Documentation Verification Report

Path

πŸ“ Source: Mathlib/Topology/Homotopy/Path.lean

Statistics

MetricCount
DefinitionsevalAt, Homotopic, cast, comp, map, mapFn, mk, refl, trans, instInhabitedQuotientUnitUnit, setoid, cast, eval, hcomp, map, pathCast, refl, reparam, symmβ‚‚, trans, toHomotopyConst
21
TheoremsevalAt_apply, pathExtend_evalAt, homotopic_const_iff, cast_cast, cast_rfl_rfl, eq, exact, ind, indβ‚‚, mk''_eq_mk, mk'_eq_mk, mk_cast, mk_map, mk_refl, mk_surjective, mk_symm, mk_trans, comp_lift, equivalence, hcomp, hpath_hext, instIsEquiv, map, map_lift, pathCast, refl, symmβ‚‚, trans, cast_apply, coeFn_injective, eval_apply, eval_one, eval_zero, hcomp_apply, hcomp_half, map_apply, refl_apply, source, symm_apply, symm_bijective, symm_symm, symm_trans, symmβ‚‚_apply, target, trans_apply, toHomotopyConst_apply
46
Total67

ContinuousMap

Theorems

NameKindAssumesProvesValidatesDepends On
homotopic_const_iff πŸ“–mathematicalβ€”Homotopic
const
Joined
β€”Real.instIsOrderedRing
Homotopy.apply_zero
Homotopy.apply_one

ContinuousMap.Homotopy

Definitions

NameCategoryTheorems
evalAt πŸ“–CompOp
9 mathmath: curveIntegral_add_curveIntegral_eq_of_hasFDerivWithinAt, evalAt_eq, pathExtend_evalAt, curveIntegral_add_curveIntegral_eq_of_hasFDerivWithinAt_off_countable, Path.Homotopic.map_trans_evalAt, evalAt_apply, curveIntegral_add_curveIntegral_eq_of_diffContOnCl, evalAt_affine, eq_diag_path

Theorems

NameKindAssumesProvesValidatesDepends On
evalAt_apply πŸ“–mathematicalβ€”DFunLike.coe
Path
ContinuousMap
ContinuousMap.instFunLike
Set.Elem
Real
unitInterval
Path.instFunLike
evalAt
ContinuousMap.Homotopy
instFunLike
β€”β€”
pathExtend_evalAt πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
Path.extend
evalAt
ContinuousMap.compactOpen
extend
β€”β€”

Path

Definitions

NameCategoryTheorems
Homotopic πŸ“–MathDef
25 mathmath: Homotopic.trans, Homotopic.trans_assoc, Homotopic.pathCast, Homotopic.symm, Homotopic.concat_one, Homotopic.trans_symm, Homotopic.symmβ‚‚, Homotopic.map, Homotopic.map_trans_evalAt, Homotopic.refl, Homotopic.refl_trans, SimplyConnectedSpace.paths_homotopic, Homotopic.Quotient.exact, Homotopic.Quotient.eq, Homotopic.trans_refl, Homotopic.symm_trans, Homotopic.hcomp, FundamentalGroupoid.fromPath_eq_iff_homotopic, simply_connected_iff_loops_nullhomotopic, simply_connected_iff_paths_homotopic', GenLoop.homotopicTo, Homotopic.instIsEquiv, Homotopic.concat_subpath, Homotopic.concat_two, Homotopic.equivalence
toHomotopyConst πŸ“–CompOp
1 mathmath: toHomotopyConst_apply

Theorems

NameKindAssumesProvesValidatesDepends On
toHomotopyConst_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap.Homotopy
ContinuousMap.const
Set.Elem
Real
unitInterval
ContinuousMap.Homotopy.instFunLike
toHomotopyConst
Path
instFunLike
β€”β€”

Path.Homotopic

Definitions

NameCategoryTheorems
instInhabitedQuotientUnitUnit πŸ“–CompOpβ€”
setoid πŸ“–CompOp
9 mathmath: FundamentalGroupoid.eqToHom_eq, ContinuousMap.Homotopy.evalAt_eq, ContinuousMap.Homotopy.heq_path_of_eq_image, Quotient.mk'_eq_mk, ContinuousMap.Homotopy.eq_path_of_eq_image, Quotient.mk''_eq_mk, FundamentalGroupoid.id_eq_path_refl, ContinuousMap.Homotopy.eq_diag_path, hpath_hext

