Documentation Verification Report

CantorSet

πŸ“ Source: Mathlib/Topology/Instances/CantorSet.lean

Statistics

MetricCount
DefinitionscantorSequence, cantorSet, cantorSetEquivNatToBool, cantorSetHomeomorphNatToBool, cantorSpaceHomeomorphNatToCantorSpace, cantorStep, cantorToBinary, cantorToTernary, preCantorSet
9
TheoremscantorSequence_eq_self_sub_sum_cantorToTernary, cantorSequence_get_succ, cantorSequence_mem_cantorSet, cantorSet_eq_union_halves, cantorSet_eq_zero_two_ofDigits, cantorSet_subset_unitInterval, cantorStep_mem_cantorSet, cantorToTernary_ne_one, isClosed_cantorSet, isClosed_preCantorSet, isCompact_cantorSet, le_ofDigits_cantorToTernary_sum, ofDigits_bool_to_fin_three_mem_cantorSet, ofDigits_cantorToTernary, ofDigits_cantorToTernary_sum_le, ofDigits_zero_two_sequence_mem_cantorSet, ofDigits_zero_two_sequence_unique, preCantorSet_antitone, preCantorSet_subset_unitInterval, preCantorSet_succ, preCantorSet_zero, quarter_mem_cantorSet, quarter_mem_preCantorSet, quarters_mem_preCantorSet, zero_mem_cantorSet, zero_mem_preCantorSet
26
Total35

(root)

Definitions

NameCategoryTheorems
cantorSequence πŸ“–CompOp
3 mathmath: cantorSequence_mem_cantorSet, cantorSequence_eq_self_sub_sum_cantorToTernary, cantorSequence_get_succ
cantorSet πŸ“–CompOp
9 mathmath: ofDigits_zero_two_sequence_mem_cantorSet, zero_mem_cantorSet, ofDigits_bool_to_fin_three_mem_cantorSet, cantorSet_eq_zero_two_ofDigits, isClosed_cantorSet, cantorSet_subset_unitInterval, isCompact_cantorSet, cantorSet_eq_union_halves, quarter_mem_cantorSet
cantorSetEquivNatToBool πŸ“–CompOpβ€”
cantorSetHomeomorphNatToBool πŸ“–CompOpβ€”
cantorSpaceHomeomorphNatToCantorSpace πŸ“–CompOpβ€”
cantorStep πŸ“–CompOp
1 mathmath: cantorStep_mem_cantorSet
cantorToBinary πŸ“–CompOpβ€”
cantorToTernary πŸ“–CompOp
5 mathmath: ofDigits_cantorToTernary, le_ofDigits_cantorToTernary_sum, ofDigits_cantorToTernary_sum_le, cantorSequence_eq_self_sub_sum_cantorToTernary, cantorSequence_get_succ
preCantorSet πŸ“–CompOp
8 mathmath: quarters_mem_preCantorSet, isClosed_preCantorSet, preCantorSet_subset_unitInterval, preCantorSet_antitone, zero_mem_preCantorSet, preCantorSet_succ, quarter_mem_preCantorSet, preCantorSet_zero

