Documentation Verification Report

Lemmas

πŸ“ Source: Mathlib/Topology/Instances/ENNReal/Lemmas.lean

Statistics

MetricCount
DefinitionsltTopHomeomorphNNReal, neTopHomeomorphNNReal, truncateToReal, metricSpaceEMetricBall
4
Theoremsedist, ennreal_mul, ennreal_mul, lipschitzWith_extend, cauchySeq_iff_le_tendsto_0, diam_closure, isClosed_closedBall, Icc_mem_nhds, const_div, const_mul, div, div_const, mul, mul_const, pow, sub, biInf_le_nhds, coe_range_mem_nhds, continuousAt_coe_iff, continuousAt_const_mul, continuousAt_mul_const, continuousAt_toReal, continuousOn_sub, continuousOn_sub_left, continuousOn_toNNReal, continuousOn_toReal, continuous_coe, continuous_coe_iff, continuous_const_mul, continuous_div_const, continuous_mul_const, continuous_nnreal_sub, continuous_ofReal, continuous_pow, continuous_sub_left, continuous_sub_right, continuous_truncateToReal, continuous_zpow, eventuallyEq_of_toReal_eventuallyEq, exists_countable_dense_no_zero_top, exists_frequently_lt_of_liminf_ne_top, exists_frequently_lt_of_liminf_ne_top', exists_upcrossings_of_not_bounded_under, hasBasis_nhds_of_ne_top, hasBasis_nhds_of_ne_top', inv_liminf, inv_limsup, isOpen_Ico_zero, isOpen_ne_top, le_liminf_mul, le_limsup_mul, le_of_forall_lt_one_mul_le, liminf_add_of_left_tendsto_zero, liminf_add_of_right_tendsto_zero, liminf_const_sub, liminf_mul_le, liminf_sub_const, liminf_toReal_eq, limsup_add_of_left_tendsto_zero, limsup_add_of_right_tendsto_zero, limsup_const_sub, limsup_mul_le', limsup_sub_const, limsup_toReal_eq, monotone_truncateToReal, nhdsGT_coe_neBot, nhdsGT_nat_neBot, nhdsGT_ofNat_neBot, nhdsGT_one_neBot, nhdsGT_zero_neBot, nhdsLT_neBot, nhds_coe, nhds_of_ne_top, nhds_top, nhds_top', nhds_top_basis, nhds_zero, nhds_zero_basis, nhds_zero_basis_Iic, ofNNReal_liminf, ofNNReal_limsup, tendsto_atTop, tendsto_atTop_zero, tendsto_atTop_zero_iff_le_of_antitone, tendsto_atTop_zero_iff_lt_of_antitone, tendsto_coe_nhds_top, tendsto_coe_sub, tendsto_coe_toNNReal, tendsto_const_sub_nhds_zero_iff, tendsto_finset_prod_of_ne_top, tendsto_inv_iff, tendsto_inv_nat_nhds_zero, tendsto_mul, tendsto_nat_nhds_top, tendsto_nhds, tendsto_nhds_coe_iff, tendsto_nhds_of_Icc, tendsto_nhds_top, tendsto_nhds_top_iff_nat, tendsto_nhds_top_iff_nnreal, tendsto_nhds_zero, tendsto_ofReal, tendsto_ofReal_atTop, tendsto_ofReal_nhds_top, tendsto_sub, tendsto_toNNReal, tendsto_toNNReal_iff, tendsto_toNNReal_iff', tendsto_toReal, tendsto_toReal_iff, tendsto_toReal_zero_iff, truncateToReal_eq_toReal, truncateToReal_le, truncateToReal_nonneg, edist, closure, diam_closure, ediam_closure, isClosed_closedEBall, diam_Icc, diam_Ico, diam_Ioc, diam_Ioo, diam_eq, ediam_Icc, ediam_Ico, ediam_Ioc, ediam_Ioo, ediam_eq, continuous_edist, continuous_of_le_add_edist, edist_ne_top_of_mem_ball, isClosed_setOf_lipschitzOnWith, isClosed_setOf_lipschitzWith, lipschitzOnWith_closure_iff, nhds_eq_nhds_emetric_ball, tendsto_iff_edist_tendsto_0
137
Total141

Continuous

Theorems

NameKindAssumesProvesValidatesDepends On
edist πŸ“–mathematicalContinuous
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
ENNReal
ENNReal.instTopologicalSpace
EDist.edist
PseudoEMetricSpace.toEDist
β€”comp
continuous_edist
prodMk
ennreal_mul πŸ“–mathematicalContinuous
ENNReal
ENNReal.instTopologicalSpace
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
β€”continuous_iff_continuousAt
ENNReal.Tendsto.mul
continuousAt

ContinuousOn

Theorems

NameKindAssumesProvesValidatesDepends On
ennreal_mul πŸ“–mathematicalContinuousOn
ENNReal
ENNReal.instTopologicalSpace
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
β€”ENNReal.Tendsto.mul

Dense

Theorems

NameKindAssumesProvesValidatesDepends On
lipschitzWith_extend πŸ“–mathematicalDense
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
LipschitzWith
Set.Elem
instPseudoEMetricSpaceSubtype
Set
Set.instMembership
EMetricSpace.toPseudoEMetricSpace
extendβ€”UniformContinuous.continuous
uniformContinuous_extend
LipschitzWith.uniformContinuous
isClosed_le
OrderTopology.to_orderClosedTopology
ENNReal.instOrderTopology
Continuous.edist
Continuous.comp'
Continuous.fst
continuous_id'
Continuous.snd
Continuous.comp
ENNReal.continuous_const_mul
mono
prod
extend_eq
TopologicalSpace.t2Space_of_metrizableSpace
EMetricSpace.metrizableSpace
LipschitzWith.continuous
IsClosed.closure_eq

EMetric

Theorems

NameKindAssumesProvesValidatesDepends On
cauchySeq_iff_le_tendsto_0 πŸ“–mathematicalβ€”CauchySeq
PseudoEMetricSpace.toUniformSpace
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
ENNReal
Preorder.toLE
ENNReal.instPartialOrder
EDist.edist
PseudoEMetricSpace.toEDist
Filter.Tendsto
Filter.atTop
nhds
ENNReal.instTopologicalSpace
instZeroENNReal
β€”cauchySeq_iff
Metric.edist_le_ediam_of_mem
Set.mem_image_of_mem
ENNReal.tendsto_nhds_zero
Filter.Eventually.mono
Filter.eventually_ge_atTop
Metric.ediam_le
LT.lt.le
LE.le.trans
Filter.Tendsto.eventually
gt_mem_nhds
ENNReal.instOrderTopology
Filter.Eventually.exists
Filter.atTop_neBot
SemilatticeSup.instIsDirectedOrder
diam_closure πŸ“–mathematicalβ€”Metric.ediam
closure
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
β€”Metric.ediam_closure
isClosed_closedBall πŸ“–mathematicalβ€”IsClosed
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
Metric.closedEBall
β€”Metric.isClosed_closedEBall

