Documentation Verification Report

Lemmas

πŸ“ Source: Mathlib/Topology/Instances/NNReal/Lemmas.lean

Statistics

MetricCount
DefinitionsrealToNNReal, powOrderIso, powOrderIso
3
TheoremsrealToNNReal_apply, ofReal_map_toNNReal, iSup_pow, iSup_pow_of_ne_zero, iSupβ‚‚_pow_of_ne_zero, toNNReal, coe_tsum, coe_tsum_of_nonneg, comap_coe_atTop, hasSum_coe, hasSum_nat_add_iff, hasSum_real_toNNReal_of_nonneg, iInf_real_pos_eq_iInf_nnreal_pos, iSup_pow, iSup_pow_of_ne_zero, isOpen_Ico_zero, map_coe_atTop, map_coe_nhdsGE, map_coe_nhdsGT, nhds_zero, nhds_zero_basis, sum_add_tsum_nat_add, summable_coe, summable_comp_injective, summable_mk, summable_nat_add, summable_nat_add_iff, tendsto_atTop_zero_of_summable, tendsto_coe, tendsto_coe', tendsto_coe_atTop, tendsto_cofinite_zero_of_summable, tendsto_of_antitone, tendsto_tsum_compl_atTop_zero, tsum_mul_left, tsum_mul_right, comap_toNNReal_atTop, iSup_pow, iSup_pow_of_ne_zero, map_toNNReal_atTop, tendsto_of_bddAbove_monotone, tendsto_of_bddBelow_antitone, tendsto_toNNReal_atTop, tendsto_toNNReal_atTop_iff, continuous_real_toNNReal, tendsto_real_toNNReal, tendsto_real_toNNReal_atTop
47
Total50

ContinuousMap

Definitions

NameCategoryTheorems
realToNNReal πŸ“–CompOp
14 mathmath: SpectrumRestricts.nnreal_of_nonneg, QuasispectrumRestricts.nnreal_iff, cfcβ‚™Hom_nnreal_eq_restrict, SpectrumRestricts.nnreal_iff, nonneg_iff_isSelfAdjoint_and_spectrumRestricts, IsSelfAdjoint.sq_spectrumRestricts, cfcHom_nnreal_eq_restrict, realToNNReal_apply, QuasispectrumRestricts.nnreal_of_nonneg, ContinuousLinearMap.IsPositive.spectrumRestricts, nonneg_iff_isSelfAdjoint_and_quasispectrumRestricts, SpectrumRestricts.nnreal_iff_spectralRadius_le, CStarAlgebra.nonneg_TFAE, SpectrumRestricts.nnreal_iff_nnnorm

Theorems

NameKindAssumesProvesValidatesDepends On
realToNNReal_apply πŸ“–mathematicalβ€”DFunLike.coe
ContinuousMap
Real
NNReal
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
NNReal.instTopologicalSpace
instFunLike
realToNNReal
Real.toNNReal
β€”β€”

ContinuousOn

Theorems

NameKindAssumesProvesValidatesDepends On
ofReal_map_toNNReal πŸ“–mathematicalContinuousOn
NNReal
NNReal.instTopologicalSpace
Set.MapsTo
Real
Real.toNNReal
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
NNReal.toReal
β€”Continuous.comp_continuousOn
continuous_subtype_val
comp
Continuous.continuousOn
continuous_real_toNNReal

ENNReal

Definitions

NameCategoryTheorems
powOrderIso πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
iSup_pow πŸ“–mathematicalβ€”ENNReal
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
instCommSemiring
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrder
β€”pow_zero
ciSup_const
iSup_pow_of_ne_zero
iSup_pow_of_ne_zero πŸ“–mathematicalβ€”ENNReal
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
instCommSemiring
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrder
β€”OrderIso.map_iSup
iSupβ‚‚_pow_of_ne_zero πŸ“–mathematicalβ€”ENNReal
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
CommSemiring.toSemiring
instCommSemiring
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
CompleteLinearOrder.toConditionallyCompleteLinearOrderBot
instCompleteLinearOrder
β€”OrderIso.map_iSupβ‚‚

