Documentation Verification Report

Inseparable

πŸ“ Source: Mathlib/Topology/Inseparable.lean

Statistics

MetricCount
DefinitionsGeneralizingMap, Inseparable, instInhabited, instOne, instZero, liftβ‚‚, mk, SpecializingMap, StableUnderGeneralization, StableUnderSpecialization, instTopologicalSpaceSeparationQuotient
11
Theoremsspecialization_monotone, specializes_iff, comp, stableUnderGeneralization_image, stableUnderGeneralization_range, GeneralizingMap_iff_stableUnderGeneralization_image, map, map_of_continuousAt, map_of_continuousOn, map_of_continuousWithinAt, mem_closed_iff, mem_open_iff, nhds_eq, of_eq, prod, refl, rfl, specializes, specializes', trans, continuous_piecewise_of_specializes, not_inseparable, not_specializes, stableUnderSpecialization, specializingMap, of_subset_of_specializes, continuous_piecewise_of_specializes, not_inseparable, not_specializes, stableUnderGeneralization, generalizingMap, comap_mk_nhdsSet, comap_mk_nhdsSet_image, comap_mk_nhds_mk, continuousAt_lift, continuousAt_liftβ‚‚, continuousOn_lift, continuousOn_liftβ‚‚, continuousWithinAt_lift, continuousWithinAt_liftβ‚‚, continuous_lift, continuous_liftβ‚‚, continuous_mk, exists, forall, image_mk_closure, inseparableSetoid_eq_top_iff, instNonempty, instNontrivialOfNontrivialTopology, instSubsingleton, instSubsingletonOfIndiscreteTopology, isClosedMap_mk, isInducing_mk, isOpenMap_mk, isOpenQuotientMap_mk, isQuotientMap_mk, isQuotientMap_prodMap_mk, lift_comp_mk, lift_mk, liftβ‚‚_mk, map_mk_nhds, map_mk_nhdsSet, map_mk_nhdsWithin_preimage, map_prod_map_mk_nhds, mk_eq_mk, mk_one, mk_zero, nontrivial_iff, preimage_image_mk_closed, preimage_image_mk_open, preimage_mk_closure, preimage_mk_frontier, preimage_mk_interior, range_mk, subsingleton_iff, surjective_mk, tendsto_lift_nhdsWithin_mk, tendsto_lift_nhds_mk, tendsto_liftβ‚‚_nhds, tendsto_liftβ‚‚_nhdsWithin, antisymm, closure_subset, clusterPt, fst, map, map_of_continuousAt, map_of_continuousOn, map_of_continuousWithinAt, mem_closed, mem_closure, mem_open, nhds_le_nhds, not_disjoint, of_eq, prod, pure_le_nhds, snd, trans, closure_singleton_subset, comp, stableUnderSpecialization_image, stableUnderSpecialization_range, compl, image, preimage, Union_eq, compl, image, preimage, generalizingMap, inseparable_iff, specializes_iff, specializingMap, Union_closure_singleton_eq_iff, closure_singleton_eq_Iic, continuous_congr_of_inseparable, inseparable_def, inseparable_iff_closure_eq, inseparable_iff_forall_isClosed, inseparable_iff_forall_isOpen, inseparable_iff_mem_closure, inseparable_iff_specializes_and, inseparable_of_nhdsWithin_eq, inseparable_pi, inseparable_prod, ker_nhds_eq_specializes, not_inseparable_iff_exists_open, not_specializes_iff_exists_closed, not_specializes_iff_exists_open, specializes_TFAE, specializes_iff_closure_subset, specializes_iff_clusterPt, specializes_iff_forall_closed, specializes_iff_forall_open, specializes_iff_mem_closure, specializes_iff_nhds, specializes_iff_pure, specializes_of_eq, specializes_of_nhdsWithin, specializes_pi, specializes_prod, specializes_refl, specializes_rfl, specializingMap_iff_closure_singleton, specializingMap_iff_closure_singleton_subset, specializingMap_iff_isClosed_image_closure_singleton, specializingMap_iff_stableUnderSpecialization_image, specializingMap_iff_stableUnderSpecialization_image_singleton, stableUnderGeneralization_compl_iff, stableUnderGeneralization_empty, stableUnderGeneralization_iInter, stableUnderGeneralization_iUnion, stableUnderGeneralization_iff_exists_sInter_eq, stableUnderGeneralization_sInter, stableUnderGeneralization_sUnion, stableUnderGeneralization_univ, stableUnderSpecialization_compl_iff, stableUnderSpecialization_empty, stableUnderSpecialization_iInter, stableUnderSpecialization_iUnion, stableUnderSpecialization_iff_Union_eq, stableUnderSpecialization_iff_exists_sUnion_eq, stableUnderSpecialization_sInter, stableUnderSpecialization_sUnion, stableUnderSpecialization_univ, subtype_inseparable_iff, subtype_specializes_iff
167
Total178

Continuous

Theorems

NameKindAssumesProvesValidatesDepends On
specialization_monotone πŸ“–mathematicalContinuousMonotone
specializationPreorder
β€”Specializes.map

Filter.HasBasis

Theorems

NameKindAssumesProvesValidatesDepends On
specializes_iff πŸ“–mathematicalFilter.HasBasis
nhds
Specializes
Set
Set.instMembership
β€”specializes_iff_pure
ge_iff

GeneralizingMap

Theorems

NameKindAssumesProvesValidatesDepends On
comp πŸ“–β€”GeneralizingMapβ€”β€”Set.image_comp
stableUnderGeneralization_image πŸ“–mathematicalGeneralizingMap
StableUnderGeneralization
Set.imageβ€”IsUpperSet.image_fibration
stableUnderGeneralization_range πŸ“–mathematicalGeneralizingMapStableUnderGeneralization
Set.range
β€”StableUnderGeneralization.image
stableUnderGeneralization_univ
Set.image_univ