ENNReal

Definitions

NameCategoryTheorems
ltTopHomeomorphNNReal πŸ“–CompOpβ€”
neTopHomeomorphNNReal πŸ“–CompOpβ€”
truncateToReal πŸ“–CompOp
5 mathmath: truncateToReal_le, monotone_truncateToReal, continuous_truncateToReal, truncateToReal_eq_toReal, truncateToReal_nonneg

Theorems

NameKindAssumesProvesValidatesDepends On
Icc_mem_nhds πŸ“–mathematicalβ€”Set
ENNReal
Filter
Filter.instMembership
nhds
instTopologicalSpace
Set.Icc
PartialOrder.toPreorder
instPartialOrder
instSub
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
β€”Filter.HasBasis.mem_of_mem
hasBasis_nhds_of_ne_top'
biInf_le_nhds πŸ“–mathematicalβ€”Filter
ENNReal
Preorder.toLE
PartialOrder.toPreorder
Filter.instPartialOrder
iInf
Filter.instInfSet
Preorder.toLT
instPartialOrder
instZeroENNReal
Filter.principal
Set.Icc
instSub
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
nhds
instTopologicalSpace
β€”iInfβ‚‚_le_of_le
one_pos
IsOrderedRing.toZeroLEOneClass
instIsOrderedRing
NeZero.one
top_add
Set.Icc_self
Filter.principal_singleton
pure_le_nhds
Eq.ge
nhds_of_ne_top
coe_ne_top
coe_range_mem_nhds πŸ“–mathematicalβ€”Set
ENNReal
Filter
Filter.instMembership
nhds
instTopologicalSpace
ofNNReal
Set.range
NNReal
β€”IsOpen.mem_nhds
Topology.IsOpenEmbedding.isOpen_range
isOpenEmbedding_coe
Set.mem_range_self
continuousAt_coe_iff πŸ“–mathematicalβ€”ContinuousAt
ENNReal
instTopologicalSpace
ofNNReal
NNReal
NNReal.instTopologicalSpace
β€”tendsto_nhds_coe_iff
continuousAt_const_mul πŸ“–mathematicalβ€”ContinuousAt
ENNReal
instTopologicalSpace
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
β€”Tendsto.const_mul
Filter.tendsto_id
continuousAt_mul_const πŸ“–mathematicalβ€”ContinuousAt
ENNReal
instTopologicalSpace
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
β€”Tendsto.mul_const
Filter.tendsto_id
continuousAt_toReal πŸ“–mathematicalβ€”ContinuousAt
ENNReal
Real
instTopologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
toReal
β€”ContinuousOn.continuousAt
continuousOn_toReal
IsOpen.mem_nhds_iff
isOpen_ne_top
continuousOn_sub πŸ“–mathematicalβ€”ContinuousOn
ENNReal
instTopologicalSpaceProd
instTopologicalSpace
instSub
setOf
Top.top
instTopENNReal
β€”ContinuousOn.eq_1
tendsto_nhdsWithin_of_tendsto_nhds
tendsto_sub
not_and_or
continuousOn_sub_left πŸ“–mathematicalβ€”ContinuousOn
ENNReal
instTopologicalSpace
instSub
setOf
Top.top
instTopENNReal
β€”ContinuousOn.comp
continuousOn_sub
ContinuousOn.prodMk
continuousOn_const
continuousOn_id'
none_eq_top
continuousOn_toNNReal πŸ“–mathematicalβ€”ContinuousOn
ENNReal
NNReal
instTopologicalSpace
NNReal.instTopologicalSpace
toNNReal
setOf
Top.top
instTopENNReal
β€”ContinuousAt.continuousWithinAt
tendsto_toNNReal
continuousOn_toReal πŸ“–mathematicalβ€”ContinuousOn
ENNReal
Real
instTopologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
toReal
setOf
Top.top
instTopENNReal
β€”Continuous.comp_continuousOn
NNReal.continuous_coe
continuousOn_toNNReal
continuous_coe πŸ“–mathematicalβ€”Continuous
NNReal
ENNReal
NNReal.instTopologicalSpace
instTopologicalSpace
ofNNReal
β€”Topology.IsEmbedding.continuous
isEmbedding_coe
continuous_coe_iff πŸ“–mathematicalβ€”Continuous
ENNReal
instTopologicalSpace
ofNNReal
NNReal
NNReal.instTopologicalSpace
β€”Topology.IsEmbedding.continuous_iff
isEmbedding_coe
continuous_const_mul πŸ“–mathematicalβ€”Continuous
ENNReal
instTopologicalSpace
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
β€”continuous_iff_continuousAt
continuousAt_const_mul
continuous_div_const πŸ“–mathematicalβ€”Continuous
ENNReal
instTopologicalSpace
DivInvMonoid.toDiv
instDivInvMonoid
β€”continuous_mul_const
inv_ne_top
continuous_mul_const πŸ“–mathematicalβ€”Continuous
ENNReal
instTopologicalSpace
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
β€”continuous_iff_continuousAt
continuousAt_mul_const
continuous_nnreal_sub πŸ“–mathematicalβ€”Continuous
ENNReal
instTopologicalSpace
instSub
ofNNReal
β€”continuous_sub_left
coe_ne_top
continuous_ofReal πŸ“–mathematicalβ€”Continuous
Real
ENNReal
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
instTopologicalSpace
ofReal
β€”Continuous.comp
continuous_coe_iff
continuous_id
continuous_real_toNNReal
continuous_pow πŸ“–mathematicalβ€”Continuous
ENNReal
instTopologicalSpace
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
instCommSemiring
β€”pow_zero
pow_add
pow_one
Tendsto.mul
Continuous.tendsto
eq_zero_of_pow_eq_zero
isReduced_of_noZeroDivisors
instNoZeroDivisors
Filter.tendsto_id
continuous_sub_left πŸ“–mathematicalβ€”Continuous
ENNReal
instTopologicalSpace
instSub
β€”ContinuousOn.comp_continuous
continuousOn_sub
Continuous.prodMk_right
continuous_sub_right πŸ“–mathematicalβ€”Continuous
ENNReal
instTopologicalSpace
instSub
β€”tsub_eq_zero_of_le
instCanonicallyOrderedAdd
instOrderedSub
ContinuousOn.comp_continuous
continuousOn_sub
Continuous.prodMk
continuous_id'
continuous_const
continuous_truncateToReal πŸ“–mathematicalβ€”Continuous
ENNReal
Real
instTopologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
truncateToReal
β€”ContinuousOn.comp_continuous
continuousOn_toReal
Continuous.min
OrderTopology.to_orderClosedTopology
instOrderTopology
continuous_const
continuous_id'
continuous_zpow πŸ“–mathematicalβ€”Continuous
ENNReal
instTopologicalSpace
DivInvMonoid.toZPow
instDivInvMonoid
β€”zpow_natCast
continuous_pow
zpow_negSucc
Continuous.inv
instContinuousInv
eventuallyEq_of_toReal_eventuallyEq πŸ“–β€”Filter.Eventually
ENNReal
Top.top
instTopENNReal
Filter.EventuallyEq
Real
toReal
β€”β€”Filter.mp_mem
Filter.univ_mem'
toReal_eq_toReal_iff'
exists_countable_dense_no_zero_top πŸ“–mathematicalβ€”Set.Countable
ENNReal
Dense
instTopologicalSpace
Set
Set.instMembership
instZeroENNReal
Top.top
instTopENNReal
β€”exists_countable_dense_no_bot_top
instOrderTopology
instDenselyOrdered
TopologicalSpace.SecondCountableTopology.to_separableSpace
instSecondCountableTopology
bot_eq_zero'
instCanonicallyOrderedAdd
