Documentation Verification Report

Defs

πŸ“ Source: Mathlib/Topology/Homeomorph/Defs.lean

Statistics

MetricCount
DefinitionstoHomeomorph, toHomeomorphOfContinuousClosed, toHomeomorphOfContinuousOpen, toHomeomorphOfDiscrete, toHomeomorphOfIsInducing, symm_apply, changeInv, empty, homeomorphOfUnique, instEquivLike, refl, toEquiv, trans, HomeomorphClass, instCoeOutHomeomorph, toHomeomorph, IsHomeomorph, Β«term_β‰ƒβ‚œ_Β»
18
Theoremscoe_toHomeomorph, symm_toHomeomorph, toEquiv_toHomeomorph, toEquiv_toHomeomorphOfContinuousClosed, toEquiv_toHomeomorphOfContinuousOpen, toEquiv_toHomeomorphOfIsInducing, toHomeomorphOfContinuousClosed_apply, toHomeomorphOfContinuousClosed_symm_apply, toHomeomorphOfContinuousOpen_apply, toHomeomorphOfContinuousOpen_symm_apply, toHomeomorphOfContinuousOpen_toEquiv, toHomeomorphOfIsInducing_apply, toHomeomorphOfIsInducing_symm_apply, toHomeomorph_apply, toHomeomorph_refl, toHomeomorph_symm, toHomeomorph_toEquiv, toHomeomorph_trans, apply_symm_apply, bijective, coe_symm_toEquiv, coe_toEquiv, coinduced_eq, comap_nhds_eq, comp_continuousAt_iff, comp_continuousAt_iff', comp_continuous_iff, comp_continuous_iff', comp_isOpenMap_iff, comp_isOpenMap_iff', continuous, continuous_invFun, continuous_symm, continuous_toFun, discreteTopology, discreteTopology_iff, ext, ext_iff, homeomorphOfUnique_apply, homeomorphOfUnique_symm_apply, homeomorph_mk_coe, homeomorph_mk_coe_symm, image_closure, image_compl, image_eq_preimage_symm, image_frontier, image_interior, image_preimage, image_symm, indiscreteTopology, indiscreteTopology_iff, induced_eq, injective, isClosedEmbedding, isClosedMap, isClosed_image, isClosed_preimage, isClosed_setOf_iff, isEmbedding, isHomeomorph, isInducing, isOpenEmbedding, isOpenMap, isOpenQuotientMap, isOpen_image, isOpen_preimage, isQuotientMap, map_nhds_eq, nhds_eq_comap, nontrivialTopology, nontrivialTopology_iff, preimage_closure, preimage_frontier, preimage_image, preimage_interior, preimage_symm, range_coe, refl_apply, refl_symm, self_comp_symm, self_trans_symm, surjective, symm_apply_apply, symm_apply_eq, symm_bijective, symm_comp_self, symm_map_nhds_eq, symm_symm, symm_trans_apply, symm_trans_self, toEquiv_injective, trans_apply, coe_coe, instContinuousMapClass, instHomeomorph, inv_continuous, map_continuous, toHomeomorph_injective, bijective, comp, continuous, id, injective, isOpenMap, surjective
105
Total123

Equiv

Definitions

NameCategoryTheorems
toHomeomorph πŸ“–CompOp
10 mathmath: coe_toHomeomorph, toHomeomorph_trans, AddEquiv.toHomeomorph_toContinuousAddEquiv, symm_toHomeomorph, toHomeomorph_refl, MulEquiv.toHomeomorph_toContinuousMulEquiv, toHomeomorph_toEquiv, toHomeomorph_apply, toEquiv_toHomeomorph, toHomeomorph_symm
toHomeomorphOfContinuousClosed πŸ“–CompOp
3 mathmath: toHomeomorphOfContinuousClosed_symm_apply, toHomeomorphOfContinuousClosed_apply, toEquiv_toHomeomorphOfContinuousClosed
toHomeomorphOfContinuousOpen πŸ“–CompOp
4 mathmath: toHomeomorphOfContinuousOpen_symm_apply, toHomeomorphOfContinuousOpen_toEquiv, toHomeomorphOfContinuousOpen_apply, toEquiv_toHomeomorphOfContinuousOpen
toHomeomorphOfDiscrete πŸ“–CompOpβ€”
toHomeomorphOfIsInducing πŸ“–CompOp
3 mathmath: toHomeomorphOfIsInducing_symm_apply, toHomeomorphOfIsInducing_apply, toEquiv_toHomeomorphOfIsInducing