Inseparable

Theorems

NameKindAssumesProvesValidatesDepends On
map πŸ“–β€”Inseparable
Continuous
β€”β€”map_of_continuousAt
Continuous.continuousAt
map_of_continuousAt πŸ“–β€”Inseparable
ContinuousAt
β€”β€”map_of_continuousWithinAt
ContinuousAt.continuousWithinAt
Set.mem_univ
map_of_continuousOn πŸ“–β€”Inseparable
ContinuousOn
Set
Set.instMembership
β€”β€”map_of_continuousWithinAt
ContinuousOn.continuousWithinAt
map_of_continuousWithinAt πŸ“–β€”Inseparable
ContinuousWithinAt
Set
Set.instMembership
β€”β€”Specializes.antisymm
Specializes.map_of_continuousWithinAt
specializes
specializes'
mem_closed_iff πŸ“–mathematicalInseparableSet
Set.instMembership
β€”inseparable_iff_forall_isClosed
mem_open_iff πŸ“–mathematicalInseparable
IsOpen
Set
Set.instMembership
β€”inseparable_iff_forall_isOpen
nhds_eq πŸ“–mathematicalInseparablenhdsβ€”β€”
of_eq πŸ“–mathematicalβ€”Inseparableβ€”refl
prod πŸ“–mathematicalInseparableinstTopologicalSpaceProdβ€”inseparable_prod
refl πŸ“–mathematicalβ€”Inseparableβ€”β€”
rfl πŸ“–mathematicalβ€”Inseparableβ€”refl
specializes πŸ“–mathematicalInseparableSpecializesβ€”Eq.le
specializes' πŸ“–mathematicalInseparableSpecializesβ€”Eq.ge
trans πŸ“–β€”Inseparableβ€”β€”β€”

IsClosed

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_piecewise_of_specializes πŸ“–mathematicalContinuous
Specializes
Set.piecewiseβ€”Set.piecewise_compl
IsOpen.continuous_piecewise_of_specializes
isOpen_compl
not_inseparable πŸ“–mathematicalSet
Set.instMembership
Inseparableβ€”Inseparable.mem_closed_iff
not_specializes πŸ“–mathematicalSet
Set.instMembership
Specializesβ€”Specializes.mem_closed
stableUnderSpecialization πŸ“–mathematicalβ€”StableUnderSpecializationβ€”Specializes.mem_closed

IsClosedMap

Theorems

NameKindAssumesProvesValidatesDepends On
specializingMap πŸ“–mathematicalIsClosedMapSpecializingMapβ€”specializingMap_iff_stableUnderSpecialization_image_singleton
IsClosed.stableUnderSpecialization
isClosed_closure

IsCompact

Theorems

NameKindAssumesProvesValidatesDepends On
of_subset_of_specializes πŸ“–β€”IsCompact
Set
Set.instHasSubset
Set.instMembership
Specializes
β€”β€”LE.le.trans
Filter.monotone_principal
Specializes.clusterPt

IsOpen

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_piecewise_of_specializes πŸ“–mathematicalIsOpen
Continuous
Specializes
Set.piecewiseβ€”Specializes.mem_open
continuous_def
Set.piecewise_preimage
Set.ite_eq_of_subset_right
union
inter
preimage
not_inseparable πŸ“–mathematicalIsOpen
Set
Set.instMembership
Inseparableβ€”Inseparable.mem_open_iff
not_specializes πŸ“–mathematicalIsOpen
Set
Set.instMembership
Specializesβ€”Specializes.mem_open
stableUnderGeneralization πŸ“–mathematicalIsOpenStableUnderGeneralizationβ€”Specializes.mem_open

IsOpenEmbedding

Theorems

NameKindAssumesProvesValidatesDepends On
generalizingMap πŸ“–mathematicalTopology.IsOpenEmbeddingGeneralizingMapβ€”Topology.IsInducing.generalizingMap
Topology.IsOpenEmbedding.isInducing
IsOpen.stableUnderGeneralization
Topology.IsOpenEmbedding.isOpen_range