exists_frequently_lt_of_liminf_ne_top πŸ“–mathematicalβ€”Filter.Frequently
Real
Real.instLT
β€”eq_top_of_forall_nnreal_le
Filter.le_limsInf_of_le
Filter.isCobounded_ge_of_top
Filter.mp_mem
Filter.univ_mem'
LE.le.trans
le_abs_self
exists_frequently_lt_of_liminf_ne_top' πŸ“–mathematicalβ€”Filter.Frequently
Real
Real.instLT
β€”eq_top_of_forall_nnreal_le
Filter.le_limsInf_of_le
Filter.isCobounded_ge_of_top
Filter.mp_mem
Filter.univ_mem'
LE.le.trans
le_neg
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
covariant_swap_add_of_covariant_add
neg_le_abs
exists_upcrossings_of_not_bounded_under πŸ“–mathematicalFilter.IsBoundedUnder
Real
Real.instLE
abs
Real.lattice
Real.instAddGroup
Filter.Frequently
Real.instLT
Real.instRatCast
β€”not_and_or
Filter.isBoundedUnder_le_abs
Real.instIsOrderedAddMonoid
exists_frequently_lt_of_liminf_ne_top
exists_rat_gt
Real.instIsStrictOrderedRing
Real.instArchimedean
lt_add_iff_pos_right
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
Rat.instAddLeftMono
contravariant_lt_of_covariant_le
zero_lt_one
Rat.instZeroLEOneClass
NeZero.one
Rat.nontrivial
Filter.mp_mem
Filter.univ_mem'
not_lt
LT.lt.le
lt_of_lt_of_le
exists_frequently_lt_of_liminf_ne_top'
exists_rat_lt
sub_lt_self_iff
LE.le.trans
hasBasis_nhds_of_ne_top πŸ“–mathematicalβ€”Filter.HasBasis
ENNReal
nhds
instTopologicalSpace
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
instZeroENNReal
Set.Icc
instSub
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
β€”instCanonicallyOrderedAdd
hasBasis_nhds_of_ne_top'
hasBasis_nhds_of_ne_top' πŸ“–mathematicalβ€”Filter.HasBasis
ENNReal
nhds
instTopologicalSpace
instZeroENNReal
Set.Icc
PartialOrder.toPreorder
instPartialOrder
instSub
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
β€”LE.le.eq_or_lt
zero_le
instCanonicallyOrderedAdd
zero_tsub
instOrderedSub
zero_add
Set.Icc_bot
nhds_bot_basis_Iic
instOrderTopology
instDenselyOrdered
Filter.HasBasis.to_hasBasis
nhds_basis_Ioo'
Ne.lt_top
exists_between
tsub_pos_of_lt
lt_iff_exists_add_pos_lt
LT.lt.ne'
lt_min
coe_pos
Set.Icc_subset_Ioo
lt_tsub_comm
LE.le.trans_lt
min_le_left
lt_imp_lt_of_le_of_le
add_le_add_right
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
min_le_right
le_refl
sub_lt_self
lt_add_right
Set.Ioo_subset_Icc_self
inv_liminf πŸ“–mathematicalβ€”ENNReal
instInv
Filter.liminf
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrder
Filter.limsup
β€”OrderIso.liminf_apply
Filter.isBounded_ge_of_bot
Filter.isCobounded_ge_of_top
inv_limsup πŸ“–mathematicalβ€”ENNReal
instInv
Filter.limsup
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrder
Filter.liminf
β€”OrderIso.limsup_apply
Filter.isBounded_le_of_top
Filter.isCobounded_le_of_bot
isOpen_Ico_zero πŸ“–mathematicalβ€”IsOpen
ENNReal
instTopologicalSpace
Set.Ico
PartialOrder.toPreorder
instPartialOrder
instZeroENNReal
β€”Ico_eq_Iio
isOpen_Iio
instClosedIciTopology
OrderTopology.to_orderClosedTopology
instOrderTopology
isOpen_ne_top πŸ“–mathematicalβ€”IsOpen
ENNReal
instTopologicalSpace
setOf
Top.top
instTopENNReal
β€”isOpen_ne
T5Space.toT1Space
instT5Space
le_liminf_mul πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
Filter.liminf
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrder
Pi.instMul
β€”mul_le_of_forall_lt
Filter.le_liminf_iff
Filter.isCobounded_ge_of_top
Filter.isBounded_ge_of_bot
Filter.mp_mem
Filter.eventually_lt_of_lt_liminf
Filter.univ_mem'
LT.lt.trans
mul_lt_mul
le_limsup_mul πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
Filter.limsup
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrder
Filter.liminf
Pi.instMul
β€”mul_le_of_forall_lt
Filter.le_limsup_iff
Filter.isCobounded_le_of_bot
Filter.isBounded_le_of_top
Filter.Frequently.mono
Filter.Frequently.and_eventually
Filter.frequently_lt_of_lt_limsup
Filter.eventually_lt_of_lt_liminf
Filter.isBounded_ge_of_bot
LT.lt.trans
mul_lt_mul
le_of_forall_lt_one_mul_le πŸ“–β€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
β€”β€”Filter.Tendsto.mono_left
continuousAt_mul_const
one_ne_zero
NeZero.one
inf_le_left
le_of_tendsto
instClosedIicTopology
OrderTopology.to_orderClosedTopology
instOrderTopology
nhdsLT_neBot
one_mul
eventually_nhdsWithin_iff
Filter.Eventually.of_forall
liminf_add_of_left_tendsto_zero πŸ“–mathematicalFilter.Tendsto
ENNReal
nhds
instTopologicalSpace
instZeroENNReal
Filter.liminf
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrder
Pi.instAdd
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
β€”add_comm
liminf_add_of_right_tendsto_zero
liminf_add_of_right_tendsto_zero πŸ“–mathematicalFilter.Tendsto
ENNReal
nhds
instTopologicalSpace
instZeroENNReal
Filter.liminf
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrder
Pi.instAdd
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
β€”le_antisymm
Filter.liminf_le_of_le
Filter.isBounded_ge_of_bot
Filter.le_liminf_iff'
instDenselyOrdered
Filter.isCobounded_ge_of_top
Filter.mp_mem
tendsto_nhds_zero
lt_min
tsub_pos_of_lt
instCanonicallyOrderedAdd
instOrderedSub
one_pos
IsOrderedRing.toZeroLEOneClass
instIsOrderedRing
NeZero.one
Filter.univ_mem'
le_of_add_le_add_right
LT.lt.ne
LE.le.trans_lt
LE.le.trans
add_le_of_le_tsub_left_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
LT.lt.le
min_le_left
Filter.liminf_le_liminf
Filter.Eventually.of_forall
liminf_const_sub πŸ“–mathematicalβ€”Filter.liminf
ENNReal
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrder
instSub
Filter.limsup
β€”Antitone.map_limsSup_of_continuousAt
instOrderTopology
Filter.map_neBot
tsub_le_tsub_left
instOrderedSub
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
Continuous.continuousAt
continuous_sub_left
Filter.isBounded_le_of_top
Filter.isCobounded_le_of_bot
liminf_mul_le πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Filter.liminf
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrder
Pi.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
Filter.limsup