Theorems

NameKindAssumesProvesValidatesDepends On
cantorSequence_eq_self_sub_sum_cantorToTernary πŸ“–mathematicalβ€”Stream'.get
Real
cantorSequence
Real.instMul
Real.instSub
Finset.sum
Real.instAddCommMonoid
Finset.range
Real.ofDigitsTerm
cantorToTernary
Monoid.toNatPow
Real.instMonoid
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
sub_zero
pow_zero
mul_one
cantorSequence_get_succ
Finset.sum_range_succ
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.pow_prod_atom
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.pow_one_cast
cantorSequence_get_succ πŸ“–mathematicalβ€”Stream'.get
Real
cantorSequence
Real.instMul
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.instSub
Monoid.toNatPow
Real.instMonoid
Real.ofDigitsTerm
cantorToTernary
β€”Nat.instAtLeastTwoHAddOfNat
CharP.cast_eq_zero
CharP.ofCharZero
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
MulZeroClass.zero_mul
MulZeroClass.mul_zero
sub_zero
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.subst_sub
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval_cons_neg
ne_of_gt
pow_pos
IsStrictOrderedRing.toPosMulStrictMono
IsStrictOrderedRing.toZeroLEOneClass
Mathlib.Meta.Positivity.pos_of_isNat
Real.instIsOrderedRing
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.FieldSimp.NF.inv_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.pow_one_cast
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.pow_prod_atom
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.isNat_mul
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
cantorSequence_mem_cantorSet πŸ“–mathematicalReal
Set
Set.instMembership
cantorSet
Stream'.get
cantorSequence
β€”cantorStep_mem_cantorSet
cantorSet_eq_union_halves πŸ“–mathematicalβ€”cantorSet
Set
Real
Set.instUnion
Set.image
DivInvMonoid.toDiv
Real.instDivInvMonoid
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.instAdd
β€”Nat.instAtLeastTwoHAddOfNat
Set.image_iInter
mulRight_bijectiveβ‚€
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
Function.Bijective.comp
AddGroup.addLeft_bijective
Set.iInter_union_of_antitone
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
Monotone.comp_antitone
Set.monotone_image
preCantorSet_antitone
Antitone.iInter_nat_add
cantorSet_eq_zero_two_ofDigits πŸ“–mathematicalβ€”cantorSet
setOf
Real
Real.ofDigits
β€”Set.ext
cantorToTernary_ne_one
ofDigits_cantorToTernary
ofDigits_zero_two_sequence_mem_cantorSet
cantorSet_subset_unitInterval πŸ“–mathematicalβ€”Set
Real
Set.instHasSubset
cantorSet
Set.Icc
Real.instPreorder
Real.instZero
Real.instOne
β€”Set.iInter_subset
cantorStep_mem_cantorSet πŸ“–mathematicalReal
Set
Set.instMembership
cantorSet
cantorStepβ€”Nat.instAtLeastTwoHAddOfNat
cantorSet_eq_union_halves
cantorToTernary_ne_one πŸ“–β€”β€”β€”β€”β€”
isClosed_cantorSet πŸ“–mathematicalβ€”IsClosed
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
cantorSet
β€”isClosed_iInter
isClosed_preCantorSet
isClosed_preCantorSet πŸ“–mathematicalβ€”IsClosed
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
preCantorSet
β€”IsTopologicalSemiring.toContinuousMul
IsTopologicalRing.toIsTopologicalSemiring
instIsTopologicalRingReal
Nat.instAtLeastTwoHAddOfNat
one_div
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
IsTopologicalSemiring.toContinuousAdd
isClosed_Icc
HasSolidNorm.orderClosedTopology
instHasSolidNormReal
Real.instIsOrderedAddMonoid
IsClosed.union
Set.image_congr
div_eq_inv_mul
mul_one
Homeomorph.mulLeftβ‚€.congr_simp