Theorems

NameKindAssumesProvesValidatesDepends On
comp_lift πŸ“–mathematicalβ€”Path.trans
Quotient.trans
β€”Quotient.mk_trans
equivalence πŸ“–mathematicalβ€”Path
Path.Homotopic
β€”refl
symm
trans
hcomp πŸ“–mathematicalβ€”Path.Homotopic
Path.trans
β€”Nonempty.map2
hpath_hext πŸ“–mathematicalDFunLike.coe
Path
Set.Elem
Real
unitInterval
Path.instFunLike
Quotient
setoid
β€”Path.ext
Real.instIsOrderedRing
Path.target
Path.source
instIsEquiv πŸ“–mathematicalβ€”IsEquiv
Path
Path.Homotopic
β€”refl
trans
symm
map πŸ“–mathematicalβ€”Path.Homotopic
DFunLike.coe
ContinuousMap
ContinuousMap.instFunLike
Path.map
ContinuousMap.continuous
β€”Nonempty.map
ContinuousMap.continuous
map_lift πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
ContinuousMap.instFunLike
Path.map
ContinuousMap.continuous
Quotient.map
β€”Quotient.mk_map
pathCast πŸ“–mathematicalβ€”Path.Homotopic
Path.cast
β€”β€”
refl πŸ“–mathematicalβ€”Path.Homotopicβ€”β€”
symmβ‚‚ πŸ“–mathematicalβ€”Path.Homotopic
Path.symm
β€”Nonempty.map
trans πŸ“–mathematicalβ€”Path.Homotopicβ€”Nonempty.map2

Path.Homotopic.Quotient

Definitions

NameCategoryTheorems
cast πŸ“–CompOp
3 mathmath: cast_rfl_rfl, cast_cast, mk_cast
comp πŸ“–CompOpβ€”
map πŸ“–CompOp
8 mathmath: Path.Homotopic.map_lift, FundamentalGroupoid.map_map, FundamentalGroup.map_apply, IsCoveringMap.injective_path_homotopic_map, IsCoveringMap.injective_path_homotopic_mapFn, IsCoveringMap.monodromy_map, mk_map, FundamentalGroupoid.map_eq
mapFn πŸ“–CompOpβ€”
mk πŸ“–CompOpβ€”
refl πŸ“–CompOp
6 mathmath: trans_symm, refl_trans, trans_refl, IsCoveringMap.monodromy_refl, symm_trans, mk_refl
trans πŸ“–CompOp
11 mathmath: trans_symm, Path.Homotopic.comp_pi_eq_pi_comp, Path.Homotopic.comp_lift, refl_trans, FundamentalGroupoid.comp_eq, trans_refl, IsCoveringMap.monodromy_trans_apply, mk_trans, symm_trans, Path.Homotopic.comp_prod_eq_prod_comp, trans_assoc

Theorems

NameKindAssumesProvesValidatesDepends On
cast_cast πŸ“–mathematicalβ€”castβ€”ind
cast_rfl_rfl πŸ“–mathematicalβ€”castβ€”ind
eq πŸ“–mathematicalβ€”Path.Homotopicβ€”Quotient.eq
exact πŸ“–mathematicalβ€”Path.Homotopicβ€”β€”
ind πŸ“–β€”β€”β€”β€”β€”
indβ‚‚ πŸ“–β€”β€”β€”β€”β€”
mk''_eq_mk πŸ“–mathematicalβ€”Quotient.mk''
Path
Path.Homotopic.setoid
β€”β€”
mk'_eq_mk πŸ“–mathematicalβ€”Path
Path.Homotopic.setoid
β€”β€”
mk_cast πŸ“–mathematicalβ€”Path.cast
cast
β€”β€”
mk_map πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
ContinuousMap.instFunLike
Path.map
ContinuousMap.continuous
map
β€”ContinuousMap.continuous
mk_refl πŸ“–mathematicalβ€”Path.refl
refl
β€”β€”
mk_surjective πŸ“–mathematicalβ€”Path
Path.Homotopic.Quotient
β€”Quotient.mk'_surjective
mk_symm πŸ“–mathematicalβ€”Path.symm
symm
β€”β€”
mk_trans πŸ“–mathematicalβ€”Path.trans
trans
β€”β€”