β€”le_mul_of_forall_lt
Filter.liminf_le_iff
Filter.isCobounded_ge_of_top
Filter.isBounded_ge_of_bot
Filter.Frequently.mono
Filter.Frequently.and_eventually
Filter.frequently_lt_of_liminf_lt
Filter.eventually_lt_of_limsup_lt
Filter.isBounded_le_of_top
LT.lt.trans
mul_lt_mul
liminf_sub_const πŸ“–mathematicalβ€”Filter.liminf
ENNReal
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrder
instSub
β€”Monotone.map_limsInf_of_continuousAt
instOrderTopology
Filter.map_neBot
tsub_le_tsub_right
instOrderedSub
Continuous.continuousAt
continuous_sub_right
Filter.isCobounded_ge_of_top
Filter.isBounded_ge_of_bot
liminf_toReal_eq πŸ“–mathematicalFilter.Eventually
ENNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Filter.liminf
Real
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Real.instConditionallyCompleteLinearOrder
toReal
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrder
β€”Filter.liminf_le_of_le
instCanonicallyOrderedAdd
Filter.Eventually.exists
Filter.Eventually.and
LE.le.trans
Filter.mp_mem
Filter.univ_mem'
truncateToReal_eq_toReal
Filter.liminf_congr
Monotone.map_liminf_of_continuousAt
instOrderTopology
instOrderTopologyReal
monotone_truncateToReal
Continuous.continuousAt
continuous_truncateToReal
Filter.IsBoundedUnder.isCoboundedUnder_ge
Filter.Eventually.of_forall
limsup_add_of_left_tendsto_zero πŸ“–mathematicalFilter.Tendsto
ENNReal
nhds
instTopologicalSpace
instZeroENNReal
Filter.limsup
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrder
Pi.instAdd
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
β€”add_comm
limsup_add_of_right_tendsto_zero
limsup_add_of_right_tendsto_zero πŸ“–mathematicalFilter.Tendsto
ENNReal
nhds
instTopologicalSpace
instZeroENNReal
Filter.limsup
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrder
Pi.instAdd
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
β€”le_antisymm
Filter.le_limsup_of_le
Filter.isBounded_le_of_top
Filter.limsup_le_iff'
instDenselyOrdered
Filter.isCobounded_le_of_bot
Filter.mp_mem
tendsto_nhds_zero
tsub_pos_of_lt
instCanonicallyOrderedAdd
instOrderedSub
Filter.univ_mem'
add_le_add_left
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
add_le_of_le_tsub_left_of_le
CanonicallyOrderedAdd.toExistsAddOfLE
LT.lt.le
Filter.limsup_le_limsup
Filter.Eventually.of_forall
limsup_const_sub πŸ“–mathematicalβ€”Filter.limsup
ENNReal
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrder
instSub
Filter.liminf
β€”Filter.eq_or_neBot
Filter.limsup_bot
bot_eq_zero'
instCanonicallyOrderedAdd
Filter.liminf_bot
tsub_eq_zero_of_le
instOrderedSub
Antitone.map_limsInf_of_continuousAt
instOrderTopology
Filter.map_neBot
tsub_le_tsub_left
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
Continuous.continuousAt
continuous_sub_left
Filter.isCobounded_ge_of_top
Filter.isBounded_ge_of_bot
limsup_mul_le' πŸ“–mathematicalβ€”ENNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Filter.limsup
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrder
Pi.instMul
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
β€”le_mul_of_forall_lt
Filter.limsup_le_iff
Filter.isCobounded_le_of_bot
Filter.isBounded_le_of_top
Filter.mp_mem
Filter.eventually_lt_of_limsup_lt
Filter.univ_mem'
LT.lt.trans
mul_lt_mul
limsup_sub_const πŸ“–mathematicalβ€”Filter.limsup
ENNReal
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrder
instSub
β€”Filter.eq_or_neBot
Filter.limsup_bot
bot_eq_zero'
instCanonicallyOrderedAdd
tsub_eq_zero_of_le
instOrderedSub
Monotone.map_limsSup_of_continuousAt
instOrderTopology
Filter.map_neBot
tsub_le_tsub_right
Continuous.continuousAt
continuous_sub_right
Filter.isBounded_le_of_top
Filter.isCobounded_le_of_bot
limsup_toReal_eq πŸ“–mathematicalFilter.Eventually
ENNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Filter.limsup
Real
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
Real.instConditionallyCompleteLinearOrder
toReal
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrder
β€”Filter.mp_mem
Filter.univ_mem'
truncateToReal_eq_toReal
Filter.limsup_le_of_le
instCanonicallyOrderedAdd
Filter.limsup_congr
Monotone.map_limsup_of_continuousAt
instOrderTopology
instOrderTopologyReal
monotone_truncateToReal
Continuous.continuousAt
continuous_truncateToReal
Filter.IsBoundedUnder.isCoboundedUnder_le
Filter.Eventually.of_forall
monotone_truncateToReal πŸ“–mathematicalβ€”Monotone
ENNReal
Real
PartialOrder.toPreorder
instPartialOrder
Real.instPreorder
truncateToReal
β€”toReal_mono
ne_top_of_le_ne_top
min_le_left
inf_le_inf
le_refl
nhdsGT_coe_neBot πŸ“–mathematicalβ€”Filter.NeBot
ENNReal
nhdsWithin
instTopologicalSpace
ofNNReal
Set.Ioi
PartialOrder.toPreorder
instPartialOrder
β€”nhdsGT_neBot_of_exists_gt
instOrderTopology
instDenselyOrdered
coe_lt_top
nhdsGT_nat_neBot πŸ“–mathematicalβ€”Filter.NeBot
ENNReal
nhdsWithin
instTopologicalSpace
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Set.Ioi
PartialOrder.toPreorder
instPartialOrder
β€”nhdsGT_coe_neBot
nhdsGT_ofNat_neBot πŸ“–mathematicalβ€”Filter.NeBot
ENNReal
nhdsWithin
instTopologicalSpace
instOfNatAtLeastTwo
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Set.Ioi
PartialOrder.toPreorder
instPartialOrder
β€”nhdsGT_coe_neBot
nhdsGT_one_neBot πŸ“–mathematicalβ€”Filter.NeBot
ENNReal
nhdsWithin
instTopologicalSpace
AddMonoidWithOne.toOne
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Set.Ioi
PartialOrder.toPreorder
instPartialOrder
β€”nhdsGT_coe_neBot
nhdsGT_zero_neBot πŸ“–mathematicalβ€”Filter.NeBot
ENNReal
nhdsWithin
instTopologicalSpace
instZeroENNReal
Set.Ioi
PartialOrder.toPreorder
instPartialOrder
β€”nhdsGT_coe_neBot
nhdsLT_neBot πŸ“–mathematicalβ€”Filter.NeBot
ENNReal
nhdsWithin
instTopologicalSpace
Set.Iio
PartialOrder.toPreorder
instPartialOrder
β€”nhdsLT_neBot_of_exists_lt
instOrderTopology
instDenselyOrdered
NeZero.pos
instCanonicallyOrderedAdd
nhds_coe πŸ“–mathematicalβ€”nhds
ENNReal
instTopologicalSpace
ofNNReal