HasSum

Theorems

NameKindAssumesProvesValidatesDepends On
toNNReal πŸ“–mathematicalReal
Real.instLE
Real.instZero
HasSum
Real.instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
NNReal
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
NNReal.instTopologicalSpace
Real.toNNReal
β€”SummationFilter.neBot_or_eq_bot
CanLift.prf
NNReal.canLift
nonneg
Real.instIsOrderedAddMonoid
OrderTopology.to_orderClosedTopology
instOrderTopologyReal
Pi.canLift
Real.toNNReal_coe
Finset.sum_congr

NNReal

Definitions

NameCategoryTheorems
powOrderIso πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
coe_tsum πŸ“–mathematicalβ€”toReal
tsum
NNReal
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
instTopologicalSpace
Real
Real.instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
β€”Function.LeftInverse.map_tsum
TopologicalSpace.t2Space_of_metrizableSpace
TopologicalSpace.PseudoMetrizableSpace.toMetrizableSpace
T3Space.toT0Space
T4Space.t3Space
T5Space.toT4Space
OrderTopology.t5Space
instOrderTopologyReal
UniformSpace.pseudoMetrizableSpace
EMetric.instIsCountablyGeneratedUniformity
DistribMulActionSemiHomClass.toAddMonoidHomClass
IsStrictOrderedRing.toCharZero
instIsStrictOrderedRing
Real.instIsStrictOrderedRing
SemilinearMapClass.distribMulActionSemiHomClass
RingHomClass.toLinearMapClassNNRat
RingHom.instRingHomClass
continuous_coe
continuous_real_toNNReal
Real.toNNReal_coe
coe_tsum_of_nonneg πŸ“–mathematicalReal
Real.instLE
Real.instZero
tsum
Real.instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
tsum_nonneg
Real.partialOrder
Real.instIsOrderedAddMonoid
OrderTopology.to_orderClosedTopology
Real.linearOrder
instOrderTopologyReal
NNReal
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
instTopologicalSpace
β€”eq
tsum_nonneg
Real.instIsOrderedAddMonoid
OrderTopology.to_orderClosedTopology
instOrderTopologyReal
coe_tsum
comap_coe_atTop πŸ“–mathematicalβ€”Filter.comap
NNReal
Real
toReal
Filter.atTop
Real.instPreorder
PartialOrder.toPreorder
instPartialOrderNNReal
β€”Filter.atTop_Ici_eq
instIsDirectedOrder
Real.instIsOrderedRing
Real.instArchimedean
hasSum_coe πŸ“–mathematicalβ€”HasSum
Real
Real.instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
toReal
NNReal
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
instTopologicalSpace
β€”Finset.sum_congr
hasSum_nat_add_iff πŸ“–mathematicalβ€”HasSum
NNReal
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
instTopologicalSpace
SummationFilter.unconditional
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
Finset.sum
Finset.range
β€”hasSum_coe
hasSum_nat_add_iff
instIsTopologicalAddGroupReal
hasSum_real_toNNReal_of_nonneg πŸ“–mathematicalReal
Real.instLE
Real.instZero
Summable
Real.instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
HasSum
NNReal
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
instTopologicalSpace
Real.toNNReal
tsum
β€”HasSum.toNNReal
Summable.hasSum
iInf_real_pos_eq_iInf_nnreal_pos πŸ“–mathematicalβ€”iInf
Real
ConditionallyCompletePartialOrderInf.toInfSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderInf
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
CompleteLattice.toConditionallyCompleteLattice
Real.instLT
Real.instZero
NNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
toReal
β€”le_antisymm
iInf_mono'
le_rfl
iInfβ‚‚_mono'
LT.lt.le
iSup_pow πŸ“–mathematicalβ€”NNReal
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiringNNReal
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
β€”pow_zero
ciSup_const
iSup_pow_of_ne_zero