Path.Homotopy

Definitions

NameCategoryTheorems
cast πŸ“–CompOp
1 mathmath: cast_apply
eval πŸ“–CompOp
4 mathmath: eval_zero, hcomp_apply, eval_apply, eval_one
hcomp πŸ“–CompOp
2 mathmath: hcomp_half, hcomp_apply
map πŸ“–CompOp
1 mathmath: map_apply
pathCast πŸ“–CompOpβ€”
refl πŸ“–CompOp
1 mathmath: refl_apply
reparam πŸ“–CompOpβ€”
symmβ‚‚ πŸ“–CompOp
1 mathmath: symmβ‚‚_apply
trans πŸ“–CompOp
2 mathmath: symm_trans, trans_apply

Theorems

NameKindAssumesProvesValidatesDepends On
cast_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap.HomotopyWith
Set.Elem
Real
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Path.toContinuousMap
ContinuousMap.HomotopyWith.instFunLike
cast
β€”Real.instIsOrderedRing
coeFn_injective πŸ“–mathematicalβ€”Path.Homotopy
DFunLike.coe
Set.Elem
Real
unitInterval
ContinuousMap.HomotopyWith.instFunLike
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Path.toContinuousMap
β€”DFunLike.coe_injective
Real.instIsOrderedRing
eval_apply πŸ“–mathematicalβ€”DFunLike.coe
Path
Set.Elem
Real
unitInterval
Path.instFunLike
eval
ContinuousMap
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ContinuousMap.instFunLike
ContinuousMap.compactOpen
ContinuousMap.Homotopy.curry
Path.toContinuousMap
ContinuousMap.HomotopyWith.toHomotopy
β€”β€”
eval_one πŸ“–mathematicalβ€”eval
Set.Elem
Real
unitInterval
Set.Icc.instOne
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
β€”Path.ext
Real.instIsOrderedRing
ContinuousMap.Homotopy.curry_one
eval_zero πŸ“–mathematicalβ€”eval
Set.Elem
Real
unitInterval
Set.Icc.instZero
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
β€”Path.ext
Real.instIsOrderedRing
ContinuousMap.Homotopy.curry_zero
hcomp_apply πŸ“–mathematicalβ€”DFunLike.coe
Path.Homotopy
Path.trans
Set.Elem
Real
unitInterval
ContinuousMap.HomotopyWith.instFunLike
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Path.toContinuousMap
hcomp
Real.instLE
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.decidableLE
Path
Path.instFunLike
eval
Real.instMul
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Real.instRing
Set.Icc
Real.instPreorder
Real.instZero
unitInterval.mul_pos_mem_iff
zero_lt_two
Real.partialOrder
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Ring.toSemiring
Real.instIsStrictOrderedRing
IsOrderedAddMonoid.toAddLeftMono
Real.instAddCommMonoid
Real.instIsOrderedAddMonoid
Preorder.toLE
Real.instSub
unitInterval.two_mul_sub_one_mem_iff
LT.lt.le
PartialOrder.toPreorder
LinearOrder.toPartialOrder
Real.linearOrder
Preorder.toLT
not_le
β€”Nat.instAtLeastTwoHAddOfNat
unitInterval.mul_pos_mem_iff
zero_lt_two
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
unitInterval.two_mul_sub_one_mem_iff
LT.lt.le
not_le
Path.extend_apply
hcomp_half πŸ“–mathematicalβ€”DFunLike.coe
Path.Homotopy
Path.trans
Set.Elem
Real
unitInterval
ContinuousMap.HomotopyWith.instFunLike
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Path.toContinuousMap
hcomp
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Preorder.toLE
Real.instPreorder
Real.instZero
β€”Nat.instAtLeastTwoHAddOfNat
Mathlib.Meta.NormNum.isRat_le_true
Real.instIsStrictOrderedRing
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_one
Mathlib.Meta.NormNum.isNNRat_inv_pos
IsStrictOrderedRing.toCharZero
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.IsNat.to_eq
Mathlib.Meta.NormNum.isNat_le_true
