Documentation Verification Report

HomotopyGroup

πŸ“ Source: Mathlib/Topology/Homotopy/HomotopyGroup.lean

Statistics

MetricCount
Definitionsboundary, insertAt, splitAt, GenLoop, Homotopic, setoid, cCompInsert, const, copy, fromLoop, homotopyFrom, homotopyTo, inhabited, instFunLike, loopHomeo, symmAt, toLoop, transAt, HomotopyGroup, auxGroup, commGroup, group, pi0EquivZerothHomotopy, pi1EquivFundamentalGroup, LoopSpace, inhabited, termΞ©, Β«termΞ©^Β», termΟ€_, Β«termI^_Β», genLoopEquivOfUnique, genLoopHomeoOfIsEmpty, homotopyGroupEquivFundamentalGroup, homotopyGroupEquivFundamentalGroupOfUnique, homotopyGroupEquivZerothHomotopyOfIsEmpty, instInhabitedHomotopyGroup
36
TheoremsinsertAt_boundary, equiv, refl, trans, boundary, coe_copy, const_apply, continuous_fromLoop, continuous_toLoop, copy_eq, ext, ext_iff, fromLoop_apply, fromLoop_coe, fromLoop_symm_toLoop, fromLoop_trans_toLoop, homotopicFrom, homotopicTo, homotopyFrom_apply, homotopyTo_apply, instContinuousEval, instContinuousEvalConst, loopHomeo_apply, loopHomeo_symm_apply, mk_apply, toLoop_apply, toLoop_apply_coe, to_from, transAt_distrib, auxGroup_indep, inv_spec, isUnital_auxGroup, mul_spec, one_def, symmAt_indep, transAt_indep
36
Total72

Cube

Definitions

NameCategoryTheorems
boundary πŸ“–CompOp
1 mathmath: GenLoop.homotopyTo_apply
insertAt πŸ“–CompOp
4 mathmath: GenLoop.homotopyTo_apply, GenLoop.toLoop_apply, GenLoop.toLoop_apply_coe, insertAt_boundary
splitAt πŸ“–CompOp
3 mathmath: GenLoop.fromLoop_apply, GenLoop.homotopyFrom_apply, GenLoop.fromLoop_coe

Theorems

NameKindAssumesProvesValidatesDepends On
insertAt_boundary πŸ“–mathematicalSet.Elem
Real
unitInterval
Set.Icc.instZero
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
Set.Icc.instOne
Set
Set.instMembership
boundary
DFunLike.coe
Homeomorph
instTopologicalSpaceProd
instTopologicalSpaceSubtype
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Pi.topologicalSpace
EquivLike.toFunLike
Homeomorph.instEquivLike
insertAt
β€”Real.instIsOrderedRing
Homeomorph.funSplitAt_symm_apply
Subtype.prop
Subtype.coe_eta

GenLoop

Definitions

NameCategoryTheorems
Homotopic πŸ“–MathDef
5 mathmath: Homotopic.trans, Homotopic.symm, homotopicFrom, Homotopic.refl, Homotopic.equiv
cCompInsert πŸ“–CompOpβ€”
const πŸ“–CompOp
15 mathmath: fromLoop_apply, HomotopyGroup.isUnital_auxGroup, loopHomeo_apply, continuous_fromLoop, toLoop_apply, fromLoop_symm_toLoop, toLoop_apply_coe, loopHomeo_symm_apply, HomotopyGroup.one_def, homotopyFrom_apply, const_apply, fromLoop_coe, homotopicTo, continuous_toLoop, fromLoop_trans_toLoop
copy πŸ“–CompOp
2 mathmath: coe_copy, copy_eq
fromLoop πŸ“–CompOp
7 mathmath: fromLoop_apply, to_from, continuous_fromLoop, fromLoop_symm_toLoop, loopHomeo_symm_apply, fromLoop_coe, fromLoop_trans_toLoop
homotopyFrom πŸ“–CompOp
1 mathmath: homotopyFrom_apply
homotopyTo πŸ“–CompOp
1 mathmath: homotopyTo_apply
inhabited πŸ“–CompOpβ€”
instFunLike πŸ“–CompOp
8 mathmath: fromLoop_apply, mk_apply, instContinuousEval, ext_iff, toLoop_apply, boundary, const_apply, instContinuousEvalConst
loopHomeo πŸ“–CompOp
2 mathmath: loopHomeo_apply, loopHomeo_symm_apply
symmAt πŸ“–CompOp
3 mathmath: HomotopyGroup.symmAt_indep, fromLoop_symm_toLoop, HomotopyGroup.inv_spec
toLoop πŸ“–CompOp
9 mathmath: loopHomeo_apply, to_from, toLoop_apply, fromLoop_symm_toLoop, toLoop_apply_coe, homotopyFrom_apply, homotopicTo, continuous_toLoop, fromLoop_trans_toLoop
transAt πŸ“–CompOp
4 mathmath: transAt_distrib, HomotopyGroup.transAt_indep, HomotopyGroup.mul_spec, fromLoop_trans_toLoop

