Documentation Verification Report

Lemmas

📁 Source: Mathlib/Topology/Homeomorph/Lemmas.lean

Statistics

MetricCount
DefinitionshomeoOfEquivCompactToT2, appendHomeomorph, prod, univ, finTwoArrow, funSplitAt, funUnique, image, ofDiscrete, piCongr, piCongrLeft, piCongrRight, piEquivPiSubtypeProd, piFinTwo, piSplitAt, piUnique, prodUnique, setCongr, sets, sigmaProdDistrib, subtype, sumArrowHomeomorphProdArrow, sumPiEquivProdPi, ulift, uniqueProd, homeomorph, homeomorphImage, homeomorphOfSubsetRange, toHomeomorph, toHomeomorphOfSurjective
30
Theoremscontinuous_symm_of_equiv_compact_to_t2, toEquiv_homeoOfEquivCompactToT2, isHomeomorph_of_discrete, appendHomeomorph_apply, appendHomeomorph_symm_apply, appendHomeomorph_toEquiv, continuous_append, prod_apply, prod_symm_apply_coe, univ_apply, univ_symm_apply_coe, baireSpace, coe_prodUnique, coe_uniqueProd, comap_coclosedCompact, comap_cocompact, comp_continuousOn_iff, comp_continuousWithinAt_iff, compactSpace, finTwoArrow_apply, finTwoArrow_symm_apply, funSplitAt_apply, funSplitAt_symm_apply, funUnique_apply, funUnique_symm_apply, image_apply_coe, image_connectedComponentIn, image_symm_apply_coe, isCompact_image, isCompact_preimage, isConnected_image, isConnected_preimage, isDenseEmbedding, isPreconnected_image, isPreconnected_preimage, isSigmaCompact_image, isSigmaCompact_preimage, locallyCompactSpace_iff, locallyConnectedSpace, map_coclosedCompact, map_cocompact, map_punctured_nhds_eq, piCongrLeft_apply, piCongrLeft_apply_apply, piCongrLeft_refl, piCongrLeft_symm_apply, piCongrRight_apply, piCongrRight_symm, piCongr_apply, piEquivPiSubtypeProd_apply, piEquivPiSubtypeProd_symm_apply, piFinTwo_apply, piFinTwo_symm_apply, piSplitAt_apply, piSplitAt_symm_apply, piUnique_apply, piUnique_symm_apply, prodUnique_symm_apply_snd, secondCountableTopology, sigmaProdDistrib_apply, sigmaProdDistrib_symm_apply, subtype_apply_coe, subtype_symm_apply_coe, subtype_toEquiv, sumArrowHomeomorphProdArrow_apply, sumArrowHomeomorphProdArrow_symm_apply, toEquiv_piCongr, toEquiv_piCongrLeft, toEquiv_piCongrRight, toEquiv_sigmaProdDistrib, totallyDisconnectedSpace, uniqueProd_symm_apply_snd, homeomorph_apply, homeomorph_symm_apply, isClosedEmbedding, isClosedMap, isDenseEmbedding, isEmbedding, isInducing, isOpenEmbedding, isQuotientMap, pi_map, prodMap, sigmaMap, sumMap, toEquiv_homeomorph, uliftMap, homeomorphOfSubsetRange_apply_coe, toHomeomorphOfSurjective_apply, toHomeomorph_apply_coe, toHomeomorph_symm_apply, uliftMap, uliftMap, isHomeomorph_iff_continuous_bijective, isHomeomorph_iff_continuous_isClosedMap_bijective, isHomeomorph_iff_exists_homeomorph, isHomeomorph_iff_exists_inverse, isHomeomorph_iff_isEmbedding_surjective
98
Total128

Continuous

Definitions

NameCategoryTheorems
homeoOfEquivCompactToT2 📖CompOp
1 mathmath: toEquiv_homeoOfEquivCompactToT2

