Lemmas
📁 Source: Mathlib/Topology/Homeomorph/Lemmas.lean
Statistics
Continuous
Definitions
| Name | Category | Theorems |
|---|---|---|
homeoOfEquivCompactToT2 📖 | CompOp |
Theorems
Equiv
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
isHomeomorph_of_discrete 📖 | mathematical | — | IsHomeomorphDFunLike.coeEquivEquivLike.toFunLikeinstEquivLike | — | Homeomorph.isHomeomorph |
Fin
Definitions
| Name | Category | Theorems |
|---|---|---|
appendHomeomorph 📖 | CompOp |
Theorems
Homeomorph
Definitions
| Name | Category | Theorems |
|---|---|---|
finTwoArrow 📖 | CompOp | |
funSplitAt 📖 | CompOp | |
funUnique 📖 | CompOp | |
image 📖 | CompOp | |
ofDiscrete 📖 | CompOp | — |
piCongr 📖 | CompOp | |
piCongrLeft 📖 | CompOp | |
piCongrRight 📖 | CompOp | |
piEquivPiSubtypeProd 📖 | CompOp | |
piFinTwo 📖 | CompOp | |
piSplitAt 📖 | CompOp | |
piUnique 📖 | CompOp | |
prodUnique 📖 | CompOp | |
setCongr 📖 | CompOp | — |
sets 📖 | CompOp | — |
sigmaProdDistrib 📖 | CompOp | |
subtype 📖 | CompOp | |
sumArrowHomeomorphProdArrow 📖 | CompOp | |
sumPiEquivProdPi 📖 | CompOp | — |
ulift 📖 | CompOp | — |
uniqueProd 📖 | CompOp |
Theorems
Homeomorph.Set
Definitions
| Name | Category | Theorems |
|---|---|---|
prod 📖 | CompOp | |
univ 📖 | CompOp |
Theorems
IsHomeomorph
Definitions
| Name | Category | Theorems |
|---|---|---|
homeomorph 📖 | CompOp |
Theorems
Topology.IsClosedEmbedding
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
uliftMap 📖 | mathematical | Topology.IsClosedEmbedding | ULift.topologicalSpaceULift.map | — | compHomeomorph.isClosedEmbedding |
Topology.IsEmbedding
Definitions
| Name | Category | Theorems |
|---|---|---|
homeomorphImage 📖 | CompOp | — |
homeomorphOfSubsetRange 📖 | CompOp | |
toHomeomorph 📖 | CompOp | |
toHomeomorphOfSurjective 📖 | CompOp |
Theorems
Topology.IsOpenEmbedding
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
uliftMap 📖 | mathematical | Topology.IsOpenEmbedding | ULift.topologicalSpaceULift.map | — | compHomeomorph.isOpenEmbedding |
(root)
Theorems
---