Theorems

NameKindAssumesProvesValidatesDepends On
boundary πŸ“–mathematicalSet
Set.instMembership
Cube.boundary
DFunLike.coe
Set.Elem
ContinuousMap
Pi.topologicalSpace
Real
unitInterval
instTopologicalSpaceSubtype
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
GenLoop
instFunLike
β€”β€”
coe_copy πŸ“–mathematicalDFunLike.coe
Set.Elem
ContinuousMap
Pi.topologicalSpace
Real
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
GenLoop
instFunLike
copyβ€”β€”
const_apply πŸ“–mathematicalβ€”DFunLike.coe
Set.Elem
ContinuousMap
Pi.topologicalSpace
Real
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
GenLoop
instFunLike
const
β€”β€”
continuous_fromLoop πŸ“–mathematicalβ€”Continuous
LoopSpace
Set.Elem
ContinuousMap
Pi.topologicalSpace
Real
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
GenLoop
ContinuousMap.compactOpen
const
Path.instTopologicalSpace
fromLoop
β€”Continuous.comp
ContinuousMap.continuous_precomp
ContinuousMap.continuous_uncurry
locallyCompact_of_proper
proper_of_compact
compactSpace_Icc
ConditionallyCompleteLinearOrder.toCompactIccSpace
instOrderTopologyReal
ContinuousMap.continuous_postcomp
continuous_induced_dom
continuous_toLoop πŸ“–mathematicalβ€”Continuous
Set.Elem
ContinuousMap
Pi.topologicalSpace
Real
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
GenLoop
LoopSpace
ContinuousMap.compactOpen
const
Path.instTopologicalSpace
toLoop
β€”Path.continuous_uncurry_iff
Continuous.comp
ContinuousEval.continuous_eval
ContinuousMap.instContinuousEvalOfLocallyCompactPair
instLocallyCompactPairOfLocallyCompactSpace
locallyCompact_of_proper
proper_of_compact
compactSpace_Icc
ConditionallyCompleteLinearOrder.toCompactIccSpace
instOrderTopologyReal
Continuous.prodMap
ContinuousMap.continuous_curry
Prod.locallyCompactSpace
Function.locallyCompactSpace
ContinuousMap.continuous_precomp
continuous_subtype_val
continuous_id
copy_eq πŸ“–mathematicalDFunLike.coe
Set.Elem
ContinuousMap
Pi.topologicalSpace
Real
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
GenLoop
instFunLike
copyβ€”ext
ext πŸ“–β€”DFunLike.coe
Set.Elem
ContinuousMap
Pi.topologicalSpace
Real
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
GenLoop
instFunLike
β€”β€”DFunLike.coe_injective'
ext_iff πŸ“–mathematicalβ€”DFunLike.coe
Set.Elem
ContinuousMap
Pi.topologicalSpace
Real
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
GenLoop
instFunLike
β€”ext
fromLoop_apply πŸ“–mathematicalβ€”DFunLike.coe
Set.Elem
ContinuousMap
Pi.topologicalSpace
Real
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
GenLoop
instFunLike
fromLoop
LoopSpace
ContinuousMap.compactOpen
const
Path.instFunLike
Homeomorph
instTopologicalSpaceProd
EquivLike.toFunLike
Homeomorph.instEquivLike
Cube.splitAt
β€”β€”
fromLoop_coe πŸ“–mathematicalβ€”ContinuousMap
Pi.topologicalSpace
Set.Elem
Real
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
GenLoop
fromLoop
ContinuousMap.comp
instTopologicalSpaceProd
ContinuousMap.uncurry
ContinuousMap.compactOpen
Path.toContinuousMap
const
toContinuousMap
Homeomorph
EquivLike.toFunLike
Homeomorph.instEquivLike
Cube.splitAt
β€”β€”
fromLoop_symm_toLoop πŸ“–mathematicalβ€”fromLoop
Path.symm
Set.Elem
ContinuousMap
Pi.topologicalSpace
Real
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
GenLoop
ContinuousMap.compactOpen
const
toLoop
symmAt
β€”copy_eq
fromLoop_trans_toLoop πŸ“–mathematicalβ€”fromLoop
Path.trans
Set.Elem
ContinuousMap
Pi.topologicalSpace
Real
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
GenLoop
ContinuousMap.compactOpen
const
toLoop
transAt
β€”copy_eq
homotopicFrom πŸ“–mathematicalβ€”Homotopicβ€”Nonempty.map
Real.instIsOrderedRing
homotopyFrom_apply
ContinuousMap.HomotopyWith.apply_zero
Equiv.left_inv
ContinuousMap.HomotopyWith.apply_one
Continuous.comp
ContinuousMap.continuous_toFun
eq_or_ne
ContinuousMap.HomotopyRel.eq_fst
boundary
homotopicTo πŸ“–mathematicalβ€”Path.Homotopic
Set.Elem
ContinuousMap
Pi.topologicalSpace