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_symm_of_equiv_compact_to_t2 📖mathematicalContinuous
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.symmcontinuous_iff_isClosed
IsCompact.isClosed
IsCompact.image
IsClosed.isCompact
Equiv.image_eq_preimage_symm
toEquiv_homeoOfEquivCompactToT2 📖mathematicalContinuous
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Homeomorph.toEquiv
homeoOfEquivCompactToT2

Equiv

Theorems

NameKindAssumesProvesValidatesDepends On
isHomeomorph_of_discrete 📖mathematicalIsHomeomorph
DFunLike.coe
Equiv
EquivLike.toFunLike
instEquivLike
Homeomorph.isHomeomorph

Fin

Definitions

NameCategoryTheorems
appendHomeomorph 📖CompOp
4 mathmath: appendHomeomorph_apply, appendIsometry_toHomeomorph, appendHomeomorph_toEquiv, appendHomeomorph_symm_apply

Theorems

NameKindAssumesProvesValidatesDepends On
appendHomeomorph_apply 📖mathematicalDFunLike.coe
Homeomorph
instTopologicalSpaceProd
Pi.topologicalSpace
EquivLike.toFunLike
Homeomorph.instEquivLike
appendHomeomorph
append
appendHomeomorph_symm_apply 📖mathematicalDFunLike.coe
Homeomorph
Pi.topologicalSpace
instTopologicalSpaceProd
EquivLike.toFunLike
Homeomorph.instEquivLike
Homeomorph.symm
appendHomeomorph
appendHomeomorph_toEquiv 📖mathematicalHomeomorph.toEquiv
instTopologicalSpaceProd
Pi.topologicalSpace
appendHomeomorph
appendEquiv
continuous_append 📖mathematicalContinuous
instTopologicalSpaceProd
Pi.topologicalSpace
append
Homeomorph.continuous_toFun

Homeomorph

Definitions

NameCategoryTheorems
finTwoArrow 📖CompOp
2 mathmath: finTwoArrow_apply, finTwoArrow_symm_apply
funSplitAt 📖CompOp
2 mathmath: funSplitAt_symm_apply, funSplitAt_apply
funUnique 📖CompOp
2 mathmath: funUnique_apply, funUnique_symm_apply
image 📖CompOp
2 mathmath: image_apply_coe, image_symm_apply_coe
ofDiscrete 📖CompOp
piCongr 📖CompOp
2 mathmath: piCongr_apply, toEquiv_piCongr
piCongrLeft 📖CompOp
5 mathmath: piCongrLeft_symm_apply, toEquiv_piCongrLeft, piCongrLeft_apply_apply, piCongrLeft_apply, piCongrLeft_refl
piCongrRight 📖CompOp
3 mathmath: toEquiv_piCongrRight, piCongrRight_apply, piCongrRight_symm
piEquivPiSubtypeProd 📖CompOp
2 mathmath: piEquivPiSubtypeProd_apply, piEquivPiSubtypeProd_symm_apply
piFinTwo 📖CompOp
2 mathmath: piFinTwo_apply, piFinTwo_symm_apply
piSplitAt 📖CompOp
2 mathmath: piSplitAt_symm_apply, piSplitAt_apply
piUnique 📖CompOp
2 mathmath: piUnique_apply, piUnique_symm_apply
prodUnique 📖CompOp
3 mathmath: prodUnique_symm_apply_snd, uniqueProd_symm_apply_snd, coe_prodUnique
setCongr 📖CompOp
sets 📖CompOp
sigmaProdDistrib 📖CompOp
3 mathmath: sigmaProdDistrib_symm_apply, toEquiv_sigmaProdDistrib, sigmaProdDistrib_apply
subtype 📖CompOp
3 mathmath: subtype_symm_apply_coe, subtype_toEquiv, subtype_apply_coe
sumArrowHomeomorphProdArrow 📖CompOp
3 mathmath: IsometryEquiv.sumArrowIsometryEquivProdArrow_toHomeomorph, sumArrowHomeomorphProdArrow_apply, sumArrowHomeomorphProdArrow_symm_apply
sumPiEquivProdPi 📖CompOp
ulift 📖CompOp
uniqueProd 📖CompOp
2 mathmath: coe_uniqueProd, uniqueProd_symm_apply_snd

