Documentation Verification Report

Int

📁 Source: Mathlib/Topology/Instances/Int.lean

Statistics

MetricCount
DefinitionsinstDist, instMetricSpace
2
Theoremsball_eq_Ioo, closedBall_eq_Icc, cobounded_eq, cofinite_eq, dist_cast_real, dist_eq, dist_eq', instIsOrderBornology, instProperSpace, isClosedEmbedding_coe_real, isUniformEmbedding_coe_real, pairwise_one_le_dist, preimage_ball, preimage_closedBall
14
Total16

Int

Definitions

NameCategoryTheorems
instDist 📖CompOp
6 mathmath: dist_eq', dist_cast_rat, dist_cast_real, dist_eq, Nat.dist_coe_int, pairwise_one_le_dist
instMetricSpace 📖CompOp
8 mathmath: instProperSpace, ball_eq_Ioo, closedBall_eq_Icc, preimage_ball, instIsOrderBornology, preimage_closedBall, Complex.isometry_intCast, cobounded_eq

Theorems

NameKindAssumesProvesValidatesDepends On
ball_eq_Ioo 📖mathematicalMetric.ball
MetricSpace.toPseudoMetricSpace
instMetricSpace
Set.Ioo
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
instConditionallyCompleteLinearOrder
floor
Real
Real.instRing
Real.linearOrder
Real.instFloorRing
Real.instSub
Real.instIntCast
ceil
Real.instAdd
preimage_ball
Real.ball_eq_Ioo
preimage_Ioo
closedBall_eq_Icc 📖mathematicalMetric.closedBall
MetricSpace.toPseudoMetricSpace
instMetricSpace
Set.Icc
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
instConditionallyCompleteLinearOrder
ceil
Real
Real.instRing
Real.linearOrder
Real.instFloorRing
Real.instSub
Real.instIntCast
floor
Real.instAdd
preimage_closedBall
Real.closedBall_eq_Icc
preimage_Icc
cobounded_eq 📖mathematicalBornology.cobounded
PseudoMetricSpace.toBornology
MetricSpace.toPseudoMetricSpace
instMetricSpace
Filter
Filter.instSup
Filter.atBot
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
instConditionallyCompleteLinearOrder
Filter.atTop
Metric.comap_dist_right_atTop
dist_eq'
sub_zero
instIsOrderedAddMonoid
comap_cast_atTop
Real.instIsStrictOrderedRing
Real.instArchimedean
Filter.comap_comap
cofinite_eq 📖mathematicalFilter.cofinite
Filter
Filter.instSup
Filter.atBot
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
instConditionallyCompleteLinearOrder
Filter.atTop
Filter.cocompact_eq_cofinite
instDiscreteTopologyInt
cocompact_eq_atBot_atTop
instNoMaxOrderOfNontrivial
IsStrictOrderedRing.toIsOrderedRing
instIsStrictOrderedRing
instNontrivial
instNoMinOrderOfNontrivial
OrderTopology.to_orderClosedTopology
OrderTopology.of_linearLocallyFinite
ConditionallyCompleteLinearOrder.toCompactIccSpace
dist_cast_real 📖mathematicalDist.dist
Real
PseudoMetricSpace.toDist
Real.pseudoMetricSpace
Real.instIntCast
instDist
dist_eq 📖mathematicalDist.dist
instDist
abs
Real
Real.lattice
Real.instAddGroup
Real.instSub
Real.instIntCast
dist_eq' 📖mathematicalDist.dist
instDist
Real
Real.instIntCast
abs
instLatticeInt
instAddGroup
dist_eq
Real.instIsStrictOrderedRing
IsStrictOrderedRing.toCharZero
instIsOrderBornology 📖mathematicalIsOrderBornology
PseudoMetricSpace.toBornology
MetricSpace.toPseudoMetricSpace
instMetricSpace
PartialOrder.toPreorder
ConditionallyCompletePartialOrderSup.toPartialOrder
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
instConditionallyCompleteLinearOrder
IsOrderBornology.of_isCompactIcc
ConditionallyCompleteLinearOrder.toCompactIccSpace
OrderTopology.of_linearLocallyFinite
instDiscreteTopologyInt
closedBall_eq_Icc
cast_zero
zero_sub
zero_add
instProperSpace 📖mathematicalProperSpace
MetricSpace.toPseudoMetricSpace
instMetricSpace
closedBall_eq_Icc
Set.Finite.isCompact
Set.finite_Icc
isClosedEmbedding_coe_real 📖mathematicalTopology.IsClosedEmbedding
Real
instTopologicalSpaceInt
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instIntCast
Metric.isClosedEmbedding_of_pairwise_le_dist
instDiscreteTopologyInt
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
pairwise_one_le_dist
isUniformEmbedding_coe_real 📖mathematicalIsUniformEmbedding
Real
instUniformSpaceInt
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instIntCast
Metric.isUniformEmbedding_bot_of_pairwise_le_dist
zero_lt_one
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
Real.instIsStrictOrderedRing
pairwise_one_le_dist
pairwise_one_le_dist 📖mathematicalPairwise
Real
Real.instLE
Real.instOne
Dist.dist
instDist
dist_eq
Nat.cast_one
Real.instIsStrictOrderedRing
cast_one
IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
Real.instZeroLEOneClass
NeZero.charZero_one
IsStrictOrderedRing.toCharZero
zero_add
abs_pos
instAddLeftMono
sub_ne_zero
preimage_ball 📖mathematicalSet.preimage
Real
Real.instIntCast
Metric.ball
Real.pseudoMetricSpace
MetricSpace.toPseudoMetricSpace
instMetricSpace
preimage_closedBall 📖mathematicalSet.preimage
Real
Real.instIntCast
Metric.closedBall
Real.pseudoMetricSpace
MetricSpace.toPseudoMetricSpace
instMetricSpace

---

← Back to Index