Real
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
GenLoop
ContinuousMap.compactOpen
const
toLoop
β€”Nonempty.map
Real.instIsOrderedRing
homotopyTo_apply
ContinuousMap.HomotopyRel.eq_fst
Cube.insertAt_boundary
ContinuousMapClass.map_continuous
ContinuousMap.instContinuousMapClass
ext
toLoop_apply
ContinuousMap.HomotopyWith.apply_zero
ContinuousMap.HomotopyWith.apply_one
Continuous.comp
ContinuousMap.continuous_toFun
Homeomorph.funSplitAt_symm_apply
homotopyFrom_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
Set.Elem
Real
unitInterval
instTopologicalSpaceProd
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Pi.topologicalSpace
ContinuousMap.instFunLike
homotopyFrom
GenLoop
ContinuousMap.HomotopyWith
ContinuousMap.compactOpen
Path.toContinuousMap
const
toLoop
ContinuousMap.HomotopyWith.instFunLike
Homeomorph
EquivLike.toFunLike
Homeomorph.instEquivLike
Cube.splitAt
β€”β€”
homotopyTo_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
Pi.topologicalSpace
Set.Elem
Real
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
instTopologicalSpaceProd
ContinuousMap.compactOpen
homotopyTo
ContinuousMap.HomotopyRel
GenLoop
Cube.boundary
ContinuousMap.HomotopyWith.instFunLike
Homeomorph
EquivLike.toFunLike
Homeomorph.instEquivLike
Cube.insertAt
β€”β€”
instContinuousEval πŸ“–mathematicalβ€”ContinuousEval
Set.Elem
ContinuousMap
Pi.topologicalSpace
Real
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
GenLoop
instFunLike
ContinuousMap.compactOpen
β€”ContinuousEval.of_continuous_forget
ContinuousMap.instContinuousEvalOfLocallyCompactPair
instLocallyCompactPairOfLocallyCompactSpace
Function.locallyCompactSpace
locallyCompact_of_proper
proper_of_compact
compactSpace_Icc
ConditionallyCompleteLinearOrder.toCompactIccSpace
instOrderTopologyReal
continuous_subtype_val
instContinuousEvalConst πŸ“–mathematicalβ€”ContinuousEvalConst
Set.Elem
ContinuousMap
Pi.topologicalSpace
Real
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
GenLoop
instFunLike
ContinuousMap.compactOpen
β€”ContinuousEval.toContinuousEvalConst
instContinuousEval
loopHomeo_apply πŸ“–mathematicalβ€”DFunLike.coe
Homeomorph
Set.Elem
ContinuousMap
Pi.topologicalSpace
Real
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
GenLoop
LoopSpace
ContinuousMap.compactOpen
const
Path.instTopologicalSpace
EquivLike.toFunLike
Homeomorph.instEquivLike
loopHomeo
toLoop
β€”β€”
loopHomeo_symm_apply πŸ“–mathematicalβ€”DFunLike.coe
Homeomorph
LoopSpace
Set.Elem
ContinuousMap
Pi.topologicalSpace
Real
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
GenLoop
ContinuousMap.compactOpen
const
Path.instTopologicalSpace
EquivLike.toFunLike
Homeomorph.instEquivLike
Homeomorph.symm
loopHomeo
fromLoop
β€”β€”
mk_apply πŸ“–mathematicalContinuousMap
Pi.topologicalSpace
Set.Elem
Real
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
GenLoop
DFunLike.coe
instFunLike
ContinuousMap.instFunLike
β€”β€”
toLoop_apply πŸ“–mathematicalβ€”DFunLike.coe
Set.Elem
ContinuousMap
Pi.topologicalSpace
Real
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
GenLoop
instFunLike
LoopSpace
ContinuousMap.compactOpen
const
Path.instFunLike
toLoop
Homeomorph
instTopologicalSpaceProd
EquivLike.toFunLike
Homeomorph.instEquivLike
Cube.insertAt
β€”β€”
toLoop_apply_coe πŸ“–mathematicalβ€”ContinuousMap
Pi.topologicalSpace
Set.Elem
Real
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
GenLoop
DFunLike.coe
Path
ContinuousMap.compactOpen
const
Path.instFunLike
toLoop
ContinuousMap.instFunLike
ContinuousMap.curry
ContinuousMap.comp
instTopologicalSpaceProd
toContinuousMap
Homeomorph
EquivLike.toFunLike
Homeomorph.instEquivLike
Cube.insertAt
β€”β€”
to_from πŸ“–mathematicalβ€”toLoop
fromLoop
β€”Real.instIsOrderedRing
Homeomorph.toContinuousMap_comp_symm
ContinuousMap.comp_id
Path.ext
ext
transAt_distrib πŸ“–mathematicalβ€”transAtβ€”ext
copy.congr_simp
Function.update_apply
Set.projIcc.congr_simp
ite_ite_comm