Topology.IsClosedEmbedding.isClosed_iff_image_isClosed
Homeomorph.isClosedEmbedding
isCompact_cantorSet πŸ“–mathematicalβ€”IsCompact
Real
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
cantorSet
β€”IsCompact.of_isClosed_subset
CompactIccSpace.isCompact_Icc
ConditionallyCompleteLinearOrder.toCompactIccSpace
instOrderTopologyReal
isClosed_cantorSet
cantorSet_subset_unitInterval
le_ofDigits_cantorToTernary_sum πŸ“–mathematicalReal
Set
Set.instMembership
cantorSet
Real.instLE
Real.instSub
Monoid.toNatPow
Real.instMonoid
Real.instInv
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Finset.sum
Real.instAddCommMonoid
Finset.range
Real.ofDigitsTerm
cantorToTernary
β€”cantorSequence_mem_cantorSet
Nat.instAtLeastTwoHAddOfNat
mul_le_mul_iff_leftβ‚€
IsOrderedRing.toMulPosMono
Real.instIsOrderedRing
MulPosStrictMono.toMulPosReflectLE
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
pow_pos
IsStrictOrderedRing.toPosMulStrictMono
IsStrictOrderedRing.toZeroLEOneClass
Mathlib.Meta.Positivity.pos_of_isNat
Real.instNontrivial
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
sub_mul
inv_pow
inv_mul_cancelβ‚€
isReduced_of_noZeroDivisors
NormMulClass.toNoZeroDivisors
NormedDivisionRing.toNormMulClass
IsStrictOrderedRing.toCharZero
le_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.pow_prod_atom
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Nat.cast_one
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Meta.NormNum.isInt_add
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.add_lt_of_le_of_neg
Mathlib.Tactic.Linarith.sub_nonpos_of_le
cantorSet_subset_unitInterval
cantorSequence_eq_self_sub_sum_cantorToTernary
Mathlib.Tactic.Linarith.sub_neg_of_lt
ofDigits_bool_to_fin_three_mem_cantorSet πŸ“–mathematicalβ€”Real
Set
Set.instMembership
cantorSet
Real.ofDigits
β€”ofDigits_zero_two_sequence_mem_cantorSet
ofDigits_cantorToTernary πŸ“–mathematicalReal
Set
Set.instMembership
cantorSet
Real.ofDigits
Stream'.get
cantorToTernary
β€”HasSum.tsum_eq
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
SummationFilter.instNeBotUnconditional
hasSum_iff_tendsto_nat_of_summable_norm
Real.norm_of_nonneg
Real.ofDigitsTerm_nonneg
Real.summable_ofDigitsTerm
tendsto_of_tendsto_of_tendsto_of_le_of_le
instOrderTopologyReal
Nat.instAtLeastTwoHAddOfNat
tendsto_sub_nhds_zero_iff
instIsTopologicalAddGroupReal
sub_sub_cancel_left
neg_zero
Filter.Tendsto.neg
IsTopologicalRing.toContinuousNeg
instIsTopologicalRingReal
tendsto_pow_atTop_nhds_zero_of_abs_lt_one
Mathlib.Meta.NormNum.isNNRat_lt_true
Real.instIsStrictOrderedRing
instNontrivialOfCharZero
IsStrictOrderedRing.toCharZero
Mathlib.Meta.NormNum.isNNRat_abs_nonneg
Mathlib.Meta.NormNum.isNNRat_inv_pos
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Nat.cast_one
tendsto_const_nhds
le_ofDigits_cantorToTernary_sum
ofDigits_cantorToTernary_sum_le
ofDigits_cantorToTernary_sum_le πŸ“–mathematicalReal
Set
Set.instMembership
cantorSet
Real.instLE
Finset.sum
Real.instAddCommMonoid
Finset.range
Real.ofDigitsTerm
cantorToTernary
β€”cantorSequence_mem_cantorSet
Nat.instAtLeastTwoHAddOfNat
IsStrictOrderedRing.toMulPosStrictMono
Real.instIsStrictOrderedRing
IsStrictOrderedRing.toPosMulStrictMono
Real.instZeroLEOneClass
Real.instIsOrderedRing
Real.instNontrivial
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
cantorSet_subset_unitInterval
cantorSequence_eq_self_sub_sum_cantorToTernary
ofDigits_zero_two_sequence_mem_cantorSet πŸ“–mathematicalβ€”Real