SeparationQuotient

Definitions

NameCategoryTheorems
instInhabited πŸ“–CompOpβ€”
instOne πŸ“–CompOp
3 mathmath: instNormOneClass, mk_one, mk_eq_one_iff
instZero πŸ“–CompOp
3 mathmath: instIsBoundedSMulSeparationQuotient, mk_eq_zero_iff, mk_zero
liftβ‚‚ πŸ“–CompOp
8 mathmath: tendsto_liftβ‚‚_nhds, tendsto_liftβ‚‚_nhdsWithin, continuousAt_liftβ‚‚, uniformContinuous_uncurry_liftβ‚‚, liftβ‚‚_mk, continuousWithinAt_liftβ‚‚, continuousOn_liftβ‚‚, continuous_liftβ‚‚
mk πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
comap_mk_nhdsSet πŸ“–mathematicalβ€”Filter.comap
SeparationQuotient
nhdsSet
instTopologicalSpaceSeparationQuotient
Set.preimage
β€”Set.image_preimage_eq
comap_mk_nhdsSet_image
comap_mk_nhdsSet_image πŸ“–mathematicalβ€”Filter.comap
SeparationQuotient
nhdsSet
instTopologicalSpaceSeparationQuotient
Set.image
β€”Topology.IsInducing.nhdsSet_eq_comap
comap_mk_nhds_mk πŸ“–mathematicalβ€”Filter.comap
SeparationQuotient
nhds
instTopologicalSpaceSeparationQuotient
β€”Topology.IsInducing.nhds_eq_comap
continuousAt_lift πŸ“–mathematicalβ€”ContinuousAt
SeparationQuotient
instTopologicalSpaceSeparationQuotient
lift
β€”β€”
continuousAt_liftβ‚‚ πŸ“–mathematicalβ€”ContinuousAt
SeparationQuotient
instTopologicalSpaceProd
instTopologicalSpaceSeparationQuotient
liftβ‚‚
β€”tendsto_liftβ‚‚_nhds
continuousOn_lift πŸ“–mathematicalβ€”ContinuousOn
SeparationQuotient
instTopologicalSpaceSeparationQuotient
lift
Set.preimage
β€”Function.Surjective.forall
continuousOn_liftβ‚‚ πŸ“–mathematicalβ€”ContinuousOn
SeparationQuotient
instTopologicalSpaceProd
instTopologicalSpaceSeparationQuotient
liftβ‚‚
Set.preimage
β€”Function.Surjective.forall
Function.Surjective.prodMap
continuousWithinAt_lift πŸ“–mathematicalβ€”ContinuousWithinAt
SeparationQuotient
instTopologicalSpaceSeparationQuotient
lift
Set.preimage
β€”β€”
continuousWithinAt_liftβ‚‚ πŸ“–mathematicalβ€”ContinuousWithinAt
SeparationQuotient
instTopologicalSpaceProd
instTopologicalSpaceSeparationQuotient
liftβ‚‚
Set.preimage
β€”tendsto_liftβ‚‚_nhdsWithin
continuous_lift πŸ“–mathematicalβ€”Continuous
SeparationQuotient
instTopologicalSpaceSeparationQuotient
lift
β€”β€”
continuous_liftβ‚‚ πŸ“–mathematicalβ€”Continuous
SeparationQuotient
instTopologicalSpaceProd
instTopologicalSpaceSeparationQuotient
liftβ‚‚
β€”β€”
continuous_mk πŸ“–mathematicalβ€”Continuous
SeparationQuotient
instTopologicalSpaceSeparationQuotient
β€”β€”
exists πŸ“–β€”β€”β€”β€”Quotient.exists
forall πŸ“–β€”β€”β€”β€”Quotient.forall
image_mk_closure πŸ“–mathematicalβ€”Set.image
SeparationQuotient
closure
instTopologicalSpaceSeparationQuotient
β€”HasSubset.Subset.antisymm
Set.instAntisymmSubset
image_closure_subset_closure_image
IsClosedMap.closure_image_subset
inseparableSetoid_eq_top_iff πŸ“–mathematicalβ€”inseparableSetoid
Top.top
OrderTop.toTop
Preorder.toLE
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
Lattice.toSemilatticeSup
CompleteLattice.toLattice
Setoid.completeLattice
BoundedOrder.toOrderTop
CompleteLattice.toBoundedOrder
IndiscreteTopology
β€”Setoid.eq_top_iff
TopologicalSpace.indiscrete_iff_forall_inseparable
instNonempty πŸ“–mathematicalβ€”SeparationQuotientβ€”Nonempty.map
instNontrivialOfNontrivialTopology πŸ“–mathematicalβ€”Nontrivial
SeparationQuotient
β€”nontrivial_iff
instSubsingleton πŸ“–mathematicalβ€”SeparationQuotientβ€”Function.Surjective.subsingleton
instSubsingletonOfIndiscreteTopology πŸ“–mathematicalβ€”SeparationQuotientβ€”subsingleton_iff
isClosedMap_mk πŸ“–mathematicalβ€”IsClosedMap
SeparationQuotient
instTopologicalSpaceSeparationQuotient
β€”Topology.IsInducing.isClosedMap
isClosed_univ
isInducing_mk πŸ“–mathematicalβ€”Topology.IsInducing
SeparationQuotient
instTopologicalSpaceSeparationQuotient
β€”le_antisymm