Filter.map
NNReal
NNReal.instTopologicalSpace
β€”Topology.IsOpenEmbedding.map_nhds_eq
isOpenEmbedding_coe
nhds_of_ne_top πŸ“–mathematicalβ€”nhds
ENNReal
instTopologicalSpace
iInf
Filter
Filter.instInfSet
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
instZeroENNReal
Filter.principal
Set.Icc
instSub
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
β€”Filter.HasBasis.eq_biInf
hasBasis_nhds_of_ne_top
nhds_top πŸ“–mathematicalβ€”nhds
ENNReal
instTopologicalSpace
Top.top
instTopENNReal
iInf
Filter
Filter.instInfSet
Filter.principal
Set.Ioi
PartialOrder.toPreorder
instPartialOrder
β€”nhds_top_order
instOrderTopology
iInf_congr_Prop
nhds_top' πŸ“–mathematicalβ€”nhds
ENNReal
instTopologicalSpace
Top.top
instTopENNReal
iInf
Filter
NNReal
Filter.instInfSet
Filter.principal
Set.Ioi
PartialOrder.toPreorder
instPartialOrder
ofNNReal
β€”nhds_top
iInf_ne_top
nhds_top_basis πŸ“–mathematicalβ€”Filter.HasBasis
ENNReal
nhds
instTopologicalSpace
Top.top
instTopENNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
Set.Ioi
β€”nhds_top_basis
instOrderTopology
nhds_zero πŸ“–mathematicalβ€”nhds
ENNReal
instTopologicalSpace
instZeroENNReal
iInf
Filter
Filter.instInfSet
Filter.principal
Set.Iio
PartialOrder.toPreorder
instPartialOrder
β€”nhds_bot_order
instOrderTopology
iInf_congr_Prop
bot_eq_zero'
instCanonicallyOrderedAdd
nhds_zero_basis πŸ“–mathematicalβ€”Filter.HasBasis
ENNReal
nhds
instTopologicalSpace
instZeroENNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
Set.Iio
β€”nhds_bot_basis
instOrderTopology
nhds_zero_basis_Iic πŸ“–mathematicalβ€”Filter.HasBasis
ENNReal
nhds
instTopologicalSpace
instZeroENNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
Set.Iic
β€”nhds_bot_basis_Iic
instOrderTopology
instDenselyOrdered
ofNNReal_liminf πŸ“–mathematicalFilter.IsCoboundedUnder
NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
ofNNReal
Filter.liminf
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
NNReal.instConditionallyCompleteLinearOrderBot
ENNReal
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrder
β€”eq_of_forall_nnreal_le_iff
coe_le_coe
Filter.le_liminf_iff
Filter.isBounded_ge_of_bot
Filter.isCobounded_ge_of_top
instIsEmptyFalse
ofNNReal_limsup πŸ“–mathematicalFilter.IsBoundedUnder
NNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrderNNReal
ofNNReal
Filter.limsup
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
NNReal.instConditionallyCompleteLinearOrderBot
ENNReal
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrder
β€”eq_of_forall_nnreal_le_iff
coe_le_coe
Filter.le_limsup_iff
Filter.isCobounded_le_of_bot
Filter.isBounded_le_of_top
tendsto_atTop πŸ“–mathematicalβ€”Filter.Tendsto
ENNReal
Filter.atTop
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
nhds
instTopologicalSpace
Set
Set.instMembership
Set.Icc
instPartialOrder
instSub
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
β€”Filter.HasBasis.tendsto_iff
Filter.atTop_basis
SemilatticeSup.instIsDirectedOrder
hasBasis_nhds_of_ne_top
tendsto_atTop_zero πŸ“–mathematicalβ€”Filter.Tendsto
ENNReal
Filter.atTop
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
nhds
instTopologicalSpace
instZeroENNReal
Preorder.toLE
instPartialOrder
β€”Filter.HasBasis.tendsto_iff
Filter.atTop_basis
SemilatticeSup.instIsDirectedOrder
nhds_zero_basis_Iic
tendsto_atTop_zero_iff_le_of_antitone πŸ“–mathematicalAntitone
ENNReal
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
instPartialOrder
Filter.Tendsto
Filter.atTop
nhds
instTopologicalSpace
instZeroENNReal
Preorder.toLE
β€”tendsto_atTop_zero
le_rfl
LE.le.trans
tendsto_atTop_zero_iff_lt_of_antitone πŸ“–mathematicalAntitone
ENNReal
PartialOrder.toPreorder
SemilatticeSup.toPartialOrder
instPartialOrder
Filter.Tendsto
Filter.atTop
nhds
instTopologicalSpace
instZeroENNReal
Preorder.toLT
β€”tendsto_atTop_zero_iff_le_of_antitone
Nat.instAtLeastTwoHAddOfNat
lt_min_iff
zero_lt_one
IsOrderedRing.toZeroLEOneClass
instIsOrderedRing
NeZero.one
div_pos_iff
ne_of_gt
ofNat_ne_top
LE.le.trans_lt
min_le_left
one_lt_top
min_le_right
div_lt_iff
LT.lt.ne'
mul_one
mul_lt_mul_right
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
instCharZero
LT.lt.le
tendsto_coe_nhds_top πŸ“–mathematicalβ€”Filter.Tendsto
ENNReal
ofNNReal
nhds
instTopologicalSpace
Top.top
instTopENNReal
NNReal
Filter.atTop
PartialOrder.toPreorder
instPartialOrderNNReal
β€”tendsto_nhds_top_iff_nnreal
Filter.HasBasis.tendsto_right_iff
Filter.atTop_basis_Ioi
instIsDirectedOrder
NNReal.instIsOrderedRing
NNReal.instArchimedean
IsStrictOrderedRing.toNoMaxOrder
NNReal.instIsStrictOrderedRing
tendsto_coe_sub πŸ“–mathematicalβ€”Filter.Tendsto
ENNReal
instSub
ofNNReal
nhds
instTopologicalSpace
β€”Continuous.tendsto
continuous_nnreal_sub
tendsto_coe_toNNReal πŸ“–mathematicalβ€”Filter.Tendsto
NNReal
ENNReal
ofNNReal
nhds
NNReal.instTopologicalSpace
toNNReal
instTopologicalSpace
β€”coe_toNNReal
Continuous.tendsto
continuous_coe
tendsto_const_sub_nhds_zero_iff πŸ“–mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
Filter.Tendsto
instSub
nhds
instTopologicalSpace
instZeroENNReal
β€”tendsto_nhds_zero
tendsto_nhds
Filter.mp_mem
Filter.univ_mem'
tsub_le_iff_right
instOrderedSub
add_comm
LE.le.trans
le_add_right
instCanonicallyOrderedAdd
le_rfl
tendsto_finset_prod_of_ne_top πŸ“–mathematicalFilter.Tendsto
ENNReal
nhds
instTopologicalSpace
Finset.prod
CommSemiring.toCommMonoid
instCommSemiring
β€”Finset.induction
Finset.prod_insert
Tendsto.mul
Finset.mem_insert_self
prod_ne_top
Finset.mem_insert_of_mem
tendsto_inv_iff πŸ“–mathematicalβ€”Filter.Tendsto
InvolutiveInv.toInv
nhds
β€”tendsto_inv_iff
tendsto_inv_nat_nhds_zero πŸ“–mathematicalβ€”Filter.Tendsto
ENNReal
instInv
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Filter.atTop
Nat.instPreorder
nhds
instTopologicalSpace
instZeroENNReal
β€”tendsto_inv_iff
instContinuousInv
tendsto_nat_nhds_top
inv_top
tendsto_mul πŸ“–mathematicalβ€”Filter.Tendsto
