Documentation Verification Report

LocallyContractible

📁 Source: Mathlib/Topology/Homotopy/LocallyContractible.lean

Statistics

MetricCount
DefinitionsLocallyContractibleSpace, StronglyLocallyContractibleSpace
2
TheoremsstronglyLocallyContractibleSpace, contractible_basis, locallyContractible, of_bases, stronglyLocallyContractibleSpace, contractible_subset_basis, instLocPathConnectedSpace, instStronglyLocallyContractibleSpaceProd
8
Total10

IsOpen

Theorems

NameKindAssumesProvesValidatesDepends On
stronglyLocallyContractibleSpace 📖mathematicalIsOpenStronglyLocallyContractibleSpace
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
Topology.IsOpenEmbedding.stronglyLocallyContractibleSpace
isOpenEmbedding_subtypeVal

StronglyLocallyContractibleSpace

Theorems

NameKindAssumesProvesValidatesDepends On
contractible_basis 📖mathematicalFilter.HasBasis
Set
nhds
Filter
Filter.instMembership
ContractibleSpace
Set.Elem
instTopologicalSpaceSubtype
Set.instMembership
locallyContractible 📖mathematicalLocallyContractibleSpaceFilter.HasBasis.mem_iff
contractible_basis
id_nullhomotopic
ContinuousMap.ext
ContinuousMap.comp_id
ContinuousMap.Homotopic.comp
ContinuousMap.Homotopic.refl
of_bases 📖mathematicalFilter.HasBasis
nhds
ContractibleSpace
Set.Elem
instTopologicalSpaceSubtype
Set
Set.instMembership
StronglyLocallyContractibleSpaceFilter.hasBasis_self
Filter.HasBasis.mem_iff
Filter.HasBasis.mem_of_mem

Topology.IsOpenEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
stronglyLocallyContractibleSpace 📖mathematicalTopology.IsOpenEmbeddingStronglyLocallyContractibleSpaceStronglyLocallyContractibleSpace.of_bases
Topology.IsInducing.basis_nhds
Topology.IsEmbedding.toIsInducing
toIsEmbedding
contractible_subset_basis
isOpen_range
Set.mem_range_self
Homeomorph.contractibleSpace_iff

(root)

Definitions

NameCategoryTheorems
LocallyContractibleSpace 📖MathDef
1 mathmath: StronglyLocallyContractibleSpace.locallyContractible
StronglyLocallyContractibleSpace 📖CompData
4 mathmath: Topology.IsOpenEmbedding.stronglyLocallyContractibleSpace, instStronglyLocallyContractibleSpaceProd, StronglyLocallyContractibleSpace.of_bases, IsOpen.stronglyLocallyContractibleSpace

Theorems

NameKindAssumesProvesValidatesDepends On
contractible_subset_basis 📖mathematicalIsOpen
Set
Set.instMembership
Filter.HasBasis
nhds
Filter
Filter.instMembership
ContractibleSpace
Set.Elem
instTopologicalSpaceSubtype
Set.instHasSubset
Filter.HasBasis.hasBasis_self_subset
StronglyLocallyContractibleSpace.contractible_basis
IsOpen.mem_nhds
instLocPathConnectedSpace 📖mathematicalLocPathConnectedSpaceFilter.HasBasis.to_hasBasis'
StronglyLocallyContractibleSpace.contractible_basis
isPathConnected_iff_pathConnectedSpace
ContractibleSpace.instPathConnectedSpace
le_rfl
instStronglyLocallyContractibleSpaceProd 📖mathematicalStronglyLocallyContractibleSpace
instTopologicalSpaceProd
StronglyLocallyContractibleSpace.of_bases
nhds_prod_eq
Filter.HasBasis.prod
StronglyLocallyContractibleSpace.contractible_basis
Homeomorph.contractibleSpace
ContractibleSpace.instProd

---

← Back to Index