continuous_iff_le_induced
preimage_image_mk_open
isOpenMap_mk πŸ“–mathematicalβ€”IsOpenMap
SeparationQuotient
instTopologicalSpaceSeparationQuotient
β€”Topology.IsQuotientMap.isOpen_preimage
preimage_image_mk_open
isOpenQuotientMap_mk πŸ“–mathematicalβ€”IsOpenQuotientMap
SeparationQuotient
instTopologicalSpaceSeparationQuotient
β€”β€”
isQuotientMap_mk πŸ“–mathematicalβ€”Topology.IsQuotientMap
SeparationQuotient
instTopologicalSpaceSeparationQuotient
β€”β€”
isQuotientMap_prodMap_mk πŸ“–mathematicalβ€”Topology.IsQuotientMap
SeparationQuotient
instTopologicalSpaceProd
instTopologicalSpaceSeparationQuotient
β€”IsOpenQuotientMap.isQuotientMap
IsOpenQuotientMap.prodMap
lift_comp_mk πŸ“–mathematicalβ€”SeparationQuotient
lift
β€”β€”
lift_mk πŸ“–mathematicalβ€”liftβ€”β€”
liftβ‚‚_mk πŸ“–mathematicalβ€”liftβ‚‚β€”β€”
map_mk_nhds πŸ“–mathematicalβ€”Filter.map
SeparationQuotient
nhds
instTopologicalSpaceSeparationQuotient
β€”Filter.map_comap_of_surjective
map_mk_nhdsSet πŸ“–mathematicalβ€”Filter.map
SeparationQuotient
nhdsSet
instTopologicalSpaceSeparationQuotient
Set.image
β€”comap_mk_nhdsSet_image
Filter.map_comap_of_surjective
map_mk_nhdsWithin_preimage πŸ“–mathematicalβ€”Filter.map
SeparationQuotient
nhdsWithin
Set.preimage
instTopologicalSpaceSeparationQuotient
β€”nhdsWithin.eq_1
Filter.comap_principal
Filter.push_pull
map_mk_nhds
map_prod_map_mk_nhds πŸ“–mathematicalβ€”Filter.map
SeparationQuotient
nhds
instTopologicalSpaceProd
instTopologicalSpaceSeparationQuotient
β€”nhds_prod_eq
Filter.prod_map_map_eq'
map_mk_nhds
mk_eq_mk πŸ“–mathematicalβ€”Inseparableβ€”Quotient.eq''
mk_one πŸ“–mathematicalβ€”SeparationQuotient
instOne
β€”β€”
mk_zero πŸ“–mathematicalβ€”SeparationQuotient
instZero
β€”β€”
nontrivial_iff πŸ“–mathematicalβ€”Nontrivial
SeparationQuotient
NontrivialTopology
β€”Iff.not
subsingleton_iff
preimage_image_mk_closed πŸ“–mathematicalβ€”Set.preimage
SeparationQuotient
Set.image
β€”Set.Subset.antisymm
Inseparable.mem_closed_iff
Set.subset_preimage_image
preimage_image_mk_open πŸ“–mathematicalIsOpenSet.preimage
SeparationQuotient
Set.image
β€”Set.Subset.antisymm
Inseparable.mem_open_iff
Set.subset_preimage_image
preimage_mk_closure πŸ“–mathematicalβ€”Set.preimage
SeparationQuotient
closure
instTopologicalSpaceSeparationQuotient
β€”IsOpenMap.preimage_closure_eq_closure_preimage
preimage_mk_frontier πŸ“–mathematicalβ€”Set.preimage
SeparationQuotient
frontier
instTopologicalSpaceSeparationQuotient
β€”IsOpenMap.preimage_frontier_eq_frontier_preimage
preimage_mk_interior πŸ“–mathematicalβ€”Set.preimage
SeparationQuotient
interior
instTopologicalSpaceSeparationQuotient
β€”IsOpenMap.preimage_interior_eq_interior_preimage
range_mk πŸ“–mathematicalβ€”Set.range
SeparationQuotient
Set.univ
β€”Function.Surjective.range_eq
subsingleton_iff πŸ“–mathematicalβ€”SeparationQuotient
IndiscreteTopology
β€”Quotient.subsingleton_iff
inseparableSetoid_eq_top_iff
surjective_mk πŸ“–mathematicalβ€”SeparationQuotientβ€”Quot.mk_surjective
tendsto_lift_nhdsWithin_mk πŸ“–mathematicalβ€”Filter.Tendsto
SeparationQuotient
lift
nhdsWithin
instTopologicalSpaceSeparationQuotient
Set.preimage
β€”β€”
tendsto_lift_nhds_mk πŸ“–mathematicalβ€”Filter.Tendsto
SeparationQuotient
lift
nhds
instTopologicalSpaceSeparationQuotient
β€”β€”
tendsto_liftβ‚‚_nhds πŸ“–mathematicalβ€”Filter.Tendsto
SeparationQuotient
liftβ‚‚
nhds
instTopologicalSpaceProd
instTopologicalSpaceSeparationQuotient
β€”map_prod_map_mk_nhds
Filter.tendsto_map'_iff
tendsto_liftβ‚‚_nhdsWithin πŸ“–mathematicalβ€”Filter.Tendsto
SeparationQuotient
liftβ‚‚
nhdsWithin
instTopologicalSpaceProd
instTopologicalSpaceSeparationQuotient
Set.preimage
β€”nhdsWithin.eq_1
map_prod_map_mk_nhds
Filter.push_pull
Filter.comap_principal