GenLoop.Homotopic

Definitions

NameCategoryTheorems
setoid πŸ“–CompOp
6 mathmath: HomotopyGroup.symmAt_indep, HomotopyGroup.isUnital_auxGroup, HomotopyGroup.transAt_indep, HomotopyGroup.mul_spec, HomotopyGroup.one_def, HomotopyGroup.inv_spec

Theorems

NameKindAssumesProvesValidatesDepends On
equiv πŸ“–mathematicalβ€”Set.Elem
ContinuousMap
Pi.topologicalSpace
Real
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
GenLoop
GenLoop.Homotopic
β€”refl
symm
trans
refl πŸ“–mathematicalβ€”GenLoop.Homotopicβ€”ContinuousMap.HomotopicRel.refl
trans πŸ“–mathematicalβ€”GenLoop.Homotopicβ€”ContinuousMap.HomotopicRel.trans

HomotopyGroup

Definitions

NameCategoryTheorems
auxGroup πŸ“–CompOp
2 mathmath: auxGroup_indep, isUnital_auxGroup
commGroup πŸ“–CompOpβ€”
group πŸ“–CompOp
2 mathmath: one_def, inv_spec
pi0EquivZerothHomotopy πŸ“–CompOpβ€”
pi1EquivFundamentalGroup πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
auxGroup_indep πŸ“–mathematicalβ€”auxGroupβ€”Group.ext
EckmannHilton.mul
isUnital_auxGroup
GenLoop.fromLoop_trans_toLoop
GenLoop.transAt_distrib
inv_spec πŸ“–mathematicalβ€”HomotopyGroup
InvOneClass.toInv
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
group
Set.Elem
ContinuousMap
Pi.topologicalSpace
Real
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
GenLoop
GenLoop.Homotopic.setoid
GenLoop.symmAt
β€”symmAt_indep
GenLoop.fromLoop_symm_toLoop
isUnital_auxGroup πŸ“–mathematicalβ€”EckmannHilton.IsUnital
HomotopyGroup
Semigroup.toMul
Monoid.toSemigroup
DivInvMonoid.toMonoid
Group.toDivInvMonoid
auxGroup
Set.Elem
ContinuousMap
Pi.topologicalSpace
Real
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
GenLoop
GenLoop.Homotopic.setoid
GenLoop.const
β€”Monoid.one_mul
Monoid.mul_one
mul_spec πŸ“–mathematicalβ€”Set.Elem
ContinuousMap
Pi.topologicalSpace
Real
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
GenLoop
GenLoop.Homotopic.setoid
GenLoop.transAt
β€”transAt_indep
GenLoop.fromLoop_trans_toLoop
one_def πŸ“–mathematicalβ€”HomotopyGroup
InvOneClass.toOne
DivInvOneMonoid.toInvOneClass
DivisionMonoid.toDivInvOneMonoid
Group.toDivisionMonoid
group
Set.Elem
ContinuousMap