Theorems

NameKindAssumesProvesValidatesDepends On
coe_toHomeomorph πŸ“–mathematicalIsOpen
Set.preimage
DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
Homeomorph
Homeomorph.instEquivLike
toHomeomorph
β€”β€”
symm_toHomeomorph πŸ“–mathematicalIsOpen
Set.preimage
DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
Homeomorph.symm
toHomeomorph
symm
β€”β€”
toEquiv_toHomeomorph πŸ“–mathematicalIsOpen
Set.preimage
DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
Homeomorph.toEquiv
toHomeomorph
β€”β€”
toEquiv_toHomeomorphOfContinuousClosed πŸ“–mathematicalContinuous
DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
IsClosedMap
Homeomorph.toEquiv
toHomeomorphOfContinuousClosed
β€”β€”
toEquiv_toHomeomorphOfContinuousOpen πŸ“–mathematicalContinuous
DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
IsOpenMap
Homeomorph.toEquiv
toHomeomorphOfContinuousOpen
β€”β€”
toEquiv_toHomeomorphOfIsInducing πŸ“–mathematicalTopology.IsInducing
DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
Homeomorph.toEquiv
toHomeomorphOfIsInducing
β€”β€”
toHomeomorphOfContinuousClosed_apply πŸ“–mathematicalContinuous
DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
IsClosedMap
Homeomorph
Homeomorph.instEquivLike
toHomeomorphOfContinuousClosed
β€”β€”
toHomeomorphOfContinuousClosed_symm_apply πŸ“–mathematicalContinuous
DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
IsClosedMap
Homeomorph
Homeomorph.instEquivLike
Homeomorph.symm
toHomeomorphOfContinuousClosed
symm
β€”β€”
toHomeomorphOfContinuousOpen_apply πŸ“–mathematicalContinuous
DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
IsOpenMap
Homeomorph
Homeomorph.instEquivLike
toHomeomorphOfContinuousOpen
β€”β€”
toHomeomorphOfContinuousOpen_symm_apply πŸ“–mathematicalContinuous
DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
IsOpenMap
Homeomorph
Homeomorph.instEquivLike
Homeomorph.symm
toHomeomorphOfContinuousOpen
symm
β€”β€”
toHomeomorphOfContinuousOpen_toEquiv πŸ“–mathematicalContinuous
DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
IsOpenMap
Homeomorph.toEquiv
toHomeomorphOfContinuousOpen
β€”toEquiv_toHomeomorphOfContinuousOpen
toHomeomorphOfIsInducing_apply πŸ“–mathematicalTopology.IsInducing
DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
Homeomorph
Homeomorph.instEquivLike
toHomeomorphOfIsInducing
β€”β€”
toHomeomorphOfIsInducing_symm_apply πŸ“–mathematicalTopology.IsInducing
DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
Homeomorph
Homeomorph.instEquivLike
Homeomorph.symm
toHomeomorphOfIsInducing
symm
β€”β€”
toHomeomorph_apply πŸ“–mathematicalIsOpen
Set.preimage
DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
Homeomorph
Homeomorph.instEquivLike
toHomeomorph
β€”β€”
toHomeomorph_refl πŸ“–mathematicalβ€”toHomeomorph
refl
IsOpen
Set.preimage
DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
Homeomorph.refl
β€”β€”
toHomeomorph_symm πŸ“–mathematicalIsOpen
Set.preimage
DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
Homeomorph.symm
toHomeomorph
symm
β€”symm_toHomeomorph
toHomeomorph_toEquiv πŸ“–mathematicalIsOpen
Set.preimage
DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
Homeomorph.toEquiv
toHomeomorph
β€”toEquiv_toHomeomorph
toHomeomorph_trans πŸ“–mathematicalIsOpen
Set.preimage
DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
toHomeomorph
trans
Homeomorph.trans
β€”β€”