Specializes

Theorems

NameKindAssumesProvesValidatesDepends On
antisymm πŸ“–mathematicalSpecializesInseparableβ€”le_antisymm
closure_subset πŸ“–mathematicalSpecializesSet
Set.instHasSubset
closure
Set.instSingletonSet
β€”specializes_iff_closure_subset
clusterPt πŸ“–mathematicalSpecializesClusterPtβ€”Filter.NeBot.mono
inf_le_inf_right
fst πŸ“–β€”Specializes
instTopologicalSpaceProd
β€”β€”specializes_prod
map πŸ“–β€”Specializes
Continuous
β€”β€”map_of_continuousAt
Continuous.continuousAt
map_of_continuousAt πŸ“–β€”Specializes
ContinuousAt
β€”β€”map_of_continuousWithinAt
ContinuousAt.continuousWithinAt
Set.mem_univ
map_of_continuousOn πŸ“–β€”Specializes
ContinuousOn
Set
Set.instMembership
β€”β€”map_of_continuousWithinAt
ContinuousOn.continuousWithinAt
map_of_continuousWithinAt πŸ“–β€”Specializes
ContinuousWithinAt
Set
Set.instMembership
β€”β€”specializes_iff_pure
Filter.map_pure
Filter.map_mono
le_inf
Filter.pure_le_principal
ContinuousWithinAt.tendsto
mem_closed πŸ“–β€”Specializes
Set
Set.instMembership
β€”β€”specializes_iff_forall_closed
mem_closure πŸ“–mathematicalSpecializesSet
Set.instMembership
closure
Set.instSingletonSet
β€”specializes_iff_mem_closure
mem_open πŸ“–β€”Specializes
IsOpen
Set
Set.instMembership
β€”β€”specializes_iff_forall_open
nhds_le_nhds πŸ“–mathematicalSpecializesFilter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
nhds
β€”specializes_iff_nhds
not_disjoint πŸ“–mathematicalSpecializesDisjoint
Filter
Filter.instPartialOrder
BoundedOrder.toOrderBot
Preorder.toLE
PartialOrder.toPreorder
CompleteLattice.toBoundedOrder
Filter.instCompleteLatticeFilter
nhds
β€”Disjoint.mono_right
nhds_neBot
of_eq πŸ“–mathematicalβ€”Specializesβ€”specializes_of_eq
prod πŸ“–mathematicalSpecializesinstTopologicalSpaceProdβ€”specializes_prod
pure_le_nhds πŸ“–mathematicalSpecializesFilter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.instPure
nhds
β€”specializes_iff_pure
snd πŸ“–β€”Specializes
instTopologicalSpaceProd
β€”β€”specializes_prod
trans πŸ“–β€”Specializesβ€”β€”le_trans