Set
Set.instMembership
cantorSet
Real.ofDigits
β€”Real.ofDigits_nonneg
Real.ofDigits_le_one
Nat.instAtLeastTwoHAddOfNat
Real.ofDigits_eq_sum_add_ofDigits
Finset.sum_congr
Finset.sum_singleton
zero_add
pow_one
Mathlib.Tactic.FieldSimp.eq_eq_cancel_eq
IsCancelMulZero.toIsLeftCancelMulZero
instIsCancelMulZero
Mathlib.Tactic.FieldSimp.eq_mul_of_eq_eq_eq_mul
Mathlib.Tactic.FieldSimp.NF.div_eq_eval
Mathlib.Tactic.FieldSimp.NF.atom_eq_eval
Mathlib.Tactic.FieldSimp.NF.div_eq_eval₃
div_one
Mathlib.Tactic.FieldSimp.NF.eval_cons_mul_eval
Mathlib.Tactic.FieldSimp.NF.eval_mul_eval_cons
one_mul
Mathlib.Tactic.FieldSimp.eq_div_of_eq_one_of_subst
Mathlib.Tactic.FieldSimp.NF.cons_eq_div_of_eq_div
Mathlib.Tactic.FieldSimp.NF.eval_cons
Mathlib.Tactic.FieldSimp.zpow'_one
Mathlib.Tactic.FieldSimp.subst_add
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval
Mathlib.Tactic.FieldSimp.NF.inv_eq_eval
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₁
Mathlib.Tactic.FieldSimp.NF.mul_eq_eval₃
mul_one
Mathlib.Tactic.FieldSimp.NF.cons_ne_zero
Mathlib.Meta.NormNum.isNat_eq_false
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Meta.NormNum.instAtLeastTwo
Nat.cast_zero
one_ne_zero
NeZero.one
GroupWithZero.toNontrivial
Fintype.complete
CharP.cast_eq_zero
CharP.ofCharZero
AddRightCancelSemigroup.toIsRightCancelAdd
ofDigits_zero_two_sequence_unique πŸ“–β€”Real.ofDigitsβ€”β€”Function.ne_iff
Nat.find_min
Nat.find_spec
Finset.sum_congr
Nat.instAtLeastTwoHAddOfNat
Mathlib.Tactic.Linarith.eq_of_not_lt_of_not_gt
Mathlib.Tactic.Linarith.lt_irrefl
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Tactic.Ring.of_eq
Mathlib.Tactic.Ring.add_congr
Mathlib.Tactic.Ring.neg_congr
Mathlib.Tactic.Ring.sub_congr
Mathlib.Tactic.Ring.mul_congr
Mathlib.Tactic.Ring.cast_pos
Mathlib.Meta.NormNum.isNat_ofNat
Mathlib.Tactic.Ring.atom_pf
Mathlib.Tactic.Ring.add_mul
Mathlib.Tactic.Ring.mul_add
Mathlib.Tactic.Ring.mul_pf_right
Mathlib.Tactic.Ring.mul_one
Mathlib.Tactic.Ring.mul_zero
Mathlib.Tactic.Ring.add_pf_add_zero
Mathlib.Tactic.Ring.zero_mul
Mathlib.Tactic.Ring.add_pf_add_lt
Mathlib.Tactic.Ring.add_pf_zero_add
Nat.cast_one
Mathlib.Tactic.Ring.pow_congr
Mathlib.Tactic.Ring.div_congr
Mathlib.Tactic.Ring.div_pf
Mathlib.Tactic.Ring.inv_single
Mathlib.Meta.NormNum.IsNNRat.to_raw_eq
Mathlib.Meta.NormNum.isNNRat_inv_pos
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.IsNat.of_raw
Mathlib.Tactic.Ring.one_mul
Mathlib.Tactic.Ring.pow_add
Mathlib.Tactic.Ring.single_pow
Mathlib.Tactic.Ring.pow_prod_atom
Mathlib.Tactic.Ring.pow_zero
Mathlib.Tactic.Ring.mul_pf_left
Mathlib.Tactic.Ring.sub_pf
Mathlib.Tactic.Ring.neg_add
Mathlib.Tactic.Ring.neg_mul
Mathlib.Tactic.Ring.neg_one_mul
Mathlib.Meta.NormNum.IsInt.to_raw_eq
Mathlib.Meta.NormNum.isInt_mul
Mathlib.Meta.NormNum.IsInt.of_raw
Mathlib.Meta.NormNum.IsNat.to_isInt
Mathlib.Tactic.Ring.neg_zero
Mathlib.Tactic.Ring.add_pf_add_overlap_zero
Mathlib.Tactic.Ring.add_overlap_pf_zero
Mathlib.Meta.NormNum.IsInt.to_isNat
Mathlib.Meta.NormNum.isInt_add
Mathlib.Meta.NormNum.IsNat.to_raw_eq
Mathlib.Tactic.Ring.cast_zero
Nat.cast_zero
Mathlib.Tactic.Linarith.lt_of_eq_of_lt
neg_eq_zero
CancelDenoms.derive_trans
Mathlib.Meta.NormNum.IsNNRat.to_eq
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
CancelDenoms.sub_subst
CancelDenoms.add_subst
CancelDenoms.mul_subst
Mathlib.Meta.NormNum.isNat_eq_true
Mathlib.Meta.NormNum.isNat_mul
CancelDenoms.div_subst