ENNReal
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
nhds
instTopologicalSpaceProd
instTopologicalSpace
β€”tendsto_nhds_top_iff_nnreal
lt_iff_exists_nnreal_btwn
pos_iff_ne_zero
instCanonicallyOrderedAdd
Filter.Eventually.prod_nhds
lt_mem_nhds
instOrderTopology
div_lt_top
coe_ne_top
LT.lt.ne'
Filter.Eventually.mono
Eq.trans_lt
div_mul_cancel
mul_lt_mul
top_mul
mul_top
mul_comm
Filter.Tendsto.comp
Continuous.tendsto
continuous_swap
nhds_coe_coe
IsTopologicalSemiring.toContinuousMul
NNReal.instIsTopologicalSemiring
tendsto_nat_nhds_top πŸ“–mathematicalβ€”Filter.Tendsto
ENNReal
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Filter.atTop
Nat.instPreorder
nhds
instTopologicalSpace
Top.top
instTopENNReal
β€”tendsto_nhds_top
Filter.mem_atTop_sets
instIsDirectedOrder
IsStrictOrderedRing.toIsOrderedRing
Nat.instIsStrictOrderedRing
instArchimedeanNat
Set.mem_setOf
Nat.cast_lt
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
IsOrderedRing.toZeroLEOneClass
instIsOrderedRing
instCharZero
tendsto_nhds πŸ“–mathematicalβ€”Filter.Tendsto
ENNReal
nhds
instTopologicalSpace
Filter.Eventually
Set
Set.instMembership
Set.Icc
PartialOrder.toPreorder
instPartialOrder
instSub
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
β€”nhds_of_ne_top
tendsto_nhds_coe_iff πŸ“–mathematicalβ€”Filter.Tendsto
ENNReal
nhds
instTopologicalSpace
ofNNReal
NNReal
NNReal.instTopologicalSpace
β€”nhds_coe
Filter.tendsto_map'_iff
tendsto_nhds_of_Icc πŸ“–mathematicalFilter.Eventually
ENNReal
Set
Set.instMembership
Set.Icc
PartialOrder.toPreorder
instPartialOrder
instSub
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
instCommSemiring
Filter.Tendsto
nhds
instTopologicalSpace
β€”Filter.Tendsto.mono_right
biInf_le_nhds
tendsto_nhds_top πŸ“–mathematicalFilter.Eventually
ENNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
Filter.Tendsto
nhds
instTopologicalSpace
Top.top
instTopENNReal
β€”tendsto_nhds_top_iff_nat
tendsto_nhds_top_iff_nat πŸ“–mathematicalβ€”Filter.Tendsto
ENNReal
nhds
instTopologicalSpace
Top.top
instTopENNReal
Filter.Eventually
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
AddMonoidWithOne.toNatCast
AddCommMonoidWithOne.toAddMonoidWithOne
instAddCommMonoidWithOneENNReal
β€”tendsto_nhds_top_iff_nnreal
exists_nat_gt
NNReal.instIsStrictOrderedRing
NNReal.instArchimedean
Filter.Eventually.mono
lt_trans
coe_natCast
coe_lt_coe
tendsto_nhds_top_iff_nnreal πŸ“–mathematicalβ€”Filter.Tendsto
ENNReal
nhds
instTopologicalSpace
Top.top
instTopENNReal
Filter.Eventually
Preorder.toLT
PartialOrder.toPreorder
instPartialOrder
ofNNReal
β€”nhds_top'
tendsto_nhds_zero πŸ“–mathematicalβ€”Filter.Tendsto
ENNReal
nhds
instTopologicalSpace
instZeroENNReal
Filter.Eventually
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
β€”Filter.HasBasis.tendsto_right_iff
nhds_zero_basis_Iic
tendsto_ofReal πŸ“–mathematicalFilter.Tendsto
Real
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ENNReal
ofReal
instTopologicalSpace
β€”Filter.Tendsto.comp
Continuous.tendsto
continuous_ofReal
tendsto_ofReal_atTop πŸ“–mathematicalβ€”Filter.Tendsto
Real
ENNReal
ofReal
Filter.atTop
Real.instPreorder
nhds
instTopologicalSpace
Top.top
instTopENNReal
β€”tendsto_ofReal_nhds_top
Filter.tendsto_id
tendsto_ofReal_nhds_top πŸ“–mathematicalβ€”Filter.Tendsto
ENNReal
ofReal
nhds
instTopologicalSpace
Top.top
instTopENNReal
Real
Filter.atTop
Real.instPreorder
β€”tendsto_coe_nhds_top
Real.tendsto_toNNReal_atTop_iff
tendsto_sub πŸ“–mathematicalβ€”Filter.Tendsto
ENNReal
instSub
nhds
instTopologicalSpaceProd
instTopologicalSpace
β€”top_sub_coe
tendsto_nhds_top_iff_nnreal
Filter.Eventually.mono
Filter.Eventually.prod_nhds
lt_mem_nhds
instOrderTopology
coe_lt_top
ge_mem_nhds
coe_lt_coe
lt_add_one
LinearOrderedCommMonoidWithZero.toZeroLeOneClass
NeZero.one
IsLeftCancelAdd.addLeftStrictMono_of_addLeftMono
AddLeftCancelSemigroup.toIsLeftCancelAdd
NNReal.addLeftMono
lt_tsub_iff_left
instOrderedSub
lt_imp_lt_of_le_of_le
add_le_add_left
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
le_refl
sub_top
Filter.Tendsto.mono_right
Filter.tendsto_pure
gt_mem_nhds
tsub_eq_zero_iff_le
instCanonicallyOrderedAdd
LT.lt.le
LT.lt.trans
pure_le_nhds
nhds_coe_coe
Continuous.tendsto
ContinuousSub.continuous_sub
NNReal.instContinuousSub
tendsto_toNNReal πŸ“–mathematicalβ€”Filter.Tendsto
ENNReal
NNReal
toNNReal
nhds
instTopologicalSpace
NNReal.instTopologicalSpace
β€”CanLift.prf
canLift
nhds_coe
Filter.tendsto_map'_iff
Filter.tendsto_id
tendsto_toNNReal_iff πŸ“–mathematicalβ€”Filter.Tendsto
NNReal
ENNReal
toNNReal
nhds
NNReal.instTopologicalSpace
instTopologicalSpace
β€”coe_comp_toNNReal_comp
Filter.Tendsto.comp
tendsto_coe_toNNReal
tendsto_toNNReal
tendsto_toNNReal_iff' πŸ“–mathematicalβ€”Filter.Tendsto
NNReal
ENNReal
toNNReal
nhds
NNReal.instTopologicalSpace
instTopologicalSpace
ofNNReal
β€”toNNReal_coe
tendsto_toNNReal_iff
coe_ne_top
tendsto_toReal πŸ“–mathematicalβ€”Filter.Tendsto
ENNReal
Real
toReal
nhds
instTopologicalSpace
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
β€”NNReal.tendsto_coe
tendsto_toNNReal
tendsto_toReal_iff πŸ“–mathematicalβ€”Filter.Tendsto
Real
toReal
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
ENNReal
instTopologicalSpace
β€”CanLift.prf
Pi.canLift
canLift
tendsto_toReal_zero_iff πŸ“–mathematicalβ€”Filter.Tendsto
Real
toReal
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instZero
ENNReal
instTopologicalSpace
instZeroENNReal
β€”toReal_zero
tendsto_toReal_iff
zero_ne_top
truncateToReal_eq_toReal πŸ“–mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
instPartialOrder
truncateToReal
toReal
β€”lt_of_le_of_lt
Ne.lt_top
toReal_eq_toReal_iff'
LT.lt.ne
min_eq_right
truncateToReal_le πŸ“–mathematicalβ€”Real
Real.instLE
truncateToReal
toReal
β€”truncateToReal.eq_1
toReal_mono
min_le_left
truncateToReal_nonneg πŸ“–mathematicalβ€”Real
Real.instLE
Real.instZero
truncateToReal
β€”toReal_nonneg