Theorems

NameKindAssumesProvesValidatesDepends On
baireSpace 📖mathematicalBaireSpaceIsOpenQuotientMap.baireSpace
isOpenQuotientMap
coe_prodUnique 📖mathematicalDFunLike.coe
Homeomorph
instTopologicalSpaceProd
EquivLike.toFunLike
instEquivLike
prodUnique
coe_uniqueProd 📖mathematicalDFunLike.coe
Homeomorph
instTopologicalSpaceProd
EquivLike.toFunLike
instEquivLike
uniqueProd
comap_coclosedCompact 📖mathematicalFilter.comap
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
Filter.coclosedCompact
Filter.HasBasis.eq_of_same_basis
Filter.HasBasis.comap
Filter.hasBasis_coclosedCompact
Filter.HasBasis.comp_surjective
Function.Injective.preimage_surjective
injective
comap_cocompact 📖mathematicalFilter.comap
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
Filter.cocompact
LE.le.antisymm
Filter.comap_cocompact_le
continuous
Filter.HasBasis.le_basis_iff
Filter.hasBasis_cocompact
Filter.HasBasis.comap
isCompact_preimage
Set.Subset.rfl
comp_continuousOn_iff 📖mathematicalContinuousOn
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
Topology.IsInducing.continuousOn_iff
isInducing
comp_continuousWithinAt_iff 📖mathematicalContinuousWithinAt
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
Topology.IsInducing.continuousWithinAt_iff
isInducing
compactSpace 📖mathematicalCompactSpaceisCompact_preimage
isCompact_univ
finTwoArrow_apply 📖mathematicalDFunLike.coe
Homeomorph
Pi.topologicalSpace
instTopologicalSpaceProd
EquivLike.toFunLike
instEquivLike
finTwoArrow
finTwoArrow_symm_apply 📖mathematicalDFunLike.coe
Homeomorph
instTopologicalSpaceProd
Pi.topologicalSpace
EquivLike.toFunLike
instEquivLike
symm
finTwoArrow
Matrix.vecCons
Matrix.vecEmpty
funSplitAt_apply 📖mathematicalDFunLike.coe
Homeomorph
Pi.topologicalSpace
instTopologicalSpaceProd
EquivLike.toFunLike
instEquivLike
funSplitAt
funSplitAt_symm_apply 📖mathematicalDFunLike.coe
Homeomorph
instTopologicalSpaceProd
Pi.topologicalSpace
EquivLike.toFunLike
instEquivLike
symm
funSplitAt
funUnique_apply 📖mathematicalDFunLike.coe
Homeomorph
Pi.topologicalSpace
EquivLike.toFunLike
instEquivLike
funUnique
Unique.instInhabited
funUnique_symm_apply 📖mathematicalDFunLike.coe
Homeomorph
Pi.topologicalSpace
EquivLike.toFunLike
instEquivLike
symm
funUnique
uniqueElim
image_apply_coe 📖mathematicalSet
Set.instMembership
Set.image
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
toEquiv
Homeomorph
Set.Elem
instEquivLike
instTopologicalSpaceSubtype
image
image_connectedComponentIn 📖mathematicalSet
Set.instMembership
Set.image
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
connectedComponentIn
HasSubset.Subset.antisymm
Set.instAntisymmSubset
Continuous.image_connectedComponentIn_subset
continuous
Set.mem_image_of_mem
symm_apply_apply
preimage_image
image_symm
preimage_symm
Set.image_subset_iff
image_symm_apply_coe 📖mathematicalSet
Set.instMembership
DFunLike.coe
Homeomorph
Set.Elem
Set.image
EquivLike.toFunLike
instEquivLike
instTopologicalSpaceSubtype
symm
image
isCompact_image 📖mathematicalIsCompact
Set.image
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
Topology.IsEmbedding.isCompact_iff
isEmbedding
isCompact_preimage 📖mathematicalIsCompact
Set.preimage
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
image_symm
isCompact_image
isConnected_image 📖mathematicalIsConnected
Set.image