Mathlib.Meta.NormNum.IsNNRat.to_isNat
Mathlib.Tactic.Linarith.mul_eq
Real.instIsOrderedRing
sub_eq_zero_of_eq
Mathlib.Tactic.Ring.inv_congr
Mathlib.Meta.NormNum.isNat_natCast
Mathlib.Tactic.Ring.add_pf_add_gt
Mathlib.Tactic.Ring.pow_one_cast
Mathlib.Tactic.Ring.inv_mul
Mathlib.Tactic.Ring.atom_pf'
Mathlib.Tactic.RingNF.nat_rawCast_1
pow_one
mul_one
add_zero
Mathlib.Tactic.RingNF.add_assoc_rev
Mathlib.Tactic.RingNF.nnrat_rawCast
Mathlib.Tactic.RingNF.mul_assoc_rev
Finset.sum_range_succ
Real.ofDigits_eq_sum_add_ofDigits
Mathlib.Meta.NormNum.isNat_lt_true
Mathlib.Tactic.Linarith.mul_neg
Mathlib.Tactic.Linarith.sub_neg_of_lt
mul_right_inj'
IsCancelMulZero.toIsLeftCancelMulZero
IsDomain.toIsCancelMulZero
Real.instIsDomain
ne_of_gt
inv_pos_of_pos
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
pow_pos
IsStrictOrderedRing.toZeroLEOneClass
Mathlib.Meta.Positivity.pos_of_isNat
Real.instNontrivial
CharP.cast_eq_zero
CharP.ofCharZero
pow_succ
mul_inv_rev
MulZeroClass.zero_mul
inv_pow
one_div
zero_add
Mathlib.Tactic.Ring.add_pf_add_overlap
Mathlib.Tactic.Linarith.add_lt_of_neg_of_le
Mathlib.Tactic.Linarith.lt_of_lt_of_eq
neg_neg_of_pos
Real.instIsOrderedAddMonoid
Mathlib.Tactic.Linarith.zero_lt_one
Mathlib.Tactic.Linarith.sub_nonpos_of_le
Real.ofDigits_nonneg
Real.ofDigits_le_one
preCantorSet_antitone πŸ“–mathematicalβ€”Antitone
Set
Real
Nat.instPreorder
PartialOrder.toPreorder
OmegaCompletePartialOrder.toPartialOrder
CompleteLattice.instOmegaCompletePartialOrder
CompleteBooleanAlgebra.toCompleteLattice
CompleteAtomicBooleanAlgebra.toCompleteBooleanAlgebra
Set.instCompleteAtomicBooleanAlgebra
preCantorSet
β€”antitone_nat_of_succ_le
preCantorSet_subset_unitInterval πŸ“–mathematicalβ€”Set
Real
Set.instHasSubset
preCantorSet
Set.Icc
Real.instPreorder
Real.instZero
Real.instOne
β€”preCantorSet_zero
preCantorSet_antitone
Nat.instCanonicallyOrderedAdd
preCantorSet_succ πŸ“–mathematicalβ€”preCantorSet
Set
Real
Set.instUnion
Set.image
DivInvMonoid.toDiv
Real.instDivInvMonoid
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
Real.instAdd
β€”β€”
preCantorSet_zero πŸ“–mathematicalβ€”preCantorSet
Set.Icc
Real
Real.instPreorder
Real.instZero
Real.instOne
β€”β€”
quarter_mem_cantorSet πŸ“–mathematicalβ€”Real
Set
Set.instMembership
cantorSet
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
Set.mem_iInter
quarter_mem_preCantorSet
quarter_mem_preCantorSet πŸ“–mathematicalβ€”Real
Set
Set.instMembership
preCantorSet
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
quarters_mem_preCantorSet
quarters_mem_preCantorSet πŸ“–mathematicalβ€”Real
Set
Set.instMembership
preCantorSet
DivInvMonoid.toDiv
Real.instDivInvMonoid
Real.instOne
instOfNatAtLeastTwo
Real.instNatCast
Nat.instAtLeastTwoHAddOfNat
β€”Nat.instAtLeastTwoHAddOfNat
Mathlib.Meta.NormNum.isRat_le_true
Real.instIsStrictOrderedRing
Mathlib.Meta.NormNum.IsNNRat.to_isRat
Mathlib.Meta.NormNum.IsNat.to_isNNRat
Mathlib.Meta.NormNum.isNat_ofNat
Nat.cast_zero
Mathlib.Meta.NormNum.isNNRat_div
Mathlib.Meta.NormNum.isNNRat_mul
Nat.cast_one
Mathlib.Meta.NormNum.isNNRat_inv_pos
IsStrictOrderedRing.toCharZero
Mathlib.Meta.NormNum.instAtLeastTwo
Mathlib.Meta.NormNum.isNNRat_eq_true
Mathlib.Meta.NormNum.isNNRat_add
zero_mem_cantorSet πŸ“–mathematicalβ€”Real
Set
Set.instMembership
cantorSet
Real.instZero
β€”β€”
zero_mem_preCantorSet πŸ“–mathematicalβ€”Real
Set
Set.instMembership
preCantorSet
Real.instZero
β€”Real.instZeroLEOneClass
zero_div

---

← Back to Index