_Iic
inf_principal
Set.Subset.rfl
Set.sUnion_eq_univ_iff
principal_univ
Set.mem_Iic
le_top
mem_closure 📖mathematicalFilter
Set
Set.instMembership
closure
instTopologicalSpace
instMembership
closure_eq_compl_interior_compl
mem_interior 📖mathematicalFilter
Set
Set.instMembership
interior
instTopologicalSpace
instMembership
Set.instHasSubset
Set.Iic
PartialOrder.toPreorder
instPartialOrder
principal
mem_interior_iff_mem_nhds
mem_nhds_iff
mem_nhds_iff 📖mathematicalSet
Filter
instMembership
nhds
instTopologicalSpace
Set.instHasSubset
Set.Iic
PartialOrder.toPreorder
instPartialOrder
principal
HasBasis.mem_iff
HasBasis.nhds
basis_sets
mem_nhds_iff' 📖mathematicalSet
Filter
instMembership
nhds
instTopologicalSpace
Set.instMembership
HasBasis.mem_iff
HasBasis.nhds'
basis_sets
monotone_nhds 📖mathematicalMonotone
Filter
PartialOrder.toPreorder
instPartialOrder
nhds
instTopologicalSpace
Monotone.of_map_inf
nhds_inf
nhds_atBot 📖mathematicalnhds
Filter
instTopologicalSpace
atBot
iInf
instInfSet
principal
Set.Iic
PartialOrder.toPreorder
instPartialOrder
nhds_atTop
nhds_atTop 📖mathematicalnhds
Filter
instTopologicalSpace
atTop
iInf
instInfSet
principal
Set.Iic
PartialOrder.toPreorder
instPartialOrder
Set.Ici
nhds_iInf
nhds_principal
nhds_bot 📖mathematicalnhds
Filter
instTopologicalSpace
Bot.bot
instBot
instPure
nhds_eq
lift'_bot
Monotone.Iic
monotone_principal
principal_empty
Set.Iic_bot
principal_singleton
nhds_eq 📖mathematicalnhds
Filter
instTopologicalSpace
lift'
Set
Set.Iic
PartialOrder.toPreorder
instPartialOrder
principal
TopologicalSpace.nhds_generateFrom
iInf_congr_Prop
iInf_and
iInf_range
nhds_eq' 📖mathematicalnhds
Filter
instTopologicalSpace
lift'
setOf
Set
instMembership
Iic_principal
nhds_eq
nhds_iInf 📖mathematicalnhds
Filter
instTopologicalSpace
iInf
instInfSet
nhds_eq
lift'_iInf_of_map_univ
Set.Iic_inter_Iic
inf_principal
principal_univ
Set.Iic_top
nhds_inf 📖mathematicalnhds
Filter
instTopologicalSpace
instInf
iInf_bool_eq
nhds_iInf
nhds_mono 📖mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
nhds
instTopologicalSpace
Set.Iic_subset_Iic
sInter_nhds
Set.sInter_subset_sInter
monotone_nhds
nhds_nhds 📖mathematicalnhds
Filter
instTopologicalSpace
iInf
Set
instInfSet
IsOpen
Set.instMembership
principal
Set.Iic
PartialOrder.toPreorder
instPartialOrder
HasBasis.eq_biInf
HasBasis.nhds
nhds_basis_opens
iInf_and
iInf_comm
nhds_principal 📖mathematicalnhds
Filter
instTopologicalSpace
principal
Set.Iic
PartialOrder.toPreorder
instPartialOrder
HasBasis.eq_of_same_basis
HasBasis.nhds
hasBasis_principal
nhds_pure 📖mathematicalnhds
Filter
instTopologicalSpace
instPure
principal
Set
Set.instInsert
Bot.bot
instBot
Set.instSingletonSet
principal_singleton
nhds_principal
Iic_pure
nhds_top 📖mathematicalnhds
Filter
instTopologicalSpace
Top.top
instTop
nhds_eq
lift'_top
principal_univ
Set.Iic_top
sInter_nhds 📖mathematicalSet.sInter
Filter
setOf
Set
instMembership
nhds
instTopologicalSpace
Set.Iic
PartialOrder.toPreorder
instPartialOrder
nhds_eq
sInter_lift'_sets
Monotone.Iic
monotone_principal
Set.iInter_congr_Prop
specializes_iff_le 📖mathematicalSpecializes
Filter
instTopologicalSpace
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
closure_singleton
tendsto_nhds 📖mathematicalTendsto
Filter
nhds
instTopologicalSpace
Eventually
Set
instMembership
nhds_eq'
tendsto_nhds_atBot_iff 📖mathematicalTendsto
Filter
nhds
instTopologicalSpace
atBot
Eventually
Set
instMembership
Set.Iic
tendsto_nhds_atTop_iff
tendsto_nhds_atTop_iff 📖mathematicalTendsto
Filter
nhds
instTopologicalSpace
atTop
Eventually
Set
instMembership
Set.Ici
nhds_atTop
tendsto_pure_self 📖mathematicalTendsto
Filter
instPure
nhds
instTopologicalSpace
tendsto_nhds
Eventually.mono

Filter.HasBasis

Theorems

NameKindAssumesProvesValidatesDepends On
nhds 📖mathematicalFilter.HasBasisFilter
nhds
Filter.instTopologicalSpace
Set.Iic
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.principal
Filter.nhds_eq
lift'
Monotone.Iic
Filter.monotone_principal
nhds' 📖mathematicalFilter.HasBasisFilter
nhds
Filter.instTopologicalSpace
setOf
Set
Filter.instMembership
Filter.Iic_principal
nhds

Filter.Tendsto

Theorems

NameKindAssumesProvesValidatesDepends On
nhds 📖mathematicalFilter.Tendsto
nhds
Filter
Filter.instTopologicalSpace
comp
Continuous.tendsto
Filter.continuous_nhds

---

← Back to Index