Real.instIsOrderedRing
Nat.cast_zero
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Path.extend_apply
Path.target
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_sub
Mathlib.Meta.NormNum.IsNat.to_isInt
Path.source
map_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap.HomotopyWith
Set.Elem
Real
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Path.toContinuousMap
ContinuousMap
ContinuousMap.instFunLike
Path.map
ContinuousMap.continuous
ContinuousMap.HomotopyWith.instFunLike
map
Path.Homotopy
β€”ContinuousMap.continuous
Real.instIsOrderedRing
refl_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap.HomotopyWith
Set.Elem
Real
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Path.toContinuousMap
ContinuousMap.HomotopyWith.instFunLike
refl
Path
Path.instFunLike
β€”Real.instIsOrderedRing
source πŸ“–mathematicalβ€”DFunLike.coe
Path.Homotopy
Set.Elem
Real
unitInterval
ContinuousMap.HomotopyWith.instFunLike
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Path.toContinuousMap
Set.Icc.instZero
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
β€”Real.instIsOrderedRing
ContinuousMap.HomotopyRel.eq_fst
Path.source
symm_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap.HomotopyWith
Set.Elem
Real
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Path.toContinuousMap
ContinuousMap.HomotopyWith.instFunLike
symm
unitInterval.symm
β€”Real.instIsOrderedRing
symm_bijective πŸ“–mathematicalβ€”Function.Bijective
Path.Homotopy
symm
β€”Function.bijective_iff_has_inverse
symm_symm
symm_symm πŸ“–mathematicalβ€”symmβ€”ContinuousMap.HomotopyRel.symm_symm
Real.instIsOrderedRing
symm_trans πŸ“–mathematicalβ€”symm
trans
β€”ContinuousMap.HomotopyRel.symm_trans
Real.instIsOrderedRing
symmβ‚‚_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap.HomotopyWith
Set.Elem
Real
unitInterval
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Path.toContinuousMap
Path.symm
ContinuousMap.HomotopyWith.instFunLike
symmβ‚‚
Path.Homotopy
unitInterval.symm
β€”Real.instIsOrderedRing
target πŸ“–mathematicalβ€”DFunLike.coe
Path.Homotopy
Set.Elem
Real
unitInterval
ContinuousMap.HomotopyWith.instFunLike
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Path.toContinuousMap
Set.Icc.instOne
Real.semiring
Real.partialOrder
Real.instIsOrderedRing
β€”Real.instIsOrderedRing
ContinuousMap.HomotopyRel.eq_fst
Path.target
trans_apply πŸ“–mathematicalβ€”DFunLike.coe
Path.Homotopy
Set.Elem
Real
unitInterval
ContinuousMap.HomotopyWith.instFunLike
instTopologicalSpaceSubtype
Set
Set.instMembership
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Path.toContinuousMap
trans
Real.instLE
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.decidableLE
Real.instMul
AddMonoidWithOne.toNatCast
AddGroupWithOne.toAddMonoidWithOne
Ring.toAddGroupWithOne
Real.instRing
Set.Icc
Real.instPreorder
Real.instZero
unitInterval.mul_pos_mem_iff
zero_lt_two
Real.partialOrder
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Ring.toSemiring
Real.instIsStrictOrderedRing
IsOrderedAddMonoid.toAddLeftMono
Real.instAddCommMonoid
Real.instIsOrderedAddMonoid
Preorder.toLE
Real.instSub
unitInterval.two_mul_sub_one_mem_iff
LT.lt.le
PartialOrder.toPreorder
LinearOrder.toPartialOrder
Real.linearOrder
Preorder.toLT
not_le
β€”ContinuousMap.HomotopyRel.trans_apply
Real.instIsOrderedRing

---

← Back to Index