ENNReal.Tendsto

Theorems

NameKindAssumesProvesValidatesDepends On
const_div πŸ“–mathematicalFilter.Tendsto
ENNReal
nhds
ENNReal.instTopologicalSpace
DivInvMonoid.toDiv
ENNReal.instDivInvMonoid
β€”const_mul
tendsto_inv_iff
ENNReal.instContinuousInv
const_mul πŸ“–mathematicalFilter.Tendsto
ENNReal
nhds
ENNReal.instTopologicalSpace
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
β€”by_cases
MulZeroClass.zero_mul
mul
tendsto_const_nhds
div πŸ“–mathematicalFilter.Tendsto
ENNReal
nhds
ENNReal.instTopologicalSpace
DivInvMonoid.toDiv
ENNReal.instDivInvMonoid
β€”mul
tendsto_inv_iff
ENNReal.instContinuousInv
div_const πŸ“–mathematicalFilter.Tendsto
ENNReal
nhds
ENNReal.instTopologicalSpace
DivInvMonoid.toDiv
ENNReal.instDivInvMonoid
β€”mul_const
mul πŸ“–mathematicalFilter.Tendsto
ENNReal
nhds
ENNReal.instTopologicalSpace
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
β€”Filter.Tendsto.comp
ENNReal.tendsto_mul
Filter.Tendsto.prodMk_nhds
mul_const πŸ“–mathematicalFilter.Tendsto
ENNReal
nhds
ENNReal.instTopologicalSpace
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
β€”mul_comm
const_mul
pow πŸ“–mathematicalFilter.Tendsto
ENNReal
nhds
ENNReal.instTopologicalSpace
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
ENNReal.instCommSemiring
β€”Filter.Tendsto.comp
Continuous.tendsto
ENNReal.continuous_pow
sub πŸ“–mathematicalFilter.Tendsto
ENNReal
nhds
ENNReal.instTopologicalSpace
ENNReal.instSubβ€”Filter.Tendsto.comp
ENNReal.tendsto_sub
Filter.Tendsto.prodMk_nhds

Filter.Tendsto

Theorems

NameKindAssumesProvesValidatesDepends On
edist πŸ“–mathematicalFilter.Tendsto
nhds
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
ENNReal
EDist.edist
PseudoEMetricSpace.toEDist
ENNReal.instTopologicalSpace
β€”comp
Continuous.tendsto
continuous_edist
prodMk_nhds

LipschitzOnWith

Theorems

NameKindAssumesProvesValidatesDepends On
closure πŸ“–β€”ContinuousOn
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
closure
LipschitzOnWith
β€”β€”ENNReal.continuous_const_mul
ENNReal.coe_ne_top
le_on_closure
OrderTopology.to_orderClosedTopology
ENNReal.instOrderTopology
Continuous.comp_continuousOn'
Continuous.edist
continuous_id'
continuous_const
Continuous.continuousOn

Metric

Theorems

NameKindAssumesProvesValidatesDepends On
diam_closure πŸ“–mathematicalβ€”diam
closure
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
β€”ediam_closure
ediam_closure πŸ“–mathematicalβ€”ediam
closure
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
β€”le_antisymm
ediam_le
map_mem_closureβ‚‚
continuous_edist
edist_le_ediam_of_mem
closure_Iic
instClosedIicTopology
OrderTopology.to_orderClosedTopology
ENNReal.instOrderTopology
ediam_mono
subset_closure
isClosed_closedEBall πŸ“–mathematicalβ€”IsClosed
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
closedEBall
β€”isClosed_le
OrderTopology.to_orderClosedTopology
ENNReal.instOrderTopology
Continuous.edist
continuous_id'
continuous_const