SpecializingMap

Theorems

NameKindAssumesProvesValidatesDepends On
closure_singleton_subset πŸ“–mathematicalSpecializingMapSet
Set.instHasSubset
closure
Set.instSingletonSet
Set.image
β€”specializingMap_iff_closure_singleton_subset
comp πŸ“–β€”SpecializingMapβ€”β€”Set.image_comp
stableUnderSpecialization_image πŸ“–mathematicalSpecializingMap
StableUnderSpecialization
Set.imageβ€”IsLowerSet.image_fibration
stableUnderSpecialization_range πŸ“–mathematicalSpecializingMapStableUnderSpecialization
Set.range
β€”StableUnderSpecialization.image
stableUnderSpecialization_univ
Set.image_univ

StableUnderGeneralization

Theorems

NameKindAssumesProvesValidatesDepends On
compl πŸ“–mathematicalStableUnderGeneralizationStableUnderSpecialization
Compl.compl
Set
Set.instCompl
β€”stableUnderSpecialization_compl_iff
image πŸ“–mathematicalGeneralizingMap
StableUnderGeneralization
Set.imageβ€”GeneralizingMap.stableUnderGeneralization_image
preimage πŸ“–mathematicalStableUnderGeneralization
Continuous
Set.preimageβ€”IsUpperSet.preimage
Continuous.specialization_monotone

StableUnderSpecialization

Theorems

NameKindAssumesProvesValidatesDepends On
Union_eq πŸ“–mathematicalStableUnderSpecializationSet.iUnion
Set
Set.instMembership
closure
Set.instSingletonSet
β€”stableUnderSpecialization_iff_Union_eq
compl πŸ“–mathematicalStableUnderSpecializationStableUnderGeneralization
Compl.compl
Set
Set.instCompl
β€”stableUnderGeneralization_compl_iff
image πŸ“–mathematicalSpecializingMap
StableUnderSpecialization
Set.imageβ€”SpecializingMap.stableUnderSpecialization_image
preimage πŸ“–mathematicalStableUnderSpecialization
Continuous
Set.preimageβ€”IsLowerSet.preimage
Continuous.specialization_monotone

Topology.IsInducing

Theorems

NameKindAssumesProvesValidatesDepends On
generalizingMap πŸ“–mathematicalTopology.IsInducing
StableUnderGeneralization
Set.range
GeneralizingMapβ€”specializes_iff
inseparable_iff πŸ“–mathematicalTopology.IsInducingInseparableβ€”specializes_iff
specializes_iff πŸ“–mathematicalTopology.IsInducingSpecializesβ€”closure_eq_preimage_closure_image
Set.image_singleton
specializingMap πŸ“–mathematicalTopology.IsInducing
StableUnderSpecialization
Set.range
SpecializingMapβ€”specializes_iff

(root)