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
Iff.and
Set.image_nonempty
isPreconnected_image
isConnected_preimage 📖mathematicalIsConnected
Set.preimage
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
image_symm
isConnected_image
isDenseEmbedding 📖mathematicalIsDenseEmbedding
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
isEmbedding
Topology.IsEmbedding.toIsInducing
Function.Surjective.denseRange
surjective
Topology.IsEmbedding.injective
isPreconnected_image 📖mathematicalIsPreconnected
Set.image
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
image_symm
preimage_image
IsPreconnected.image
Continuous.continuousOn
continuous
isPreconnected_preimage 📖mathematicalIsPreconnected
Set.preimage
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
image_symm
isPreconnected_image
isSigmaCompact_image 📖mathematicalIsSigmaCompact
Set.image
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
Topology.IsEmbedding.isSigmaCompact_iff
isEmbedding
isSigmaCompact_preimage 📖mathematicalIsSigmaCompact
Set.preimage
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
image_symm
isSigmaCompact_image
locallyCompactSpace_iff 📖mathematicalLocallyCompactSpaceTopology.IsOpenEmbedding.locallyCompactSpace
isOpenEmbedding
Topology.IsClosedEmbedding.locallyCompactSpace
isClosedEmbedding
locallyConnectedSpace 📖mathematicalLocallyConnectedSpacesymm_map_nhds_eq
Filter.HasBasis.map
LocallyConnectedSpace.open_connected_basis
locallyConnectedSpace_of_connected_bases
IsPreconnected.image
Continuous.continuousOn
continuous
map_coclosedCompact 📖mathematicalFilter.map
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
Filter.coclosedCompact
comap_coclosedCompact
Filter.map_comap_of_surjective
surjective
map_cocompact 📖mathematicalFilter.map
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
Filter.cocompact
comap_cocompact
Filter.map_comap_of_surjective
surjective
map_punctured_nhds_eq 📖mathematicalFilter.map
DFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
nhdsWithin
Compl.compl
Set
Set.instCompl
Set.instSingletonSet
image_compl
Set.image_singleton
Topology.IsEmbedding.map_nhdsWithin_eq
isEmbedding
piCongrLeft_apply 📖mathematicalDFunLike.coe
Homeomorph
Pi.topologicalSpace
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
instEquivLike
piCongrLeft
Equiv.symm
Equiv.piCongrLeft'
piCongrLeft_apply_apply 📖mathematicalDFunLike.coe
Homeomorph
Pi.topologicalSpace
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
instEquivLike
piCongrLeft
Equiv.piCongrLeft_apply_apply
piCongrLeft_refl 📖mathematicalpiCongrLeft
Equiv.refl
refl
Pi.topologicalSpace
piCongrLeft_symm_apply 📖mathematicalDFunLike.coe
Homeomorph
Pi.topologicalSpace
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
instEquivLike
symm
piCongrLeft
piCongrRight_apply 📖mathematicalDFunLike.coe
Homeomorph
Pi.topologicalSpace
EquivLike.toFunLike
instEquivLike
piCongrRight
piCongrRight_symm 📖mathematicalsymm
Pi.topologicalSpace
piCongrRight
piCongr_apply 📖mathematicalDFunLike.coe
Homeomorph
Pi.topologicalSpace
EquivLike.toFunLike
instEquivLike
piCongr
Equiv
Equiv.instEquivLike
Equiv.piCongrLeft
Equiv.piCongrRight
toEquiv
piEquivPiSubtypeProd_apply 📖mathematicalDFunLike.coe
Homeomorph
Pi.topologicalSpace
instTopologicalSpaceProd
EquivLike.toFunLike
instEquivLike
piEquivPiSubtypeProd