Homeomorph

Definitions

NameCategoryTheorems
changeInv πŸ“–CompOpβ€”
empty πŸ“–CompOpβ€”
homeomorphOfUnique πŸ“–CompOp
2 mathmath: homeomorphOfUnique_symm_apply, homeomorphOfUnique_apply
instEquivLike πŸ“–CompOp
428 mathmath: isClosed_preimage, Sequential.homeoOfIso_apply, isInducing, Equiv.coe_toHomeomorph, smulOfNeZero_symm_apply, affineHomeomorph_image_Ioc, CommRingCat.HomTopology.mvPolynomialHomeomorph_apply_snd, ContinuousLinearEquiv.coe_toHomeomorph, finTwoArrow_apply, TopCat.isoOfHomeo_inv, coe_mulRightβ‚€, affineHomeomorph_image_Ico, unitInterval.symmHomeomorph_apply, Trivialization.preimageHomeomorph_symm_apply, Topology.IsGeneratedBy.homeomorph_symm_coe, AlgebraicGeometry.coprodSpec_apply, AlgebraicGeometry.Scheme.Hom.fiberHomeo_apply, isPathConnected_preimage, piCongr_apply, finTwoArrow_symm_apply, IsCoveringMap.comp_homeomorph_iff, IsCoveringMapOn.homeomorph_comp_iff, CompactlyGenerated.homeoOfIso_apply, IsAddQuotientCoveringMap.homeomorph_comp, DilationEquiv.coe_toHomeomorph, AddCircle.homeomorphCircle'_apply_mk, vadd_symm_apply, MeasureTheory.Measure.InnerRegular.map, GenLoop.fromLoop_apply, image_interior, MeasureTheory.Measure.InnerRegular.map_iff, stdSimplexHomeomorphUnitInterval_symm_apply_coe, Sequential.homeoOfIso_symm_apply, LocallyConstant.congrLeftRingEquiv_apply_apply, coe_uniqueProd, MeasureTheory.Measure.toSphere_apply_aux, OnePoint.equivOfIsEmbeddingOfRangeEq_apply_infty, TopCat.uliftFunctorObjHomeo_symm_naturality_apply, induced_eq, OpenPartialHomeomorph.transHomeomorph_symm_apply, vaddConst_apply, homeomorph_mk_coe, MeasureTheory.Measure.OuterRegular.comap, DomMulAct.coe_mkHomeomorph_symm, coe_addLeft, IsLocalHomeomorph.Homeomorph.isLocalHomeomorph, LinearIsometryEquiv.coe_symm_toHomeomorph, IsCoveringMap.comp_homeomorph, OpenPartialHomeomorph.transHomeomorph_target, shearAddRight_symm_coe, piCongrLeft_symm_apply, Equiv.toHomeomorphOfIsInducing_symm_apply, toOpenPartialHomeomorph_apply, OnePoint.equivOfIsEmbeddingOfRangeEq_apply_coe, AddCircle.homeomorphAddCircle_apply_mk, Topology.IsQuotientMap.lift_apply, AddCircle.homeomorphCircle'_symm_apply, funSplitAt_symm_apply, shearMulRight_coe, Topology.IsQuotientMap.homeomorph_apply, piCurry_apply, contDiff_unitBall, isEmbedding, AlgebraicGeometry.sigmaMk_mk, IsometryEquiv.coe_toHomeomorph, opensCongr_apply, stdSimplexHomeomorphUnitInterval_zero, GenLoop.homotopyTo_apply, coe_symm_toEquiv, Fin.appendHomeomorph_apply, coe_prodCongr, isPreconnected_preimage, sumArrowHomeomorphProdArrow_apply, residual_map_eq, continuous, NumberField.mixedEmbedding.polarSpaceCoord_target, Topology.IsQuotientMap.homeomorph_symm_apply, measurableEmbedding, affineHomeomorph_symm_apply, coe_neg, piCongrLeft_apply_apply, comap_cocompact, DilationEquiv.coe_symm_toHomeomorph, PrimeSpectrum.coe_preimageHomeomorphFiber_apply_asIdeal, map_punctured_nhds_eq, isLocalHomeomorph, OpenPartialHomeomorph.toHomeomorphOfSourceEqUnivTargetEqUniv_symm_apply, isClosed_image, GenLoop.loopHomeo_apply, ContinuousMap.coe_homeoFnOfDiscrete, OpenPartialHomeomorph.homeomorphOfImageSubsetSource_symm_apply, continuousMapCongr_symm_apply, LinearIsometryEquiv.coe_toHomeomorph, isProperMap, image_closure, OpenPartialHomeomorph.toHomeomorphSourceTarget_apply_coe, divRight_apply, ContinuousCohomology.I_obj_ρ_apply, continuousMapCongr_apply, Real.sinhHomeomorph_symm_apply, AlgebraicGeometry.coprodMk_inl, image_gaugeRescaleHomeomorph_interior, CompHausLike.homeoOfIso_symm_apply, continuousMapOfUnique_apply, sumProdDistrib_symm_apply, LocallyConstant.congrLeftₐ_apply_apply, map_nhds_eq, MeasureTheory.Measure.InnerRegular.comap, coe_unitBall_apply_zero, isBigOWith_congr, AddOpposite.opHomeomorph_apply, smul_symm_apply, Set.univ_symm_apply_coe, exists_homeomorph_image_interior_closure_frontier_eq_unitBall, piSplitAt_symm_apply, WeakDual.CharacterSpace.homeoEval_naturality, subLeft_symm_apply, smulOfNeZero_apply