Definitions

NameCategoryTheorems
GeneralizingMap πŸ“–MathDef
11 mathmath: RingHom.Flat.generalizingMap_comap, TopologicalSpace.IsOpenCover.generalizingMap_iff_comp, AlgebraicGeometry.instIsZariskiLocalAtSourceTopologicallyGeneralizingMap, Topology.IsInducing.generalizingMap, AlgebraicGeometry.Flat.generalizingMap, Algebra.HasGoingDown.iff_generalizingMap_primeSpectrumComap, GeneralizingMap_iff_stableUnderGeneralization_image, AlgebraicGeometry.instRespectsIsoSchemeTopologicallyGeneralizingMap, AlgebraicGeometry.instIsZariskiLocalAtTargetTopologicallyGeneralizingMap, TopologicalSpace.IsOpenCover.generalizingMap_iff_restrictPreimage, IsOpenEmbedding.generalizingMap
Inseparable πŸ“–MathDef
63 mathmath: OnePoint.not_inseparable_infty_coe, SeparationQuotient.mk_eq_mk, inseparable_one_iff_norm, Inseparable.rfl, inseparable_top, group_inseparable_iff, inseparable_iff_specializes_and, TopologicalSpace.eq_top_iff_forall_inseparable, Metric.inseparable_iff, inseparable_pi, IsGenericPoint.inseparable, inseparable_eq_eq, not_inseparable_iff_exists_open, CauchyFilter.cauchyFilter_eq, NontrivialTopology.exists_not_inseparable, Inseparable.of_nhds_neBot, inseparable_def, ContinuousMap.inseparable_coe, Inseparable.of_eq, r1Space_iff_inseparable_or_disjoint_nhds, inseparable_iff_ker_uniformity, IsClosed.not_inseparable, CauchyFilter.inseparable_iff, inseparable_of_nhdsWithin_eq, inseparable_iff_forall_isOpen, isClosed_setOf_inseparable, subtype_inseparable_iff, IsCompact.closure_eq_biUnion_inseparable, TopologicalSpace.nontrivial_iff_exists_not_inseparable, Specializes.antisymm, TopologicalSpace.ne_top_iff_exists_not_inseparable, TopologicalSpace.IsTopologicalBasis.inseparable_iff, inseparable_iff_mem_closure, AbstractCompletion.inseparable_extend_coe, Inseparable.refl, tendsto_nhds_unique_inseparable, Specializes.inseparable, OnePoint.inseparable_coe, disjoint_nhds_nhds_iff_not_inseparable, Inseparable.all, t0Space_iff_not_inseparable, inseparable_iff_eq, inseparable_zero_iff_norm, OnePoint.inseparable_iff, inseparable_iff_forall_isClosed, specializes_iff_inseparable, inseparable_iff_clusterPt_uniformity, inseparable_prod, inseparable_iff_closure_eq, CauchyFilter.inseparable_iff_of_le_nhds, Metric.inseparable_iff_nndist, CauchyFilter.inseparable_lim_iff, TopologicalSpace.indiscrete_iff_forall_inseparable, OnePoint.not_inseparable_coe_infty, Filter.Tendsto.inseparable_iff_uniformity, IsDenseInducing.inseparable_extend, IsCompact.mem_closure_iff_exists_inseparable, EMetric.inseparable_iff, addGroup_inseparable_iff, IsOpen.not_inseparable, Filter.HasBasis.inseparable_iff_uniformity, Topology.IsInducing.inseparable_iff, UniformSpace.Completion.inseparable_extension_coe
SpecializingMap πŸ“–MathDef
13 mathmath: AlgebraicGeometry.ValuativeCriterion.Existence.specializingMap, specializingMap_iff_closure_singleton_subset, AlgebraicGeometry.specializingMap_isZariskiLocalAtTarget, AlgebraicGeometry.ValuativeCriterion.Existence.eq, AlgebraicGeometry.specializingMap_respectsIso, specializingMap_iff_stableUnderSpecialization_image, Topology.IsInducing.specializingMap, AlgebraicGeometry.universallyClosed_eq_universallySpecializing, IsClosedMap.specializingMap, specializingMap_iff_isClosed_image_closure_singleton, specializingMap_iff_closure_singleton, specializingMap_iff_stableUnderSpecialization_image_singleton, AlgebraicGeometry.isClosedMap_iff_specializingMap
StableUnderGeneralization πŸ“–MathDef
11 mathmath: GeneralizingMap.stableUnderGeneralization_range, stableUnderGeneralization_compl_iff, StableUnderSpecialization.compl, stableUnderSpecialization_compl_iff, stableUnderGeneralization_empty, PrimeSpectrum.stableUnderGeneralization_singleton, stableUnderGeneralization_iff_exists_sInter_eq, stableUnderGeneralization_univ, GeneralizingMap_iff_stableUnderGeneralization_image, PrimeSpectrum.isOpen_singleton_tfae_of_isNoetherian_of_isJacobsonRing, IsOpen.stableUnderGeneralization
StableUnderSpecialization πŸ“–MathDef
16 mathmath: SpecializingMap.stableUnderSpecialization_range, stableUnderGeneralization_compl_iff, specializingMap_iff_stableUnderSpecialization_image, PrimeSpectrum.stableUnderSpecialization_range_iff, stableUnderSpecialization_iff_exists_sUnion_eq, IsClosed.stableUnderSpecialization, PrimeSpectrum.stableUnderSpecialization_singleton, stableUnderSpecialization_compl_iff, StableUnderGeneralization.compl, stableUnderSpecialization_univ, Module.stableUnderSpecialization_support, specializingMap_iff_stableUnderSpecialization_image_singleton, stableUnderSpecialization_empty, Union_closure_singleton_eq_iff, stableUnderSpecialization_iff_Union_eq, PrimeSpectrum.stableUnderSpecialization_image_iff
instTopologicalSpaceSeparationQuotient πŸ“–CompOp
65 mathmath: SeparationQuotient.t2Space, SeparationQuotient.mkCLM_comp_outCLM, SeparationQuotient.tendsto_lift_nhds_mk, SeparationQuotient.continuous_mk, SeparationQuotient.instNormalSpace, SeparationQuotient.map_mk_nhdsSet, SeparationQuotient.isQuotientMap_prodMap_mk, SeparationQuotient.instContinuousNeg, SeparationQuotient.instIsTopologicalGroup, SeparationQuotient.comap_mk_nhds_mk, SeparationQuotient.tendsto_liftβ‚‚_nhds, SeparationQuotient.instContinuousInv, SeparationQuotient.continuousAt_lift, SeparationQuotient.isInducing_mk, SeparationQuotient.continuous_lift, SeparationQuotient.instT0Space, SeparationQuotient.tendsto_liftβ‚‚_nhdsWithin, instT3SpaceSeparationQuotientOfRegularSpace, SeparationQuotient.outCLM_uniformContinuous, SeparationQuotient.continuousWithinAt_lift, UniformSpace.topologicalRing, SeparationQuotient.outCLM_isUniformEmbedding, SeparationQuotient.isQuotientMap_mk, SeparationQuotient.image_mk_closure, SeparationQuotient.continuousOn_lift, SeparationQuotient.t1Space_iff, SeparationQuotient.exists_out_continuousLinearMap, SeparationQuotient.mk_outCLM, SeparationQuotient.instContinuousAdd, SeparationQuotient.continuousAt_liftβ‚‚, SeparationQuotient.isOpenMap_mk, SeparationQuotient.postcomp_mkCLM_surjective, SeparationQuotient.instContinuousDiv, SeparationQuotient.mk_comp_outCLM, SeparationQuotient.liftContinuousAddCommMonoidHom_mk, SeparationQuotient.preimage_mk_closure, instT5SpaceSeparationQuotientOfCompletelyNormalSpaceOfR0Space, SeparationQuotient.instContinuousConstSMul, SeparationQuotient.liftCLM_apply, SeparationQuotient.isOpenQuotientMap_mk, SeparationQuotient.preimage_mk_interior, SeparationQuotient.liftNormedAddGroupHom_apply, SeparationQuotient.preimage_mk_frontier, SeparationQuotient.comap_mk_nhdsSet_image, SeparationQuotient.instContinuousMul, SeparationQuotient.comap_mk_nhdsSet, SeparationQuotient.continuousWithinAt_liftβ‚‚, SeparationQuotient.isEmbedding_outCLM, SeparationQuotient.tendsto_lift_nhdsWithin_mk, SeparationQuotient.map_mk_nhdsWithin_preimage, SeparationQuotient.liftCLM_mk, SeparationQuotient.t2Space_iff, SeparationQuotient.continuousOn_liftβ‚‚, SeparationQuotient.continuous_liftβ‚‚, SeparationQuotient.map_prod_map_mk_nhds, SeparationQuotient.instContinuousSMul, SeparationQuotient.mkCLM_apply, SeparationQuotient.liftContinuousCommMonoidHom_mk, SeparationQuotient.isClosedMap_mk, SeparationQuotient.map_mk_nhds, SeparationQuotient.instContinuousSub, SeparationQuotient.outCLM_injective, SeparationQuotient.instIsTopologicalAddGroup, SeparationQuotient.instContinuousConstVAdd, SeparationQuotient.outCLM_isUniformInducing

