Documentation Verification Report

HSpaces

πŸ“ Source: Mathlib/Topology/Homotopy/HSpaces.lean

Statistics

MetricCount
DefinitionsHSpace, e, eHmul, hmul, hmulE, prod, Β«term_β‹€_Β», hSpace, toHSpace, hSpace, toHSpace, delayReflLeft, delayReflRight, instHSpace, qRight
15
Theoremshmul_e_e, one_eq_hSpace_e, continuous_delayReflLeft, continuous_delayReflRight, delayReflLeft_one, delayReflLeft_zero, delayReflRight_one, delayReflRight_zero, continuous_qRight, qRight_one_left, qRight_one_right, qRight_zero_left, qRight_zero_right
13
Total28

HSpace

Definitions

NameCategoryTheorems
e πŸ“–CompOp
2 mathmath: hmul_e_e, IsTopologicalGroup.one_eq_hSpace_e
eHmul πŸ“–CompOpβ€”
hmul πŸ“–CompOp
1 mathmath: hmul_e_e
hmulE πŸ“–CompOpβ€”
prod πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
hmul_e_e πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
instTopologicalSpaceProd
ContinuousMap.instFunLike
hmul
e
β€”β€”

HSpaces

Definitions

NameCategoryTheorems
Β«term_β‹€_Β» πŸ“–CompOpβ€”

IsTopologicalAddGroup

Definitions

NameCategoryTheorems
hSpace πŸ“–CompOpβ€”
toHSpace πŸ“–CompOpβ€”

IsTopologicalGroup

Definitions

NameCategoryTheorems
hSpace πŸ“–CompOp
1 mathmath: one_eq_hSpace_e
toHSpace πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
one_eq_hSpace_e πŸ“–mathematicalβ€”InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
HSpace.e
hSpace
β€”β€”

Path

Definitions

NameCategoryTheorems
delayReflLeft πŸ“–CompOp
3 mathmath: delayReflLeft_one, continuous_delayReflLeft, delayReflLeft_zero
delayReflRight πŸ“–CompOp
3 mathmath: delayReflRight_zero, continuous_delayReflRight, delayReflRight_one
instHSpace πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_delayReflLeft πŸ“–mathematicalβ€”Continuous
Set.Elem
Real
unitInterval
Path
instTopologicalSpaceProd
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
instTopologicalSpace
delayReflLeft
β€”Continuous.comp
continuous_symm
continuous_delayReflRight
Continuous.prodMk
continuous_fst
continuous_snd
continuous_delayReflRight πŸ“–mathematicalβ€”Continuous
Set.Elem
Real
unitInterval
Path
instTopologicalSpaceProd
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
instTopologicalSpace
delayReflRight
β€”continuous_uncurry_iff
Continuous.eval
instContinuousEvalElemRealUnitInterval
Continuous.comp
continuous_snd
continuous_fst
unitInterval.continuous_qRight
Continuous.prodMk
delayReflLeft_one πŸ“–mathematicalβ€”delayReflLeft
Set.Elem
Real
unitInterval
Set.Icc.instOne
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
β€”Real.instIsOrderedRing
delayReflRight_one
symm_symm
delayReflLeft_zero πŸ“–mathematicalβ€”delayReflLeft
Set.Elem
Real
unitInterval
Set.Icc.instZero
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
trans
refl
β€”Real.instIsOrderedRing
delayReflRight_zero
trans_symm
symm_symm
delayReflRight_one πŸ“–mathematicalβ€”delayReflRight
Set.Elem
Real
unitInterval
Set.Icc.instOne
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
β€”ext
Real.instIsOrderedRing
unitInterval.qRight_one_right
delayReflRight_zero πŸ“–mathematicalβ€”delayReflRight
Set.Elem
Real
unitInterval
Set.Icc.instZero
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
trans
refl
β€”ext
Real.instIsOrderedRing
Nat.instAtLeastTwoHAddOfNat
unitInterval.mul_pos_mem_iff
zero_lt_two
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
unitInterval.two_mul_sub_one_mem_iff
LT.lt.le
not_le
trans_apply
unitInterval.qRight_zero_right
target

(root)

Definitions

NameCategoryTheorems
HSpace πŸ“–CompDataβ€”

unitInterval

Definitions

NameCategoryTheorems
qRight πŸ“–CompOp
5 mathmath: qRight_one_left, qRight_zero_right, continuous_qRight, qRight_zero_left, qRight_one_right

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_qRight πŸ“–mathematicalβ€”Continuous
Set.Elem
Real
unitInterval
instTopologicalSpaceProd
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
qRight
β€”Continuous.comp
continuous_projIcc
instOrderTopologyReal
Continuous.div
IsTopologicalDivisionRing.toContinuousInvβ‚€
instIsTopologicalDivisionRingReal
IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
Continuous.fun_mul
continuous_const
Continuous.comp'
continuous_subtype_val
Continuous.fst
continuous_id'
Continuous.fun_add
IsTopologicalSemiring.toContinuousAdd
Continuous.snd
LT.lt.ne'
add_pos
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
qRight_one_left πŸ“–mathematicalβ€”qRight
Set.Elem
Real
unitInterval
Set.Icc.instOne
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
β€”Set.projIcc_of_right_le
Real.instIsOrderedRing
le_div_iffβ‚€
MulPosReflectLE.toMulPosReflectLT
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
add_pos
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Set.Icc.coe_one
one_mul
mul_one
add_comm
Nat.instAtLeastTwoHAddOfNat
one_add_one_eq_two
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
IsRightCancelAdd.addRightReflectLE_of_addRightReflectLT
AddRightCancelSemigroup.toIsRightCancelAdd
contravariant_swap_add_of_contravariant_add
contravariant_lt_of_covariant_le
le_one
qRight_one_right πŸ“–mathematicalβ€”qRight
Set.Elem
Real
unitInterval
Set.Icc.instOne
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
β€”Real.instIsOrderedRing
zero_le_one
Real.instZeroLEOneClass
qRight.eq_1
Set.projIcc.congr_simp
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.isNat_add
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
mul_div_cancel_leftβ‚€
GroupWithZero.toMulDivCancelClass
Mathlib.Meta.NormNum.isNat_eq_false
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
Nat.cast_zero
Set.projIcc_val
qRight_zero_left πŸ“–mathematicalβ€”qRight
Set.Elem
Real
unitInterval
Set.Icc.instZero
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
β€”Set.projIcc_of_le_left
Real.instIsOrderedRing
MulZeroClass.mul_zero
zero_div
qRight_zero_right πŸ“–mathematicalβ€”Real
Set
Set.instMembership
unitInterval
qRight
Set.Elem
Set.Icc.instZero
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
Real.instLE
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.decidableLE
Real.instMul
β€”Real.instIsOrderedRing
Nat.instAtLeastTwoHAddOfNat
Set.projIcc.congr_simp
add_zero
div_one
mul_pos_mem_iff
zero_lt_two
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Set.projIcc_of_mem
Set.right_mem_Icc
LT.lt.le
zero_lt_one
Set.projIcc_eq_right
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.add_neg
CancelDenoms.derive_trans
Mathlib.Meta.NormNum.IsNNRat.to_eq
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNNRat_inv_pos
CancelDenoms.sub_subst
CancelDenoms.div_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
lt_of_not_ge
Mathlib.Meta.NormNum.isNat_lt_true

---

← Back to Index