Documentation Verification Report

Germ

πŸ“ Source: Mathlib/Topology/Germ.lean

Statistics

MetricCount
DefinitionsGerm, sliceLeft, sliceRight, value, valueAddHom, valueMulHom, valueOrderRingHom, valueRingHom, valueβ‚—, RestrictGermPredicate
10
Theoremsgerm_congr_set, isConstant_comp_subtype, sliceLeft_coe, sliceRight_coe, value_smul, coe_prod, coe_sum, of_germ_isConstant, eq_of_germ_isConstant, eq_of_germ_isConstant_on, forall_restrictGermPredicate_iff, forall_restrictGermPredicate_of_forall, restrictGermPredicate_congr
13
Total23

Filter

Definitions

NameCategoryTheorems
Germ πŸ“–CompOp
86 mathmath: Germ.coe_coeMulHom, Germ.instIsCancelAdd, Germ.const_ofNat, Germ.const_neg, Germ.instIsLeftCancelAdd, MeasureTheory.AEEqFun.toGerm_injective, Germ.const_nat, MeasureTheory.AEEqFun.neg_toGerm, Germ.coe_nonneg, Germ.coe_lt, Germ.const_top, Germ.instIsOrderedAddMonoid, Germ.coe_one, Germ.instCanonicallyOrderedAdd, Germ.coe_prod, Germ.instIsOrderedRing, Germ.instCanonicallyOrderedMul, Germ.map_id, Germ.lt_def, Germ.total, Germ.coe_vadd', Germ.coe_nsmul, Germ.instIsOrderedCancelMonoid, Germ.instIsCancelMul, Germ.le_def, Germ.const_inv, Germ.value_smul, Germ.const_smul, Germ.coe_sub, Germ.coe_pos, MeasureTheory.AEEqFun.smul_toGerm, Germ.instNontrivial, Germ.coe_smul, Germ.coe_sum, MeasureTheory.AEEqFun.pow_toGerm, Germ.const_sub, Germ.coe_coeAddHom, MeasureTheory.AEEqFun.toGermMonoidHom_apply, Germ.coe_le, MeasureTheory.AEEqFun.one_toGerm, Germ.const_le_iff, Germ.instExistsAddOfLE, Germ.coe_neg, Germ.instExistsMulOfLE, Germ.coe_coeRingHom, Germ.const_abs, Germ.const_vadd, Germ.coe_div, Germ.const_pow, MeasureTheory.AEEqFun.sub_toGerm, Germ.coe_add, Germ.coe_zero, MeasureTheory.AEEqFun.toGermAddMonoidHom_apply, Germ.coe_inv, MeasureTheory.AEEqFun.div_toGerm, Germ.const_max, Germ.instIsLeftCancelMul, Germ.instIsRightCancelAdd, Germ.coe_smul', Germ.natCast_def, Germ.coe_vadd, Germ.instIsRightCancelMul, Germ.const_inf, MeasureTheory.AEEqFun.mul_toGerm, MeasureTheory.AEEqFun.zpow_toGerm, Germ.const_sup, Germ.instIsOrderedAddCancelMonoid, Germ.const_min, MeasureTheory.AEEqFun.zero_toGerm, Germ.const_lt, Germ.const_div, Germ.coe_ofNat, Germ.min_def, Germ.const_le, Germ.const_bot, Germ.coe_pow, Germ.max_def, Germ.intCast_def, Germ.coe_mul, Germ.abs_def, Germ.instIsStrictOrderedRing, MeasureTheory.AEEqFun.inv_toGerm, MeasureTheory.AEEqFun.add_toGerm, Germ.const_lt_iff, Germ.const_nsmul, Germ.instIsOrderedMonoid

Filter.Eventually

Theorems

NameKindAssumesProvesValidatesDepends On
germ_congr_set πŸ“–β€”Filter.Eventually
Filter.Germ.ofFun
nhds
nhdsSet
β€”β€”eventually_nhdsSet_iff_forall
mono
and
eventually_nhds
Filter.Germ.coe_eq