iSup_pow_of_ne_zero πŸ“–mathematicalβ€”NNReal
Monoid.toNatPow
MonoidWithZero.toMonoid
Semiring.toMonoidWithZero
instSemiringNNReal
iSup
ConditionallyCompletePartialOrderSup.toSupSet
ConditionallyCompletePartialOrder.toConditionallyCompletePartialOrderSup
ConditionallyCompleteLattice.toConditionallyCompletePartialOrder
ConditionallyCompleteLinearOrder.toConditionallyCompleteLattice
ConditionallyCompleteLinearOrderBot.toConditionallyCompleteLinearOrder
instConditionallyCompleteLinearOrderBot
β€”OrderIso.map_ciSup'
isOpen_Ico_zero πŸ“–mathematicalβ€”IsOpen
NNReal
instTopologicalSpace
Set.Ico
PartialOrder.toPreorder
instPartialOrderNNReal
instZeroNNReal
β€”isOpen_Iio
instClosedIciTopology
OrderTopology.to_orderClosedTopology
instOrderTopology
Set.Ico_bot
map_coe_atTop πŸ“–mathematicalβ€”Filter.map
NNReal
Real
toReal
Filter.atTop
PartialOrder.toPreorder
instPartialOrderNNReal
Real.instPreorder
β€”Filter.map_val_Ici_atTop
instIsDirectedOrder
Real.instIsOrderedRing
Real.instArchimedean
map_coe_nhdsGE πŸ“–mathematicalβ€”Filter.map
NNReal
Real
toReal
nhdsWithin
instTopologicalSpace
Set.Ici
PartialOrder.toPreorder
instPartialOrderNNReal
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instPreorder
β€”Topology.IsEmbedding.map_nhdsWithin_eq
isEmbedding_coe
image_coe_Ici
map_coe_nhdsGT πŸ“–mathematicalβ€”Filter.map
NNReal
Real
toReal
nhdsWithin
instTopologicalSpace
Set.Ioi
PartialOrder.toPreorder
instPartialOrderNNReal
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
Real.instPreorder
β€”Topology.IsEmbedding.map_nhdsWithin_eq
isEmbedding_coe
image_coe_Ioi
nhds_zero πŸ“–mathematicalβ€”nhds
NNReal
instTopologicalSpace
instZeroNNReal
iInf
Filter
Filter.instInfSet
Filter.principal
Set.Iio
PartialOrder.toPreorder
instPartialOrderNNReal
β€”nhds_bot_order
instOrderTopology
iInf_congr_Prop
nhds_zero_basis πŸ“–mathematicalβ€”Filter.HasBasis
NNReal
nhds
instTopologicalSpace
instZeroNNReal
Preorder.toLT
PartialOrder.toPreorder
instPartialOrderNNReal
Set.Iio
β€”nhds_bot_basis
instOrderTopology
sum_add_tsum_nat_add πŸ“–mathematicalSummable
NNReal
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
instTopologicalSpace
SummationFilter.unconditional
tsum
Distrib.toAdd
NonUnitalNonAssocSemiring.toDistrib
Finset.sum
Finset.range
β€”Summable.sum_add_tsum_nat_add'
TopologicalSpace.t2Space_of_metrizableSpace
TopologicalSpace.PseudoMetrizableSpace.toMetrizableSpace
T3Space.toT0Space
T4Space.t3Space
T5Space.toT4Space
OrderTopology.t5Space
instOrderTopology
UniformSpace.pseudoMetrizableSpace
EMetric.instIsCountablyGeneratedUniformity
IsTopologicalSemiring.toContinuousAdd
instIsTopologicalSemiring
summable_nat_add_iff
summable_coe πŸ“–mathematicalβ€”Summable
Real
Real.instAddCommMonoid
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
toReal
NNReal
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
instTopologicalSpace
β€”SummationFilter.neBot_or_eq_bot
HasSum.nonneg
Real.instIsOrderedAddMonoid
OrderTopology.to_orderClosedTopology
instOrderTopologyReal
hasSum_coe
Finset.sum_congr
summable_comp_injective πŸ“–β€”Summable
NNReal
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
instTopologicalSpace
SummationFilter.unconditional
β€”β€”summable_coe
Summable.comp_injective
instIsUniformAddGroupReal
Real.instCompleteSpace
summable_mk πŸ“–mathematicalReal
Real.instLE
Real.instZero
Summable
Nonneg.addCommMonoid
Real.instAddCommMonoid
Real.instPreorder
IsOrderedAddMonoid.toAddLeftMono
Real.partialOrder
Real.instIsOrderedAddMonoid
instTopologicalSpaceSubtype