piEquivPiSubtypeProd_symm_apply 📖mathematicalDFunLike.coe
Homeomorph
instTopologicalSpaceProd
Pi.topologicalSpace
EquivLike.toFunLike
instEquivLike
symm
piEquivPiSubtypeProd
piFinTwo_apply 📖mathematicalDFunLike.coe
Homeomorph
Pi.topologicalSpace
instTopologicalSpaceProd
EquivLike.toFunLike
instEquivLike
piFinTwo
piFinTwo_symm_apply 📖mathematicalDFunLike.coe
Homeomorph
instTopologicalSpaceProd
Pi.topologicalSpace
EquivLike.toFunLike
instEquivLike
symm
piFinTwo
Fin.cons
finZeroElim
piSplitAt_apply 📖mathematicalDFunLike.coe
Homeomorph
Pi.topologicalSpace
instTopologicalSpaceProd
EquivLike.toFunLike
instEquivLike
piSplitAt
piSplitAt_symm_apply 📖mathematicalDFunLike.coe
Homeomorph
instTopologicalSpaceProd
Pi.topologicalSpace
EquivLike.toFunLike
instEquivLike
symm
piSplitAt
piUnique_apply 📖mathematicalDFunLike.coe
Homeomorph
Unique.instInhabited
Pi.topologicalSpace
EquivLike.toFunLike
instEquivLike
piUnique
piUnique_symm_apply 📖mathematicalDFunLike.coe
Homeomorph
Unique.instInhabited
Pi.topologicalSpace
EquivLike.toFunLike
instEquivLike
symm
piUnique
uniqueElim
prodUnique_symm_apply_snd 📖mathematicalDFunLike.coe
Homeomorph
instTopologicalSpaceProd
EquivLike.toFunLike
instEquivLike
symm
prodUnique
Unique.instInhabited
secondCountableTopology 📖mathematicalSecondCountableTopologyTopology.IsInducing.secondCountableTopology
isInducing
sigmaProdDistrib_apply 📖mathematicalDFunLike.coe
Homeomorph
instTopologicalSpaceProd
instTopologicalSpaceSigma
EquivLike.toFunLike
instEquivLike
sigmaProdDistrib
sigmaProdDistrib_symm_apply 📖mathematicalDFunLike.coe
Homeomorph
instTopologicalSpaceSigma
instTopologicalSpaceProd
EquivLike.toFunLike
instEquivLike
symm
sigmaProdDistrib
subtype_apply_coe 📖mathematicalDFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
instTopologicalSpaceSubtype
subtype
subtype_symm_apply_coe 📖mathematicalDFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
instTopologicalSpaceSubtype
symm
subtype
subtype_toEquiv 📖mathematicalDFunLike.coe
Homeomorph
EquivLike.toFunLike
instEquivLike
toEquiv
instTopologicalSpaceSubtype
subtype
Equiv.subtypeEquiv
sumArrowHomeomorphProdArrow_apply 📖mathematicalDFunLike.coe
Homeomorph
Pi.topologicalSpace
instTopologicalSpaceProd
EquivLike.toFunLike
instEquivLike
sumArrowHomeomorphProdArrow
sumArrowHomeomorphProdArrow_symm_apply 📖mathematicalDFunLike.coe
Homeomorph
instTopologicalSpaceProd
Pi.topologicalSpace
EquivLike.toFunLike
instEquivLike
symm
sumArrowHomeomorphProdArrow
toEquiv_piCongr 📖mathematicaltoEquiv
Pi.topologicalSpace
piCongr
Equiv.trans
Equiv.piCongrRight
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
Equiv.piCongrLeft
toEquiv_piCongrLeft 📖mathematicaltoEquiv
Pi.topologicalSpace
DFunLike.coe
Equiv
EquivLike.toFunLike
Equiv.instEquivLike
piCongrLeft
Equiv.piCongrLeft
toEquiv_piCongrRight 📖mathematicaltoEquiv
Pi.topologicalSpace
piCongrRight
Equiv.piCongrRight
toEquiv_sigmaProdDistrib 📖mathematicaltoEquiv
instTopologicalSpaceProd
instTopologicalSpaceSigma
sigmaProdDistrib
Equiv.sigmaProdDistrib
totallyDisconnectedSpace 📖mathematicalTotallyDisconnectedSpacetotallyDisconnectedSpace_iff
Topology.IsEmbedding.isTotallyDisconnected_range
isEmbedding
range_coe
uniqueProd_symm_apply_snd 📖mathematicalDFunLike.coe
Homeomorph
instTopologicalSpaceProd
EquivLike.toFunLike
instEquivLike
symm
uniqueProd
prodUnique