, ContinuousMap.homeoFnOfDiscrete_symm_apply, sumArrowHomeomorphProdArrow_symm_apply, IsCoveringMapOn.comp_homeomorph_iff, isSimplyConnected_image, IsEvenlyCovered.homeomorph_comp, CommRingCat.HomTopology.precompHomeomorph_apply, funUnique_apply, MeasureTheory.Content.is_mul_left_invariant_innerContent, comp_continuousWithinAt_iff, smul_apply, isPathConnected_image, comp_isOpenMap_iff, prodPUnit_apply, AlgebraicGeometry.Scheme.coe_homeoOfIso_symm, Nonneg.val_unitsHomeomorphPos_symm_apply_coe, isCompact_preimage, TopCat.uliftFunctorObjHomeo_naturality_apply, TopCat.homeoOfIso_apply, isClosed_setOf_iff, piEquivPiSubtypeProd_apply, IsCoveringMapOn.comp_homeomorph, CategoryTheory.PreGaloisCategory.toAutHomeo_apply, AlgebraicGeometry.Scheme.homeoOfIso_apply, affineHomeomorph_image_I, Equiv.toHomeomorphOfIsInducing_apply, isHomeomorph_iff_exists_homeomorph, comp_continuous_iff', Sequential.isoOfHomeo_inv, TopCat.isoOfHomeo_hom, MeasureTheory.Measure.IsFiniteMeasureOnCompacts.comap, comp_continuousAt_iff', Equiv.toHomeomorphOfContinuousOpen_symm_apply, coe_inv, preimage_symm, TopologicalSpace.Compacts.coe_equiv_apply_eq_preimage, divRight_symm_apply, Nonneg.val_inv_unitsHomeomorphPos_symm_apply_coe, CommRingCat.HomTopology.precompHomeomorph_symm_apply, GenLoop.toLoop_apply, HasCompactMulSupport.comp_homeomorph, MeasureTheory.Measure.OuterRegular.map, toCocompactMap_toFun, Bundle.Trivial.homeomorphProd_symm_apply_snd, CompactlyGenerated.isoOfHomeo_hom, image_compl, TopologicalSpace.Compacts.equiv_symm_apply, CompactlyGenerated.isoOfHomeo_inv, map_cocompact, IsCoveringMap.homeomorph_comp_iff, Sequential.isoOfHomeo_hom, comap_nhds_eq, iccHomeoI_apply_coe, continuous_symm, ext_iff, CommRingCat.HomTopology.mvPolynomialHomeomorph_symm_apply_hom, HasCompactSupport.comp_homeomorph, comp_continuous_iff, piCongrLeft_apply, comap_coclosedCompact, LocallyConstant.congrLeftRingEquiv_symm_apply_apply, image_symm, ContinuousMap.homeoFnOfDiscrete_apply, NumberField.mixedEmbedding.volume_preserving_mixedSpaceToRealMixedSpace_symm, continuousMapOfUnique_symm_apply, unitInterval.symmHomeomorph_symm_apply, image_apply_coe, homeomorphUnitSphereProd_symm_apply_coe, vaddConst_symm_apply, tangentBundleModelSpaceHomeomorph_coe, Nonneg.unitsHomeomorphPos_apply_coe, OpenPartialHomeomorph.toHomeomorphOfSourceEqUnivTargetEqUniv_apply, onePointCongr_symm_apply, unitBall_apply_coe, preimage_interior, IsAddQuotientCoveringMap.homeomorph_comp_iff, isHomeomorph, comp_continuousOn_iff, Topology.image_snd_preimageImageRestrict, mulLeftβ‚€_symm_apply, LocallyConstant.congrLeftₐ_symm_apply_apply, Equiv.toHomeomorph_apply, coe_refl, Topology.IsEmbedding.toHomeomorph_apply_coe, stdSimplexHomeomorphUnitInterval_apply_coe, Set.prod_apply, isBigO_congr, Topology.IsGeneratedBy.homeomorph_coe, AlgebraicGeometry.coprodSpec_coprodMk, homeomorphSphereProd_symm_apply_coe, sumProdDistrib_apply, MeasureTheory.Measure.measurePreserving_homeomorphUnitSphereProd, isDenseEmbedding, piCongrRight_apply, trans_apply, ContinuousLinearEquiv.coe_symm_toHomeomorph, homeomorphUnitSphereProd_apply_fst_coe, prodUnique_symm_apply_snd, NumberField.mixedEmbedding.mixedSpaceToRealMixedSpace_apply, shearMulRight_symm_coe, nhds_eq_comap, GenLoop.toLoop_apply_coe, CompactlyGenerated.homeoOfIso_symm_apply, divLeft_apply, isSigmaCompact_image, image_symm_apply_coe, IsHomeomorphicTrivialFiberBundle.proj_eq, piUnique_apply, GenLoop.loopHomeo_symm_apply, NumberField.mixedEmbedding.polarCoord_symm_eq, exists_homeomorph_image_eq, Equiv.toHomeomorphOfContinuousClosed_symm_apply, Set.prod_symm_apply_coe, injective, LocallyConstant.congrLeftβ‚—_symm_apply_apply, Function.RightInverse.homeomorph_symm_apply, isConnected_preimage, vadd_apply, homeomorphOfUnique_symm_apply, AlexDisc.Iso.mk_inv, IsHomeomorph.homeomorph_symm_apply, OpenPartialHomeomorph.homeomorphOfImageSubsetSource_apply, NumberField.mixedEmbedding.homeoRealMixedSpacePolarSpace_apply_fst_ofIsReal, uniqueProd_symm_apply_snd, isPreconnected_image, coe_prodComm, piFinTwo_apply, onePointCongr_apply, piCurry_symm_apply, image_eq_preimage_symm, sigmaProdDistrib_symm_apply, Metric.PiNatEmbed.toPiNatHomeo_apply_ofPiNat, comp_isOpenMap_iff', LocallyConstant.congrLeft_symm_apply, Equiv.toHomeomorphOfContinuousClosed_apply, toContinuousMap_comp_symm, NumberField.mixedEmbedding.volume_preserving_homeoRealMixedSpacePolarSpace, tsupport_comp_eq_preimage, HomeomorphClass.instHomeomorph, preimage_frontier, MeasureTheory.locallyIntegrable_map_homeomorph, preimage_image, Trivialization.coordChangeHomeomorph_coe, CompHausLike.homeoOfIso_apply, ContinuousMap.sigmaCodHomeomorph_symm_apply, stdSimplexHomeomorphUnitInterval_one, subRight_symm_apply, coe_prodUnique, isCompact_image, MeasureTheory.Measure.Regular.comap, preimage_closure, Bundle.Trivial.homeomorphProd_symm_apply_proj, self_comp_symm, iccHomeoI_symm_apply_coe, Trivialization.preimageHomeomorph_apply, image_gaugeRescaleHomeomorph_closure, tangentBundleModelSpaceHomeomorph_coe_symm, LocallyConstant.congrLeftβ‚—_apply_apply, isClosedMap, IsEvenlyCovered.comp_homeomorph_iff, compStarAlgEquiv'_apply, isConnected_image, Set.univ_apply, NumberField.mixedEmbedding.homeoRealMixedSpacePolarSpace_apply_fst_ofIsComplex, Trivialization.preimageSingletonHomeomorph_symm_apply, Trivialization.transFiberHomeomorph_apply, DomAddAct.coe_mkHomeomorph_symm, toMeasurableEquiv_symm_coe, refl_apply, piUnique_symm_apply, piEquivPiSubtypeProd_symm_apply, Topology.IsEmbedding.homeomorphOfSubsetRange_apply_coe, affineHomeomorph_image_Ioo, AlexDisc.Iso.mk_hom, MulOpposite.opHomeomorph_symm_apply, coe_mulRight, IsQuotientCoveringMap.homeomorph_comp_iff, MeasureTheory.Content.is_add_left_invariant_innerContent, shearAddRight_coe, divLeft_symm_apply, DomAddAct.coe_mkHomeomorph, homeomorphOfUnique_apply, coe_toHomotopyEquiv, MeasureTheory.Measure.Regular.map, NumberField.mixedEmbedding.homeoRealMixedSpacePolarSpace_apply, Trivialization.sourceHomeomorphBaseSetProd_symm_apply, transOpenPartialHomeomorph_symm_apply, comp_continuousAt_iff, mulRightβ‚€_symm_apply, NumberField.mixedEmbedding.polarSpaceCoord_apply, toOpenPartialHomeomorph_symm_apply, TopCat.homeoOfIso_symm_apply, CommRingCat.HomTopology.mvPolynomialHomeomorph_apply_fst, symm_apply_eq, transOpenPartialHomeomorph_source, homeomorphSphereProd_apply_snd_coe, isOpen_image, ModelWithCorners.toHomeomorph_apply, ApproximatesLinearOn.exists_homeomorph_extension, coe_trans, CompHausLike.isoOfHomeo_inv_hom_hom_apply, AlgebraicGeometry.Scheme.Hom.homeomorph_apply, ContinuousMap.homeoFnOfDiscrete_symm_apply_apply, coe_mulLeftβ‚€, ContinuousAffineEquiv.toContinuousAffineMap_toContinuousMap, NumberField.mixedEmbedding.homeoRealMixedSpacePolarSpace_apply_snd, Fin.appendHomeomorph_symm_apply, isOpenEmbedding, ENNReal.logHomeomorph_apply, PrimeSpectrum.coe_preimageHomeomorphFiber_symm_apply_coe_asIdeal, AffineEquiv.coe_toHomeomorphOfFiniteDimensional_symm, IsEvenlyCovered.comp_homeomorph, HomeomorphClass.coe_coe, homeomorphUnitSphereProd_apply_snd_coe, contMDiff_tangentBundleModelSpaceHomeomorph, DomMulAct.coe_mkHomeomorph, isSimplyConnected_preimage, Cube.insertAt_boundary, MeasureTheory.Measure.IsFiniteMeasureOnCompacts.map, affineHomeomorph_image_Icc, homeomorphSphereProd_apply_fst_coe, homeomorph_mk_coe_symm, apply_symm_apply, affineHomeomorph_apply, AffineEquiv.coe_toHomeomorphOfFiniteDimensional, mulTSupport_comp_eq_preimage, subLeft_apply, AffineIsometryEquiv.coe_toHomeomorph, image_preimage, NumberField.mixedEmbedding.homeoRealMixedSpacePolarSpace_symm_apply, contMDiff_tangentBundleModelSpaceHomeomorph_symm, symm_trans_apply, Metric.Snowflaking.homeomorph_symm_apply, compStarAlgEquiv'_symm_apply, instContinuousMapClass, funSplitAt_apply, Metric.PiNatEmbed.toPiNatHomeo_symm_apply, image_frontier, Trivialization.