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
β€”IsOrderedAddMonoid.toAddLeftMono
Real.instIsOrderedAddMonoid
summable_coe
summable_nat_add πŸ“–β€”Summable
NNReal
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
instTopologicalSpace
SummationFilter.unconditional
β€”β€”summable_comp_injective
add_left_injective
AddRightCancelSemigroup.toIsRightCancelAdd
summable_nat_add_iff πŸ“–mathematicalβ€”Summable
NNReal
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
instTopologicalSpace
SummationFilter.unconditional
β€”summable_coe
summable_nat_add_iff
instIsTopologicalAddGroupReal
tendsto_atTop_zero_of_summable πŸ“–mathematicalSummable
NNReal
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
instTopologicalSpace
SummationFilter.unconditional
Filter.Tendsto
Filter.atTop
Nat.instPreorder
nhds
instZeroNNReal
β€”Nat.cofinite_eq_atTop
tendsto_cofinite_zero_of_summable
tendsto_coe πŸ“–mathematicalβ€”Filter.Tendsto
Real
toReal
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
NNReal
instTopologicalSpace
β€”tendsto_subtype_rng
tendsto_coe' πŸ“–mathematicalβ€”Filter.Tendsto
Real
toReal
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
NNReal
instTopologicalSpace
Real.instLE
Real.instZero
β€”ge_of_tendsto'
instClosedIciTopology
OrderTopology.to_orderClosedTopology
instOrderTopologyReal
tendsto_coe
tendsto_coe_atTop πŸ“–mathematicalβ€”Filter.Tendsto
Real
toReal
Filter.atTop
Real.instPreorder
NNReal
PartialOrder.toPreorder
instPartialOrderNNReal
β€”Filter.tendsto_Ici_atTop
instIsDirectedOrder
Real.instIsOrderedRing
Real.instArchimedean
tendsto_cofinite_zero_of_summable πŸ“–mathematicalSummable
NNReal
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
instTopologicalSpace
SummationFilter.unconditional
Filter.Tendsto
Filter.cofinite
nhds
instZeroNNReal
β€”Summable.tendsto_cofinite_zero
instIsTopologicalAddGroupReal
tendsto_of_antitone πŸ“–mathematicalAntitone
NNReal
Nat.instPreorder
PartialOrder.toPreorder
instPartialOrderNNReal
Filter.Tendsto
Filter.atTop
nhds
instTopologicalSpace
β€”tendsto_atTop_ciInf
LinearOrder.infConvergenceClass
instOrderTopology
tendsto_tsum_compl_atTop_zero πŸ“–mathematicalβ€”Filter.Tendsto
Finset
NNReal
tsum
Finset.instMembership
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
instTopologicalSpace
SummationFilter.unconditional
Filter.atTop
PartialOrder.toPreorder
Finset.partialOrder
nhds
instZeroNNReal
β€”coe_tsum
tendsto_tsum_compl_atTop_zero
instIsTopologicalAddGroupReal
tsum_mul_left πŸ“–mathematicalβ€”tsum
NNReal
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
instTopologicalSpace
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”eq
tsum_mul_left
instIsTopologicalSemiring
TopologicalSpace.t2Space_of_metrizableSpace
TopologicalSpace.PseudoMetrizableSpace.toMetrizableSpace
T3Space.toT0Space
T4Space.t3Space
T5Space.toT4Space
OrderTopology.t5Space
instOrderTopology
UniformSpace.pseudoMetrizableSpace
EMetric.instIsCountablyGeneratedUniformity
coe_tsum
tsum_mul_right πŸ“–mathematicalβ€”tsum
NNReal
NonUnitalNonAssocSemiring.toAddCommMonoid
NonAssocSemiring.toNonUnitalNonAssocSemiring
Semiring.toNonAssocSemiring
instSemiringNNReal
instTopologicalSpace
Distrib.toMul
NonUnitalNonAssocSemiring.toDistrib
β€”eq
tsum_mul_right
instIsTopologicalSemiring
TopologicalSpace.t2Space_of_metrizableSpace
TopologicalSpace.PseudoMetrizableSpace.toMetrizableSpace
T3Space.toT0Space
T4Space.t3Space
T5Space.toT4Space
OrderTopology.t5Space
instOrderTopology
UniformSpace.pseudoMetrizableSpace
EMetric.instIsCountablyGeneratedUniformity
coe_tsum