Theorems

NameKindAssumesProvesValidatesDepends On
GeneralizingMap_iff_stableUnderGeneralization_image πŸ“–mathematicalβ€”GeneralizingMap
StableUnderGeneralization
Set.image
β€”Relation.fibration_iff_isUpperSet_image
Union_closure_singleton_eq_iff πŸ“–mathematicalβ€”Set.iUnion
Set
Set.instMembership
closure
Set.instSingletonSet
StableUnderSpecialization
β€”Set.iUnion_congr_Prop
closure_singleton_eq_Iic
coe_lowerClosure
closure_singleton_eq_Iic πŸ“–mathematicalβ€”closure
Set
Set.instSingletonSet
Set.Iic
specializationPreorder
β€”Set.ext
specializes_iff_mem_closure
continuous_congr_of_inseparable πŸ“–mathematicalInseparableContinuousβ€”Topology.IsInducing.continuous_iff
continuous_congr
inseparable_def πŸ“–mathematicalβ€”Inseparable
nhds
β€”β€”
inseparable_iff_closure_eq πŸ“–mathematicalβ€”Inseparable
closure
Set
Set.instSingletonSet
β€”Set.instReflSubset
Set.instAntisymmSubset
inseparable_iff_forall_isClosed πŸ“–mathematicalβ€”Inseparable
Set
Set.instMembership
β€”β€”
inseparable_iff_forall_isOpen πŸ“–mathematicalβ€”Inseparable
Set
Set.instMembership
β€”β€”
inseparable_iff_mem_closure πŸ“–mathematicalβ€”Inseparable
Set
Set.instMembership
closure
Set.instSingletonSet
β€”inseparable_iff_specializes_and
inseparable_iff_specializes_and πŸ“–mathematicalβ€”Inseparable
Specializes
β€”le_antisymm_iff
inseparable_of_nhdsWithin_eq πŸ“–mathematicalSet
Set.instMembership
nhdsWithin
Inseparableβ€”Specializes.antisymm
specializes_of_nhdsWithin
Eq.le
Eq.ge
inseparable_pi πŸ“–mathematicalβ€”Inseparable
Pi.topologicalSpace
β€”nhds_pi
nhds_neBot
inseparable_prod πŸ“–mathematicalβ€”Inseparable
instTopologicalSpaceProd
β€”nhds_prod_eq
nhds_neBot
ker_nhds_eq_specializes πŸ“–mathematicalβ€”Filter.ker
nhds
setOf
Specializes
β€”Set.ext
not_inseparable_iff_exists_open πŸ“–mathematicalβ€”Inseparable
IsOpen
Xor'
Set
Set.instMembership
β€”β€”
not_specializes_iff_exists_closed πŸ“–mathematicalβ€”Specializes
IsClosed
Set
Set.instMembership
β€”specializes_iff_forall_closed
Mathlib.Tactic.Push.not_forall_eq
not_specializes_iff_exists_open πŸ“–mathematicalβ€”Specializes
IsOpen
Set
Set.instMembership
β€”specializes_iff_forall_open
Mathlib.Tactic.Push.not_forall_eq
specializes_TFAE πŸ“–mathematicalβ€”List.TFAE
Specializes
Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.instPure
nhds
Set
Set.instMembership
closure
Set.instSingletonSet
Set.instHasSubset
ClusterPt
β€”LE.le.trans
pure_le_nhds
IsOpen.mem_nhds
of_not_not
IsClosed.isOpen_compl
isClosed_closure
subset_closure
Set.mem_singleton
IsClosed.closure_subset_iff
Set.singleton_subset_iff
mem_closure_iff_clusterPt
Filter.principal_singleton
Filter.HasBasis.ge_iff
nhds_basis_opens
mem_closure_iff
List.tfae_of_cycle
specializes_iff_closure_subset πŸ“–mathematicalβ€”Specializes
Set
Set.instHasSubset
closure
Set.instSingletonSet
β€”List.TFAE.out
specializes_TFAE
specializes_iff_clusterPt πŸ“–mathematicalβ€”Specializes
ClusterPt
Filter
Filter.instPure
β€”List.TFAE.out
specializes_TFAE
specializes_iff_forall_closed πŸ“–mathematicalβ€”Specializes
Set
Set.instMembership
β€”List.TFAE.out
specializes_TFAE
specializes_iff_forall_open πŸ“–mathematicalβ€”Specializes
Set
Set.instMembership
β€”List.TFAE.out
specializes_TFAE
specializes_iff_mem_closure πŸ“–mathematicalβ€”Specializes
Set
Set.instMembership
closure
Set.instSingletonSet
β€”List.TFAE.out
specializes_TFAE
specializes_iff_nhds πŸ“–mathematicalβ€”Specializes
Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
nhds
β€”β€”
specializes_iff_pure πŸ“–mathematicalβ€”Specializes
Filter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
Filter.instPure
nhds
β€”List.TFAE.out
specializes_TFAE
specializes_of_eq πŸ“–mathematicalβ€”Specializesβ€”specializes_refl
specializes_of_nhdsWithin πŸ“–mathematicalFilter
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
nhdsWithin
Set
Set.instMembership
Specializesβ€”specializes_iff_pure
le_inf
pure_le_nhds
Filter.le_principal_iff
inf_le_left
specializes_pi πŸ“–mathematicalβ€”Specializes
Pi.topologicalSpace
β€”nhds_pi
nhds_neBot
specializes_prod πŸ“–mathematicalβ€”Specializes
instTopologicalSpaceProd
β€”nhds_prod_eq
nhds_neBot
specializes_refl πŸ“–mathematicalβ€”Specializesβ€”specializes_rfl
specializes_rfl πŸ“–mathematicalβ€”Specializesβ€”le_rfl
specializingMap_iff_closure_singleton πŸ“–mathematicalContinuousSpecializingMap
Set.image
closure
Set
Set.instSingletonSet
β€”closure_singleton_eq_Iic
Relation.fibration_iff_image_Iic
Continuous.specialization_monotone
specializingMap_iff_closure_singleton_subset πŸ“–mathematicalβ€”SpecializingMap
Set
Set.instHasSubset
closure
Set.instSingletonSet
Set.image
β€”β€”
specializingMap_iff_isClosed_image_closure_singleton πŸ“–mathematicalContinuousSpecializingMap
IsClosed
Set.image
closure
Set
Set.instSingletonSet
β€”specializingMap_iff_closure_singleton
isClosed_closure
specializingMap_iff_stableUnderSpecialization_image_singleton
IsClosed.stableUnderSpecialization
specializingMap_iff_stableUnderSpecialization_image πŸ“–mathematicalβ€”SpecializingMap
StableUnderSpecialization
Set.image
β€”Relation.fibration_iff_isLowerSet_image
specializingMap_iff_stableUnderSpecialization_image_singleton πŸ“–mathematicalβ€”SpecializingMap
StableUnderSpecialization
Set.image
closure
Set
Set.instSingletonSet
β€”closure_singleton_eq_Iic
Relation.fibration_iff_isLowerSet_image_Iic
stableUnderGeneralization_compl_iff πŸ“–mathematicalβ€”StableUnderGeneralization
Compl.compl
Set
Set.instCompl
StableUnderSpecialization
β€”isUpperSet_compl
stableUnderGeneralization_empty πŸ“–mathematicalβ€”StableUnderGeneralization
Set
Set.instEmptyCollection
β€”isUpperSet_empty
stableUnderGeneralization_iInter πŸ“–mathematicalStableUnderGeneralizationSet.iInterβ€”isUpperSet_iInter
stableUnderGeneralization_iUnion πŸ“–mathematicalStableUnderGeneralizationSet.iUnionβ€”isUpperSet_iUnion
stableUnderGeneralization_iff_exists_sInter_eq πŸ“–mathematicalβ€”StableUnderGeneralization
IsOpen
Set.sInter
β€”stableUnderSpecialization_compl_iff
stableUnderSpecialization_iff_exists_sUnion_eq
IsClosed.isOpen_compl
compl_injective
Set.sUnion_eq_compl_sInter_compl
stableUnderGeneralization_sInter
IsOpen.stableUnderGeneralization
stableUnderGeneralization_sInter πŸ“–mathematicalStableUnderGeneralizationSet.sInterβ€”isUpperSet_sInter
stableUnderGeneralization_sUnion πŸ“–mathematicalStableUnderGeneralizationSet.sUnionβ€”isUpperSet_sUnion
stableUnderGeneralization_univ πŸ“–mathematicalβ€”StableUnderGeneralization
Set.univ
β€”isUpperSet_univ
stableUnderSpecialization_compl_iff πŸ“–mathematicalβ€”StableUnderSpecialization
Compl.compl
Set
Set.instCompl
StableUnderGeneralization
β€”isLowerSet_compl
stableUnderSpecialization_empty πŸ“–mathematicalβ€”StableUnderSpecialization
Set
Set.instEmptyCollection
β€”isLowerSet_empty
stableUnderSpecialization_iInter πŸ“–mathematicalStableUnderSpecializationSet.iInterβ€”isLowerSet_iInter
stableUnderSpecialization_iUnion πŸ“–mathematicalStableUnderSpecializationSet.iUnionβ€”isLowerSet_iUnion
stableUnderSpecialization_iff_Union_eq πŸ“–mathematicalβ€”StableUnderSpecialization
Set.iUnion
Set
Set.instMembership
closure
Set.instSingletonSet
β€”Union_closure_singleton_eq_iff
stableUnderSpecialization_iff_exists_sUnion_eq πŸ“–mathematicalβ€”StableUnderSpecialization
IsClosed
Set.sUnion
β€”isClosed_closure
StableUnderSpecialization.Union_eq
Set.sUnion_image
stableUnderSpecialization_sUnion
IsClosed.stableUnderSpecialization
stableUnderSpecialization_sInter πŸ“–mathematicalStableUnderSpecializationSet.sInterβ€”isLowerSet_sInter
stableUnderSpecialization_sUnion πŸ“–mathematicalStableUnderSpecializationSet.sUnionβ€”isLowerSet_sUnion
stableUnderSpecialization_univ πŸ“–mathematicalβ€”StableUnderSpecialization
Set.univ
β€”isLowerSet_univ
subtype_inseparable_iff πŸ“–mathematicalβ€”Inseparable
instTopologicalSpaceSubtype
β€”Topology.IsInducing.inseparable_iff
Topology.IsInducing.subtypeVal
subtype_specializes_iff πŸ“–mathematicalβ€”Specializes
instTopologicalSpaceSubtype
β€”Topology.IsInducing.specializes_iff
Topology.IsInducing.subtypeVal

---

← Back to Index