sourceHomeomorphBaseSetProd_apply, MeasureTheory.Measure.Regular.map_iff, measurable, TopologicalSpace.Compacts.equiv_apply, symm_apply_apply, OrderIso.coe_toHomeomorph, isClosedEmbedding, Equiv.toHomeomorphOfContinuousOpen_apply, image_connectedComponentIn, Topology.IsEmbedding.toHomeomorph_symm_apply, CompHausLike.isoOfHomeo_hom_hom_hom_apply, UniformEquiv.toHomeomorph_symm_apply, UniformEquiv.toHomeomorph_apply, surjective, IsEvenlyCovered.homeomorph_comp_iff, Topology.IsEmbedding.toHomeomorphOfSurjective_apply, range_coe, coe_mulLeft, symm_map_nhds_eq, funUnique_symm_apply, OpenPartialHomeomorph.transHomeomorph_apply, piSplitAt_apply, AlgebraicGeometry.Scheme.coe_homeoOfIso, AddCircle.homeomorphCircle'_apply, sigmaProdDistrib_apply, AddCircle.homeomorphCircle_apply, coe_sumComm, coe_toEquiv, EReal.expHomeomorph_apply, symm_comp_self, isSigmaCompact_preimage, isOpenQuotientMap, IsQuotientCoveringMap.homeomorph_comp, piFinTwo_symm_apply, symm_comp_toContinuousMap, AlgebraicGeometry.Scheme.Hom.fiberΞΉ_fiberHomeo_symm, GenLoop.homotopyFrom_apply, subRight_apply, Bundle.Trivial.homeomorphProd_apply, Function.RightInverse.homeomorph_apply, GenLoop.fromLoop_coe, OrderIso.coe_toHomeomorph_symm, isLittleO_congr, AlgebraicGeometry.coprodMk_inr, isOpen_preimage, Trivialization.preimageSingletonHomeomorph_apply, bijective, AffineIsometryEquiv.coe_symm_toHomeomorph, transOpenPartialHomeomorph_apply, IsometryEquiv.coe_toHomeomorph_symm, map_coclosedCompact, sumEmpty_apply, IsCoveringMapOn.homeomorph_comp, isOpenMap, isQuotientMap, Diffeomorph.coe_toHomeomorph_symm, AddOpposite.opHomeomorph_symm_apply, LocallyConstant.congrLeft_apply, coinduced_eq, coe_addRight, coe_punitProd, OpenPartialHomeomorph.toHomeomorphSourceTarget_symm_apply_coe, ModelWithCorners.toHomeomorph_symm_apply, IsHomeomorph.homeomorph_apply, AddCircle.homeomorphAddCircle_symm_apply_mk, Real.sinhHomeomorph_apply, Diffeomorph.coe_toHomeomorph, MulOpposite.opHomeomorph_apply, IsCoveringMap.homeomorph_comp, Metric.Snowflaking.homeomorph_apply, polynomialFunctions.comap_compRightAlgHom_iccHomeoI, unitBall_symm_apply, toMeasurableEquiv_coe
refl πŸ“–CompOp
13 mathmath: AffineIsometryEquiv.toHomeomorph_refl, self_trans_symm, Equiv.toHomeomorph_refl, refl_toOpenPartialHomeomorph, sumCongr_refl, coe_refl, refl_toHomotopyEquiv, refl_apply, TopologicalSpace.Compacts.equiv_refl, refl_toPartialHomeomorph, piCongrLeft_refl, symm_trans_self, refl_symm
toEquiv πŸ“–CompOp
36 mathmath: piCongr_apply, prodAssoc_toEquiv, ContinuousMap.toEquiv_homeoFnOfDiscrete, DomMulAct.toEquiv_mkHomeomorph, toEquiv_piCongr, toEquiv_piCongrLeft, coe_symm_toEquiv, sumSumSumComm_toEquiv, continuous_toFun, Diffeomorph.toHomeomorph_toEquiv, toEquiv_injective, toEquiv_piCongrRight, Equiv.toHomeomorph_toEquiv, Continuous.toEquiv_homeoOfEquivCompactToT2, Equiv.toHomeomorphOfContinuousOpen_toEquiv, image_apply_coe, Metric.Snowflaking.toEquiv_homeomorph, Fin.appendHomeomorph_toEquiv, toOpenPartialHomeomorphOfImageEq_toPartialEquiv, Equiv.toEquiv_toHomeomorphOfIsInducing, Shrink.toEquiv_homeomorph, PiLp.toEquiv_homeomorph, continuous_invFun, Equiv.toEquiv_toHomeomorph, subtype_toEquiv, DomAddAct.toEquiv_mkHomeomorph, coe_emptySum, ofEqSubtypes_toEquiv, WithLp.toEquiv_homeomorphProd, sumAssoc_toEquiv, Equiv.toEquiv_toHomeomorphOfContinuousClosed, IsHomeomorph.toEquiv_homeomorph, IsometryEquiv.toEquiv_toHomeomorph, toEquiv_sigmaProdDistrib, Equiv.toEquiv_toHomeomorphOfContinuousOpen, coe_toEquiv
trans πŸ“–CompOp
15 mathmath: Equiv.toHomeomorph_trans, self_trans_symm, trans_transPartialHomeomorph, trans_toPartialHomeomorph, TopologicalSpace.Compacts.equiv_trans, OpenPartialHomeomorph.transHomeomorph_transHomeomorph, trans_transOpenPartialHomeomorph, trans_apply, trans_toOpenPartialHomeomorph, trans_toHomotopyEquiv, coe_trans, symm_trans_self, symm_trans_apply, LinearIsometryEquiv.toHomeomorph_trans, sumCongr_trans