Homeomorph.Set

Definitions

NameCategoryTheorems
prod 📖CompOp
2 mathmath: prod_apply, prod_symm_apply_coe
univ 📖CompOp
2 mathmath: univ_symm_apply_coe, univ_apply

Theorems

NameKindAssumesProvesValidatesDepends On
prod_apply 📖mathematicalDFunLike.coe
Homeomorph
Set.Elem
SProd.sprod
Set
Set.instSProd
instTopologicalSpaceSubtype
Set.instMembership
instTopologicalSpaceProd
EquivLike.toFunLike
Homeomorph.instEquivLike
prod
prod_symm_apply_coe 📖mathematicalDFunLike.coe
Homeomorph
Set.Elem
SProd.sprod
Set
Set.instSProd
instTopologicalSpaceProd
instTopologicalSpaceSubtype
Set.instMembership
EquivLike.toFunLike
Homeomorph.instEquivLike
Homeomorph.symm
prod
univ_apply 📖mathematicalDFunLike.coe
Homeomorph
Set.Elem
Set.univ
instTopologicalSpaceSubtype
Set
Set.instMembership
EquivLike.toFunLike
Homeomorph.instEquivLike
univ
univ_symm_apply_coe 📖mathematicalSet
Set.instMembership
Set.univ
DFunLike.coe
Homeomorph
Set.Elem
instTopologicalSpaceSubtype
EquivLike.toFunLike
Homeomorph.instEquivLike
Homeomorph.symm
univ

IsHomeomorph

Definitions

NameCategoryTheorems
homeomorph 📖CompOp
3 mathmath: homeomorph_symm_apply, toEquiv_homeomorph, homeomorph_apply

Theorems

NameKindAssumesProvesValidatesDepends On
homeomorph_apply 📖mathematicalIsHomeomorphDFunLike.coe
Homeomorph
EquivLike.toFunLike
Homeomorph.instEquivLike
homeomorph
homeomorph_symm_apply 📖mathematicalIsHomeomorphDFunLike.coe
Homeomorph
EquivLike.toFunLike
Homeomorph.instEquivLike
Homeomorph.symm
homeomorph
Function.surjInv
Function.Bijective.surjective
bijective
isClosedEmbedding 📖mathematicalIsHomeomorphTopology.IsClosedEmbeddingHomeomorph.isClosedEmbedding
isClosedMap 📖mathematicalIsHomeomorphIsClosedMapHomeomorph.isClosedMap
isDenseEmbedding 📖mathematicalIsHomeomorphIsDenseEmbeddingHomeomorph.isDenseEmbedding
isEmbedding 📖mathematicalIsHomeomorphTopology.IsEmbeddingHomeomorph.isEmbedding
isInducing 📖mathematicalIsHomeomorphTopology.IsInducingHomeomorph.isInducing
isOpenEmbedding 📖mathematicalIsHomeomorphTopology.IsOpenEmbeddingHomeomorph.isOpenEmbedding
isQuotientMap 📖mathematicalIsHomeomorphTopology.IsQuotientMapHomeomorph.isQuotientMap
pi_map 📖mathematicalIsHomeomorphPi.topologicalSpaceHomeomorph.isHomeomorph
prodMap 📖mathematicalIsHomeomorphinstTopologicalSpaceProdContinuous.prodMap
continuous
IsOpenMap.prodMap
isOpenMap
Function.Bijective.prodMap
bijective
sigmaMap 📖mathematicalFunction.Bijective
IsHomeomorph
instTopologicalSpaceSigma
Sigma.map
Topology.isEmbedding_sigmaMap
Function.Surjective.sigma_map
sumMap 📖mathematicalIsHomeomorphinstTopologicalSpaceSumContinuous.sumMap
continuous
IsOpenMap.sumMap
isOpenMap
Function.Bijective.sumMap
bijective
toEquiv_homeomorph 📖mathematicalIsHomeomorphHomeomorph.toEquiv
homeomorph
Equiv.ofBijective
bijective