Filter.Germ

Definitions

NameCategoryTheorems
sliceLeft πŸ“–CompOp
1 mathmath: sliceLeft_coe
sliceRight πŸ“–CompOp
1 mathmath: sliceRight_coe
value πŸ“–CompOp
1 mathmath: value_smul
valueAddHom πŸ“–CompOpβ€”
valueMulHom πŸ“–CompOpβ€”
valueOrderRingHom πŸ“–CompOpβ€”
valueRingHom πŸ“–CompOpβ€”
valueβ‚— πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
isConstant_comp_subtype πŸ“–mathematicalIsConstant
nhds
Set
Set.instMembership
ofFun
Set.Elem
instTopologicalSpaceSubtype
β€”isConstant_comp_tendsto
continuousAt_subtype_val
sliceLeft_coe πŸ“–mathematicalβ€”sliceLeft
ofFun
nhds
instTopologicalSpaceProd
β€”β€”
sliceRight_coe πŸ“–mathematicalβ€”sliceRight
ofFun
nhds
instTopologicalSpaceProd
β€”β€”
value_smul πŸ“–mathematicalβ€”value
Filter.Germ
nhds
instSMul'
β€”inductionOn

Germ

Theorems

NameKindAssumesProvesValidatesDepends On
coe_prod πŸ“–mathematicalβ€”Filter.Germ.ofFun
Finset.prod
Pi.commMonoid
Filter.Germ
Filter.Germ.instCommMonoid
β€”map_prod
MonoidHom.instMonoidHomClass
coe_sum πŸ“–mathematicalβ€”Filter.Germ.ofFun
Finset.sum
Pi.addCommMonoid
Filter.Germ
Filter.Germ.instAddCommMonoid
β€”map_sum
AddMonoidHom.instAddMonoidHomClass

IsLocallyConstant

Theorems

NameKindAssumesProvesValidatesDepends On
of_germ_isConstant πŸ“–mathematicalFilter.Germ.IsConstant
nhds
Filter.Germ.ofFun
IsLocallyConstantβ€”isOpen_iff_mem_nhds
Filter.mem_of_superset
mem_of_mem_nhds
Set.mem_preimage

(root)

Definitions

NameCategoryTheorems
RestrictGermPredicate πŸ“–MathDef
2 mathmath: forall_restrictGermPredicate_iff, forall_restrictGermPredicate_of_forall

Theorems

NameKindAssumesProvesValidatesDepends On
eq_of_germ_isConstant πŸ“–β€”Filter.Germ.IsConstant
nhds
Filter.Germ.ofFun
β€”β€”IsLocallyConstant.apply_eq_of_isPreconnected
IsLocallyConstant.of_germ_isConstant
preconnectedSpace_iff_univ
eq_of_germ_isConstant_on πŸ“–β€”Filter.Germ.IsConstant
nhds
Filter.Germ.ofFun
IsPreconnected
Set
Set.instMembership
β€”β€”Subtype.preconnectedSpace
eq_of_germ_isConstant
Filter.Germ.isConstant_comp_subtype
forall_restrictGermPredicate_iff πŸ“–mathematicalβ€”RestrictGermPredicate
Filter.Germ.ofFun
nhds
Filter.Eventually
nhdsSet
β€”eventually_nhdsSet_iff_forall
forall_restrictGermPredicate_of_forall πŸ“–mathematicalFilter.Germ.ofFun
nhds
RestrictGermPredicateβ€”forall_restrictGermPredicate_iff
Filter.Eventually.of_forall
restrictGermPredicate_congr πŸ“–β€”RestrictGermPredicate
Filter.Germ.ofFun
nhds
Filter.Eventually
nhdsSet
β€”β€”Filter.Eventually.mono
Filter.Eventually.and
Filter.Eventually.eventually_nhds
eventually_nhdsSet_iff_forall
Filter.Germ.coe_eq

---

← Back to Index