Real

Theorems

NameKindAssumesProvesValidatesDepends On
comap_toNNReal_atTop πŸ“–mathematicalβ€”Filter.comap
Real
NNReal
toNNReal
Filter.atTop
PartialOrder.toPreorder
instPartialOrderNNReal
instPreorder
β€”le_antisymm
Filter.HasBasis.ge_iff
Filter.atTop_basis_Ioi'
instIsDirectedOrder
instIsOrderedRing
instArchimedean
instNoMaxOrderOfNontrivial
instNontrivial
Filter.mp_mem
Filter.preimage_mem_comap
Filter.Ioi_mem_atTop
instNoTopOrderOfNoMaxOrder
IsStrictOrderedRing.toNoMaxOrder
NNReal.instIsStrictOrderedRing
Filter.univ_mem'
toNNReal_lt_toNNReal_iff_of_nonneg
LT.lt.le
Filter.Tendsto.le_comap
tendsto_real_toNNReal_atTop
iSup_pow πŸ“–mathematicalReal
instLE
instZero
Monoid.toNatPow
instMonoid
iSup
instSupSet
β€”CanLift.prf
Pi.canLift
NNReal.canLift
NNReal.iSup_pow
iSup_pow_of_ne_zero πŸ“–mathematicalReal
instLE
instZero
Monoid.toNatPow
instMonoid
iSup
instSupSet
β€”isEmpty_or_nonempty
iSup_of_isEmpty
zero_pow
iSup_pow
map_toNNReal_atTop πŸ“–mathematicalβ€”Filter.map
Real
NNReal
toNNReal
Filter.atTop
instPreorder
PartialOrder.toPreorder
instPartialOrderNNReal
β€”NNReal.map_coe_atTop
Function.LeftInverse.filter_map
toNNReal_coe
tendsto_of_bddAbove_monotone πŸ“–mathematicalBddAbove
Real
instLE
Set.range
Monotone
Nat.instPreorder
instPreorder
Filter.Tendsto
Filter.atTop
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
β€”tendsto_atTop_ciSup
LinearOrder.supConvergenceClass
instOrderTopologyReal
tendsto_of_bddBelow_antitone πŸ“–mathematicalBddBelow
Real
instLE
Set.range
Antitone
Nat.instPreorder
instPreorder
Filter.Tendsto
Filter.atTop
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
pseudoMetricSpace
β€”tendsto_atTop_ciInf
LinearOrder.infConvergenceClass
instOrderTopologyReal
tendsto_toNNReal_atTop πŸ“–mathematicalβ€”Filter.Tendsto
Real
NNReal
toNNReal
Filter.atTop
instPreorder
PartialOrder.toPreorder
instPartialOrderNNReal
β€”tendsto_toNNReal_atTop_iff
Filter.tendsto_id
tendsto_toNNReal_atTop_iff πŸ“–mathematicalβ€”Filter.Tendsto
NNReal
toNNReal
Filter.atTop
PartialOrder.toPreorder
instPartialOrderNNReal
Real
instPreorder
β€”comap_toNNReal_atTop
Filter.tendsto_comap_iff

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_real_toNNReal πŸ“–mathematicalβ€”Continuous
Real
NNReal
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
NNReal.instTopologicalSpace
Real.toNNReal
β€”Continuous.max
OrderTopology.to_orderClosedTopology
instOrderTopologyReal
continuous_id
continuous_const
tendsto_real_toNNReal πŸ“–mathematicalFilter.Tendsto
Real
nhds
UniformSpace.toTopologicalSpace
PseudoMetricSpace.toUniformSpace
Real.pseudoMetricSpace
NNReal
Real.toNNReal
NNReal.instTopologicalSpace
β€”Filter.Tendsto.comp
Continuous.tendsto
continuous_real_toNNReal
tendsto_real_toNNReal_atTop πŸ“–mathematicalβ€”Filter.Tendsto
Real
NNReal
Real.toNNReal
Filter.atTop
Real.instPreorder
PartialOrder.toPreorder
instPartialOrderNNReal
β€”Eq.le
Real.map_toNNReal_atTop

---

← Back to Index