Theorems

NameKindAssumesProvesValidatesDepends On
apply_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
symm
β€”Equiv.apply_symm_apply
bijective πŸ“–mathematicalβ€”Function.Bijective
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
β€”Equiv.bijective
coe_symm_toEquiv πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symm
toEquiv
Homeomorph
instEquivLike
symm
β€”β€”
coe_toEquiv πŸ“–mathematicalβ€”DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toEquiv
Homeomorph
instEquivLike
β€”β€”
coinduced_eq πŸ“–mathematicalβ€”TopologicalSpace.coinduced
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
β€”Topology.IsQuotientMap.eq_coinduced
isQuotientMap
comap_nhds_eq πŸ“–mathematicalβ€”Filter.comap
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
nhds
symm
β€”nhds_eq_comap
apply_symm_apply
comp_continuousAt_iff πŸ“–mathematicalβ€”ContinuousAt
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
β€”Topology.IsInducing.continuousAt_iff
isInducing
comp_continuousAt_iff' πŸ“–mathematicalβ€”ContinuousAt
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
β€”Topology.IsInducing.continuousAt_iff'
isInducing
EquivLike.range_eq_univ
comp_continuous_iff πŸ“–mathematicalβ€”Continuous
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
β€”Topology.IsInducing.continuous_iff
isInducing
comp_continuous_iff' πŸ“–mathematicalβ€”Continuous
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
β€”Topology.IsQuotientMap.continuous_iff
isQuotientMap
comp_isOpenMap_iff πŸ“–mathematicalβ€”IsOpenMap
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
β€”symm_comp_self
Function.comp_assoc
IsOpenMap.comp
isOpenMap
comp_isOpenMap_iff' πŸ“–mathematicalβ€”IsOpenMap
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
β€”self_comp_symm
Function.comp_assoc
IsOpenMap.comp
isOpenMap
continuous πŸ“–mathematicalβ€”Continuous
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
β€”continuous_toFun
continuous_invFun πŸ“–mathematicalβ€”Continuous
Equiv.invFun
toEquiv
β€”β€”
continuous_symm πŸ“–mathematicalβ€”Continuous
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
symm
β€”continuous_invFun
continuous_toFun πŸ“–mathematicalβ€”Continuous
Equiv.toFun
toEquiv
β€”β€”
discreteTopology πŸ“–mathematicalβ€”DiscreteTopologyβ€”Topology.IsEmbedding.discreteTopology
isEmbedding
discreteTopology_iff πŸ“–mathematicalβ€”DiscreteTopologyβ€”discreteTopology
ext πŸ“–β€”DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
β€”β€”DFunLike.ext
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
β€”ext
homeomorphOfUnique_apply πŸ“–mathematicalβ€”DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
homeomorphOfUnique
Unique.instInhabited
β€”β€”
homeomorphOfUnique_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
symm
homeomorphOfUnique
Unique.instInhabited
β€”β€”
homeomorph_mk_coe πŸ“–mathematicalContinuous
Equiv.toFun
Equiv.invFun
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
Equiv
Equiv.instEquivLike
β€”β€”
homeomorph_mk_coe_symm πŸ“–mathematicalContinuous
Equiv.toFun
Equiv.invFun
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
symm
Equiv
Equiv.instEquivLike
Equiv.symm
β€”β€”
image_closure πŸ“–mathematicalβ€”Set.image
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
closure
β€”preimage_symm
preimage_closure
image_compl πŸ“–mathematicalβ€”Set.image
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
Compl.compl
Set
Set.instCompl
β€”Equiv.image_compl
image_eq_preimage_symm πŸ“–mathematicalβ€”Set.image
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
Set.preimage
symm
β€”Equiv.image_eq_preimage_symm
image_frontier πŸ“–mathematicalβ€”Set.image
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
frontier
β€”preimage_symm
preimage_frontier
image_interior πŸ“–mathematicalβ€”Set.image
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
interior
β€”preimage_symm
preimage_interior
image_preimage πŸ“–mathematicalβ€”Set.image
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
Set.preimage
β€”Equiv.image_preimage
image_symm πŸ“–mathematicalβ€”Set.image
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
symm
Set.preimage
β€”Equiv.image_eq_preimage_symm
indiscreteTopology πŸ“–mathematicalβ€”IndiscreteTopologyβ€”Topology.IsInducing.indiscreteTopology
isInducing
indiscreteTopology_iff πŸ“–mathematicalβ€”IndiscreteTopologyβ€”indiscreteTopology
induced_eq πŸ“–mathematicalβ€”TopologicalSpace.induced
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
β€”Topology.IsInducing.eq_induced
isInducing
injective πŸ“–mathematicalβ€”DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
β€”Equiv.injective
isClosedEmbedding πŸ“–mathematicalβ€”Topology.IsClosedEmbedding
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
β€”Topology.IsClosedEmbedding.of_isEmbedding_isClosedMap
isEmbedding
isClosedMap
isClosedMap πŸ“–mathematicalβ€”IsClosedMap
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
β€”isClosed_image
isClosed_image πŸ“–mathematicalβ€”IsClosed
Set.image
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
β€”preimage_symm
isClosed_preimage
isClosed_preimage πŸ“–mathematicalβ€”IsClosed
Set.preimage
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
β€”β€”
isClosed_setOf_iff πŸ“–mathematicalIsClopen
setOf
IsClosed
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
β€”IsClosed.inter
isClosed_imp
isClosed_preimage
isOpen_preimage
isEmbedding πŸ“–mathematicalβ€”Topology.IsEmbedding
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
β€”isInducing
injective
isHomeomorph πŸ“–mathematicalβ€”IsHomeomorph
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
β€”continuous
isOpenMap
bijective
isInducing πŸ“–mathematicalβ€”Topology.IsInducing
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
β€”Topology.IsInducing.of_comp
continuous
symm_comp_self
isOpenEmbedding πŸ“–mathematicalβ€”Topology.IsOpenEmbedding
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
β€”Topology.IsOpenEmbedding.of_isEmbedding_isOpenMap
isEmbedding
isOpenMap
isOpenMap πŸ“–mathematicalβ€”IsOpenMap
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
β€”isOpen_image
isOpenQuotientMap πŸ“–mathematicalβ€”IsOpenQuotientMap
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
β€”surjective
continuous
isOpenMap
isOpen_image πŸ“–mathematicalβ€”IsOpen
Set.image
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
β€”preimage_symm
isOpen_preimage
isOpen_preimage πŸ“–mathematicalβ€”IsOpen
Set.preimage
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
β€”Topology.IsQuotientMap.isOpen_preimage
isQuotientMap
isQuotientMap πŸ“–mathematicalβ€”Topology.IsQuotientMap
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
β€”Topology.IsQuotientMap.of_comp
continuous
self_comp_symm
map_nhds_eq πŸ“–mathematicalβ€”Filter.map
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
nhds
β€”Topology.IsEmbedding.map_nhds_of_mem
isEmbedding
EquivLike.range_eq_univ
nhds_eq_comap πŸ“–mathematicalβ€”nhds
Filter.comap
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
β€”Topology.IsInducing.nhds_eq_comap
isInducing
nontrivialTopology πŸ“–mathematicalβ€”NontrivialTopologyβ€”Topology.IsInducing.nontrivialTopology
isInducing
nontrivialTopology_iff πŸ“–mathematicalβ€”NontrivialTopologyβ€”nontrivialTopology
preimage_closure πŸ“–mathematicalβ€”Set.preimage
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
closure
β€”IsOpenMap.preimage_closure_eq_closure_preimage
isOpenMap
continuous
preimage_frontier πŸ“–mathematicalβ€”Set.preimage
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
frontier
β€”IsOpenMap.preimage_frontier_eq_frontier_preimage
isOpenMap
continuous
preimage_image πŸ“–mathematicalβ€”Set.preimage
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
Set.image
β€”Equiv.preimage_image
preimage_interior πŸ“–mathematicalβ€”Set.preimage
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
interior
β€”IsOpenMap.preimage_interior_eq_interior_preimage
isOpenMap
continuous
preimage_symm πŸ“–mathematicalβ€”Set.preimage
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
symm
Set.image
β€”Equiv.image_eq_preimage_symm
range_coe πŸ“–mathematicalβ€”Set.range
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
Set.univ
β€”EquivLike.range_eq_univ
refl_apply πŸ“–mathematicalβ€”DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
refl
β€”β€”
refl_symm πŸ“–mathematicalβ€”symm
refl
β€”β€”
self_comp_symm πŸ“–mathematicalβ€”DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
symm
β€”apply_symm_apply
self_trans_symm πŸ“–mathematicalβ€”trans
symm
refl
β€”ext
symm_apply_apply
surjective πŸ“–mathematicalβ€”DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
β€”Equiv.surjective
symm_apply_apply πŸ“–mathematicalβ€”DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
symm
β€”Equiv.symm_apply_apply
symm_apply_eq πŸ“–mathematicalβ€”DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
symm
β€”Equiv.symm_apply_eq
symm_bijective πŸ“–mathematicalβ€”Function.Bijective
Homeomorph
symm
β€”Function.bijective_iff_has_inverse
symm_symm
symm_comp_self πŸ“–mathematicalβ€”DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
symm
β€”symm_apply_apply
symm_map_nhds_eq πŸ“–mathematicalβ€”Filter.map
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
symm
nhds
β€”map_nhds_eq
symm_apply_apply
symm_symm πŸ“–mathematicalβ€”symmβ€”β€”
symm_trans_apply πŸ“–mathematicalβ€”DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
symm
trans
β€”β€”
symm_trans_self πŸ“–mathematicalβ€”trans
symm
refl
β€”ext
apply_symm_apply
toEquiv_injective πŸ“–mathematicalβ€”Homeomorph
Equiv
toEquiv
β€”β€”
trans_apply πŸ“–mathematicalβ€”DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
trans
β€”β€”