Real

Theorems

NameKindAssumesProvesValidatesDepends On
diam_Icc πŸ“–mathematicalReal
instLE
Metric.diam
pseudoMetricSpace
Set.Icc
instPreorder
instSub
β€”ediam_Icc
ENNReal.toReal_ofReal
sub_nonneg
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
diam_Ico πŸ“–mathematicalReal
instLE
Metric.diam
pseudoMetricSpace
Set.Ico
instPreorder
instSub
β€”ediam_Ico
ENNReal.toReal_ofReal
sub_nonneg
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
diam_Ioc πŸ“–mathematicalReal
instLE
Metric.diam
pseudoMetricSpace
Set.Ioc
instPreorder
instSub
β€”ediam_Ioc
ENNReal.toReal_ofReal
sub_nonneg
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
diam_Ioo πŸ“–mathematicalReal
instLE
Metric.diam
pseudoMetricSpace
Set.Ioo
instPreorder
instSub
β€”ediam_Ioo
ENNReal.toReal_ofReal
sub_nonneg
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
diam_eq πŸ“–mathematicalBornology.IsBounded
Real
PseudoMetricSpace.toBornology
pseudoMetricSpace
Metric.diam
instSub
SupSet.sSup
instSupSet
InfSet.sInf
instInfSet
β€”Metric.diam.eq_1
ediam_eq
ENNReal.toReal_ofReal
sub_nonneg
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
sInf_le_sSup
Bornology.IsBounded.bddBelow
instIsOrderBornology
Bornology.IsBounded.bddAbove
ediam_Icc πŸ“–mathematicalβ€”Metric.ediam
Real
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
metricSpace
Set.Icc
instPreorder
ENNReal.ofReal
instSub
β€”le_or_gt
ediam_eq
Metric.isBounded_Icc
ConditionallyCompleteLinearOrder.toCompactIccSpace
instOrderTopologyReal
csSup_Icc
csInf_Icc
Set.Icc_eq_empty
Metric.ediam_empty
AddGroup.toOrderedSub
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
zero_add
LT.lt.le
ediam_Ico πŸ“–mathematicalβ€”Metric.ediam
Real
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
metricSpace
Set.Ico
instPreorder
ENNReal.ofReal
instSub
β€”le_antisymm
Metric.ediam_mono
Set.Ico_subset_Icc_self
ediam_Icc
Set.Ioo_subset_Ico_self
ediam_Ioo
ediam_Ioc πŸ“–mathematicalβ€”Metric.ediam
Real
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
metricSpace
Set.Ioc
instPreorder
ENNReal.ofReal
instSub
β€”le_antisymm
Metric.ediam_mono
Set.Ioc_subset_Icc_self
ediam_Icc
Set.Ioo_subset_Ioc_self
ediam_Ioo
ediam_Ioo πŸ“–mathematicalβ€”Metric.ediam
Real
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
metricSpace
Set.Ioo
instPreorder
ENNReal.ofReal
instSub
β€”le_or_gt
Set.Ioo_eq_empty
Metric.ediam_empty
AddGroup.toOrderedSub
covariant_swap_add_of_covariant_add
IsOrderedAddMonoid.toAddLeftMono
instIsOrderedAddMonoid
zero_add
ediam_eq
Metric.isBounded_Ioo
ConditionallyCompleteLinearOrder.toCompactIccSpace
instOrderTopologyReal
csSup_Ioo
LinearOrderedSemiField.toDenselyOrdered
PosMulReflectLE.toPosMulReflectLT
PosMulStrictMono.toPosMulReflectLE
IsStrictOrderedRing.toPosMulStrictMono
instIsStrictOrderedRing
csInf_Ioo
ediam_eq πŸ“–mathematicalBornology.IsBounded
Real
PseudoMetricSpace.toBornology
pseudoMetricSpace
Metric.ediam
EMetricSpace.toPseudoEMetricSpace
MetricSpace.toEMetricSpace
metricSpace
ENNReal.ofReal
instSub
SupSet.sSup
instSupSet
InfSet.sInf
instInfSet
β€”Set.eq_empty_or_nonempty
Metric.ediam_empty
sSup_empty
sInf_empty
sub_self
ENNReal.ofReal_zero
le_antisymm
Metric.ediam_le_of_forall_dist_le
dist_le_of_mem_Icc
Bornology.IsBounded.subset_Icc_sInf_sSup
instIsOrderBornology
ENNReal.ofReal_le_of_le_toReal
Metric.diam.eq_1
Metric.diam_closure
le_abs_self
Metric.dist_le_diam_of_mem
Bornology.IsBounded.closure
csSup_mem_closure
instOrderTopologyReal
Bornology.IsBounded.bddAbove
csInf_mem_closure
Bornology.IsBounded.bddBelow

(root)

Definitions

NameCategoryTheorems
metricSpaceEMetricBall πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_edist πŸ“–mathematicalβ€”Continuous
ENNReal
instTopologicalSpaceProd
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
ENNReal.instTopologicalSpace
EDist.edist
PseudoEMetricSpace.toEDist
β€”continuous_of_le_add_edist
Nat.instAtLeastTwoHAddOfNat
edist_triangle4
PseudoEMetricSpace.edist_comm
AddSemigroup.to_isAssociative
AddCommMagma.to_isCommutative
add_le_add_right
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
add_le_add
covariant_swap_add_of_covariant_add
le_max_left
le_max_right
mul_two
mul_comm
continuous_of_le_add_edist πŸ“–mathematicalENNReal
Preorder.toLE
PartialOrder.toPreorder
ENNReal.instPartialOrder
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
CommSemiring.toSemiring
ENNReal.instCommSemiring
Distrib.toMul
EDist.edist
PseudoEMetricSpace.toEDist
Continuous
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
ENNReal.instTopologicalSpace
β€”continuous_iff_continuousAt
ENNReal.tendsto_nhds_of_Icc
ENNReal.exists_nnreal_pos_mul_lt
LT.lt.ne'
Filter.mp_mem
Metric.closedEBall_mem_nhds
ENNReal.coe_pos
Filter.univ_mem'
tsub_le_iff_right
ENNReal.instOrderedSub
LE.le.trans
le_imp_le_of_le_of_le
le_refl
add_le_add_right
IsOrderedAddMonoid.toAddLeftMono
ENNReal.instIsOrderedAddMonoid
LT.lt.le
mul_comm
mul_le_mul_right
IsOrderedMonoid.toMulLeftMono
ENNReal.instIsOrderedMonoid
Metric.mem_closedEBall'
Metric.mem_closedEBall
edist_ne_top_of_mem_ball πŸ“–β€”β€”β€”β€”ne_of_lt
edist_triangle_left
PseudoEMetricSpace.edist_comm
ENNReal.add_lt_add
le_top
isClosed_setOf_lipschitzOnWith πŸ“–mathematicalβ€”IsClosed
Pi.topologicalSpace
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
setOf
LipschitzOnWith
β€”Set.setOf_forall
Set.iInter_congr_Prop
isClosed_biInter
isClosed_le
OrderTopology.to_orderClosedTopology
ENNReal.instOrderTopology
Continuous.edist
continuous_apply
continuous_const
isClosed_setOf_lipschitzWith πŸ“–mathematicalβ€”IsClosed
Pi.topologicalSpace
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
setOf
LipschitzWith
β€”β€”
lipschitzOnWith_closure_iff πŸ“–mathematicalContinuousOn
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
closure
LipschitzOnWithβ€”LipschitzOnWith.mono
subset_closure
LipschitzOnWith.closure
nhds_eq_nhds_emetric_ball πŸ“–mathematicalSet
Set.instMembership
Metric.eball
EMetricSpace.toPseudoEMetricSpace
nhds
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
Filter.map
instTopologicalSpaceSubtype
β€”map_nhds_subtype_coe_eq_nhds
IsOpen.mem_nhds
Metric.isOpen_eball
tendsto_iff_edist_tendsto_0 πŸ“–mathematicalβ€”Filter.Tendsto
nhds
UniformSpace.toTopologicalSpace
PseudoEMetricSpace.toUniformSpace
ENNReal
EDist.edist
PseudoEMetricSpace.toEDist
ENNReal.instTopologicalSpace
instZeroENNReal
β€”Filter.HasBasis.tendsto_right_iff
Metric.nhds_basis_eball
tendsto_order
ENNReal.instOrderTopology
ENNReal.not_lt_zero

---

← Back to Index