Pi.topologicalSpace
Real
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
GenLoop
GenLoop.Homotopic.setoid
GenLoop.const
β€”β€”
symmAt_indep πŸ“–mathematicalβ€”Set.Elem
ContinuousMap
Pi.topologicalSpace
Real
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
GenLoop
GenLoop.Homotopic.setoid
GenLoop.symmAt
β€”auxGroup_indep
transAt_indep πŸ“–mathematicalβ€”Set.Elem
ContinuousMap
Pi.topologicalSpace
Real
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
GenLoop
GenLoop.Homotopic.setoid
GenLoop.transAt
β€”auxGroup_indep

LoopSpace

Definitions

NameCategoryTheorems
inhabited πŸ“–CompOpβ€”

Topology

Definitions

NameCategoryTheorems
termΟ€_ πŸ“–CompOpβ€”
Β«termI^_Β» πŸ“–CompOpβ€”

Topology.Homotopy

Definitions

NameCategoryTheorems
termΞ© πŸ“–CompOpβ€”
Β«termΞ©^Β» πŸ“–CompOpβ€”

(root)

Definitions

NameCategoryTheorems
GenLoop πŸ“–CompOp
25 mathmath: GenLoop.fromLoop_apply, HomotopyGroup.symmAt_indep, GenLoop.homotopyTo_apply, HomotopyGroup.isUnital_auxGroup, GenLoop.loopHomeo_apply, HomotopyGroup.transAt_indep, GenLoop.instContinuousEval, GenLoop.ext_iff, GenLoop.continuous_fromLoop, GenLoop.toLoop_apply, HomotopyGroup.mul_spec, GenLoop.fromLoop_symm_toLoop, GenLoop.toLoop_apply_coe, GenLoop.loopHomeo_symm_apply, HomotopyGroup.one_def, HomotopyGroup.inv_spec, GenLoop.Homotopic.equiv, GenLoop.boundary, GenLoop.homotopyFrom_apply, GenLoop.const_apply, GenLoop.fromLoop_coe, GenLoop.homotopicTo, GenLoop.continuous_toLoop, GenLoop.fromLoop_trans_toLoop, GenLoop.instContinuousEvalConst
HomotopyGroup πŸ“–CompOp
3 mathmath: HomotopyGroup.isUnital_auxGroup, HomotopyGroup.one_def, HomotopyGroup.inv_spec
LoopSpace πŸ“–CompOp
6 mathmath: GenLoop.fromLoop_apply, GenLoop.loopHomeo_apply, GenLoop.continuous_fromLoop, GenLoop.toLoop_apply, GenLoop.loopHomeo_symm_apply, GenLoop.continuous_toLoop
genLoopEquivOfUnique πŸ“–CompOpβ€”
genLoopHomeoOfIsEmpty πŸ“–CompOpβ€”
homotopyGroupEquivFundamentalGroup πŸ“–CompOpβ€”
homotopyGroupEquivFundamentalGroupOfUnique πŸ“–CompOpβ€”
homotopyGroupEquivZerothHomotopyOfIsEmpty πŸ“–CompOpβ€”
instInhabitedHomotopyGroup πŸ“–CompOpβ€”

---

← Back to Index