Topology.IsClosedEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
uliftMap 📖mathematicalTopology.IsClosedEmbeddingULift.topologicalSpace
ULift.map
comp
Homeomorph.isClosedEmbedding

Topology.IsEmbedding

Definitions

NameCategoryTheorems
homeomorphImage 📖CompOp
homeomorphOfSubsetRange 📖CompOp
1 mathmath: homeomorphOfSubsetRange_apply_coe
toHomeomorph 📖CompOp
2 mathmath: toHomeomorph_apply_coe, toHomeomorph_symm_apply
toHomeomorphOfSurjective 📖CompOp
1 mathmath: toHomeomorphOfSurjective_apply

Theorems

NameKindAssumesProvesValidatesDepends On
homeomorphOfSubsetRange_apply_coe 📖mathematicalTopology.IsEmbedding
Set
Set.instHasSubset
Set.range
Set.instMembership
DFunLike.coe
Homeomorph
Set.Elem
Set.preimage
instTopologicalSpaceSubtype
EquivLike.toFunLike
Homeomorph.instEquivLike
homeomorphOfSubsetRange
toHomeomorphOfSurjective_apply 📖mathematicalTopology.IsEmbeddingDFunLike.coe
Homeomorph
EquivLike.toFunLike
Homeomorph.instEquivLike
toHomeomorphOfSurjective
toHomeomorph_apply_coe 📖mathematicalTopology.IsEmbeddingSet
Set.instMembership
Set.range
DFunLike.coe
Homeomorph
Set.Elem
instTopologicalSpaceSubtype
EquivLike.toFunLike
Homeomorph.instEquivLike
toHomeomorph
toHomeomorph_symm_apply 📖mathematicalTopology.IsEmbeddingDFunLike.coe
Homeomorph
Set.Elem
Set.range
instTopologicalSpaceSubtype
Set
Set.instMembership
EquivLike.toFunLike
Homeomorph.instEquivLike
Homeomorph.symm
toHomeomorph
Homeomorph.injective
Homeomorph.apply_symm_apply
uliftMap 📖mathematicalTopology.IsEmbeddingULift.topologicalSpace
ULift.map
comp
Homeomorph.isEmbedding

Topology.IsOpenEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
uliftMap 📖mathematicalTopology.IsOpenEmbeddingULift.topologicalSpace
ULift.map
comp
Homeomorph.isOpenEmbedding

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
isHomeomorph_iff_continuous_bijective 📖mathematicalIsHomeomorph
Continuous
Function.Bijective
isHomeomorph_iff_continuous_isClosedMap_bijective
Continuous.isClosedMap
isHomeomorph_iff_continuous_isClosedMap_bijective 📖mathematicalIsHomeomorph
Continuous
IsClosedMap
Function.Bijective
IsHomeomorph.continuous
IsHomeomorph.isClosedMap
IsHomeomorph.bijective
isClosed_compl_iff
IsOpen.isClosed_compl
Set.image_compl_eq
isHomeomorph_iff_exists_homeomorph 📖mathematicalIsHomeomorph
DFunLike.coe
Homeomorph
EquivLike.toFunLike
Homeomorph.instEquivLike
Homeomorph.isHomeomorph
isHomeomorph_iff_exists_inverse 📖mathematicalIsHomeomorph
Continuous
IsHomeomorph.continuous
Equiv.left_inv
Equiv.right_inv
Homeomorph.continuous_invFun
Homeomorph.isHomeomorph
isHomeomorph_iff_isEmbedding_surjective 📖mathematicalIsHomeomorph
Topology.IsEmbedding
IsHomeomorph.isEmbedding
IsHomeomorph.surjective
Topology.IsEmbedding.continuous
Topology.IsOpenEmbedding.isOpenMap
Topology.isOpenEmbedding_iff
isOpen_univ
Function.Surjective.range_eq
Topology.IsEmbedding.injective

---

← Back to Index