Homeomorph.Simps

Definitions

NameCategoryTheorems
symm_apply πŸ“–CompOpβ€”

HomeomorphClass

Definitions

NameCategoryTheorems
instCoeOutHomeomorph πŸ“–CompOpβ€”
toHomeomorph πŸ“–CompOp
8 mathmath: AddEquiv.toHomeomorph_toContinuousAddEquiv, toHomeomorph_injective, MulEquiv.toHomeomorph_toContinuousMulEquiv, ContinuousAddEquiv.toHomeomorph_eq_coe, coe_coe, ContinuousMulEquiv.coe_toHomeomorph_symm, ContinuousMulEquiv.toHomeomorph_eq_coe, ContinuousAddEquiv.coe_toHomeomorph_symm

Theorems

NameKindAssumesProvesValidatesDepends On
coe_coe πŸ“–mathematicalβ€”DFunLike.coe
Homeomorph
EquivLike.toFunLike
Homeomorph.instEquivLike
toHomeomorph
β€”β€”
instContinuousMapClass πŸ“–mathematicalβ€”ContinuousMapClass
EquivLike.toFunLike
β€”map_continuous
instHomeomorph πŸ“–mathematicalβ€”HomeomorphClass
Homeomorph
Homeomorph.instEquivLike
β€”Homeomorph.continuous_toFun
Homeomorph.continuous_invFun
inv_continuous πŸ“–mathematicalβ€”Continuous
EquivLike.inv
β€”β€”
map_continuous πŸ“–mathematicalβ€”Continuous
DFunLike.coe
EquivLike.toFunLike
β€”β€”
toHomeomorph_injective πŸ“–mathematicalβ€”Homeomorph
toHomeomorph
β€”DFunLike.ext

IsHomeomorph

Theorems

NameKindAssumesProvesValidatesDepends On
bijective πŸ“–mathematicalIsHomeomorphFunction.Bijectiveβ€”β€”
comp πŸ“–β€”IsHomeomorphβ€”β€”Continuous.comp
continuous
IsOpenMap.comp
isOpenMap
Function.Bijective.comp
bijective
continuous πŸ“–mathematicalIsHomeomorphContinuousβ€”β€”
id πŸ“–mathematicalβ€”IsHomeomorphβ€”continuous_id
IsOpenMap.id
Function.bijective_id
injective πŸ“–β€”IsHomeomorphβ€”β€”Function.Bijective.injective
bijective
isOpenMap πŸ“–mathematicalIsHomeomorphIsOpenMapβ€”β€”
surjective πŸ“–β€”IsHomeomorphβ€”β€”Function.Bijective.surjective
bijective

(root)

Definitions

NameCategoryTheorems
HomeomorphClass πŸ“–CompData
8 mathmath: ContinuousMulEquiv.instHomeomorphClass, ContinuousAffineEquiv.instHomeomorphClass, OrderIso.instHomeomorphClass, ContinuousAddEquiv.instHomeomorphClass, ContinuousAlgEquivClass.toHomeomorphClass, HomeomorphClass.instHomeomorph, ContinuousSemilinearEquivClass.instHomeomorphClass, IsometryClass.toHomeomorphClass
IsHomeomorph πŸ“–CompData
24 mathmath: isHomeomorph_smulβ‚€, Equiv.isHomeomorph_of_discrete, PrimeSpectrum.isHomeomorph_comap, CategoryTheory.PreGaloisCategory.toAutMulEquiv_isHomeomorph, TopCat.isIso_iff_isHomeomorph, TopologicalSpace.IsOpenCover.isHomeomorph_iff_restrictPreimage, isHomeomorph_iff_isEmbedding_surjective, isHomeomorph_iff_exists_homeomorph, CategoryTheory.PreGaloisCategory.toAut_isHomeomorph, isHomeomorph_iff_continuous_bijective, isHomeomorph_smul, Metric.PiNatEmbed.isHomeomorph_toPiNat, Homeomorph.isHomeomorph, PrimeSpectrum.isHomeomorph_comap_of_isPurelyInseparable, ContinuousMap.isHomeomorph_coe, IsHomeomorph.id, CommRingCat.HomTopology.isHomeomorph_precomp, IsUnit.isHomeomorph_smul, PrimeSpectrum.isHomeomorph_comap_tensorProductMap_of_isPurelyInseparable, isHomeomorph_iff_exists_inverse, isHomeomorph_iff_continuous_isClosedMap_bijective, AbsoluteValue.isEquiv_iff_isHomeomorph, isHomeomorph_vadd, PrimeSpectrum.isHomeomorph_comap_of_bijective
Β«term_β‰ƒβ‚œ_Β» πŸ“–CompOpβ€”

---

← Back to Index