Documentation Verification Report

Equiv

πŸ“ Source: Mathlib/Topology/Homotopy/Equiv.lean

Statistics

MetricCount
DefinitionsHomotopyEquiv, apply, symm_apply, instCoeFunForall, instInhabitedUnit, invFun, piCongrRight, prodCongr, refl, toFun, trans, Β«term_≃ₕ_Β», toHomotopyEquiv
13
Theoremscoe_invFun, continuous, ext, ext_iff, left_inv, refl_apply, refl_symm_apply, right_inv, symm_trans, trans_apply, trans_symm_apply, coe_toHomotopyEquiv, refl_toHomotopyEquiv, symm_toHomotopyEquiv, trans_toHomotopyEquiv
15
Total28

ContinuousMap

Definitions

NameCategoryTheorems
HomotopyEquiv πŸ“–CompData
3 mathmath: ContractibleSpace.hequiv_unit, ContractibleSpace.hequiv, ContractibleSpace.hequiv_unit'
Β«term_≃ₕ_Β» πŸ“–CompOpβ€”

ContinuousMap.HomotopyEquiv

Definitions

NameCategoryTheorems
instCoeFunForall πŸ“–CompOpβ€”
instInhabitedUnit πŸ“–CompOpβ€”
invFun πŸ“–CompOp
4 mathmath: right_inv, ext_iff, left_inv, coe_invFun
piCongrRight πŸ“–CompOpβ€”
prodCongr πŸ“–CompOpβ€”
refl πŸ“–CompOp
3 mathmath: refl_symm_apply, Homeomorph.refl_toHomotopyEquiv, refl_apply
toFun πŸ“–CompOp
10 mathmath: refl_symm_apply, right_inv, ext_iff, trans_apply, left_inv, coe_invFun, Homeomorph.coe_toHomotopyEquiv, continuous, trans_symm_apply, refl_apply
trans πŸ“–CompOp
4 mathmath: trans_apply, Homeomorph.trans_toHomotopyEquiv, symm_trans, trans_symm_apply

Theorems

NameKindAssumesProvesValidatesDepends On
coe_invFun πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
ContinuousMap.instFunLike
invFun
toFun
symm
β€”β€”
continuous πŸ“–mathematicalβ€”Continuous
DFunLike.coe
ContinuousMap
ContinuousMap.instFunLike
toFun
β€”ContinuousMap.continuous
ext πŸ“–β€”toFun
invFun
β€”β€”β€”
ext_iff πŸ“–mathematicalβ€”toFun
invFun
β€”ext
left_inv πŸ“–mathematicalβ€”ContinuousMap.Homotopic
ContinuousMap.comp
invFun
toFun
ContinuousMap.id
β€”β€”
refl_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
ContinuousMap.instFunLike
toFun
refl
β€”β€”
refl_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
ContinuousMap.instFunLike
toFun
symm
refl
β€”β€”
right_inv πŸ“–mathematicalβ€”ContinuousMap.Homotopic
ContinuousMap.comp
toFun
invFun
ContinuousMap.id
β€”β€”
symm_trans πŸ“–mathematicalβ€”symm
trans
β€”β€”
trans_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
ContinuousMap.instFunLike
toFun
trans
β€”β€”
trans_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
ContinuousMap.instFunLike
toFun
symm
trans
β€”β€”

ContinuousMap.HomotopyEquiv.Simps

Definitions

NameCategoryTheorems
apply πŸ“–CompOpβ€”
symm_apply πŸ“–CompOpβ€”

Homeomorph

Definitions

NameCategoryTheorems
toHomotopyEquiv πŸ“–CompOp
4 mathmath: symm_toHomotopyEquiv, refl_toHomotopyEquiv, coe_toHomotopyEquiv, trans_toHomotopyEquiv

Theorems

NameKindAssumesProvesValidatesDepends On
coe_toHomotopyEquiv πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
ContinuousMap.instFunLike
ContinuousMap.HomotopyEquiv.toFun
toHomotopyEquiv
Homeomorph
EquivLike.toFunLike
instEquivLike
β€”β€”
refl_toHomotopyEquiv πŸ“–mathematicalβ€”toHomotopyEquiv
refl
ContinuousMap.HomotopyEquiv.refl
β€”β€”
symm_toHomotopyEquiv πŸ“–mathematicalβ€”toHomotopyEquiv
symm
ContinuousMap.HomotopyEquiv.symm
β€”β€”
trans_toHomotopyEquiv πŸ“–mathematicalβ€”toHomotopyEquiv
trans
ContinuousMap.HomotopyEquiv.trans
β€”β€”

---

← Back to Index