PNat 📖 | CompOp | 236 mathmath: PNat.bot_eq_one, PNat.addLeftMono, OrderIso.pnatIsoNat_symm_apply, PNat.natPred_injective, EisensteinSeries.hasSum_e2Summand_symmetricIcc, PNat.factorMultiset_mul, PNat.map_subtype_embedding_Ico, tprod_int_eq_zero_mul_tprod_pnat_sq, PNat.gcd_b_eq, Nat.succPNat_mono, PNat.find_le, ADEInequality.sumInv_pqr, Nat.succPNat_le_succPNat, PNat.modDivAux_spec, PNat.Icc_eq_finset_subtype, Function.directed_ptsOfPeriod_pnat, Mathlib.Tactic.Ring.instCSLiftValPNatNatToPNat, PNat.Ioo_eq_finset_subtype, PNat.gcd_props, PNat.instIsOrderedCancelMonoid, Int.canLiftPNat, tsum_int_eq_zero_add_tsum_pnat, PNat.dist_eq, PNat.coeAddHom_apply, PNat.mk_one, Nat.Primes.coe_pnat_injective, PNat.coe_eq_one_iff, PrimeMultiset.prod_dvd_prod, multipliable_pnat_iff_multipliable_succ, Mathlib.Tactic.Ring.instCSLiftValPNatNatHMul, Function.iUnion_pnat_ptsOfPeriod, Rat.pnatDen_one, PNat.card_Icc, Equiv.pnatEquivNat_apply, sigmaAntidiagonalEquivProd_symm_apply_snd, Prod.instPNatPowAssoc, Mathlib.Tactic.Ring.instCSLiftValPNatNatDivExactHAddDivOfNat, PNat.factorMultiset_le_iff, PNat.tendsto_comp_val_iff, PNat.coe_injective, Mathlib.Tactic.PNatToNat.sub_coe, PNat.lt_add_right, tprod_pnat_eq_tprod_succ, PNat.find_mono, PNat.Coprime.gcd_mul_right_cancel, PrimeMultiset.prod_dvd_iff', PNat.not_lt_one, Complex.UnitDisc.coe_pow, PNat.Ico_eq_finset_subtype, PNat.Prime.not_dvd_one, PNat.instProperSpace, PNat.gcd_det_eq, PNat.dvd_lcm_right, PrimeMultiset.prod_add, PNat.gcd_dvd_right, Nat.canLiftPNat, PNat.sub_coe, PNat.addLeftReflectLT, Mathlib.Tactic.Ring.instCSLiftValPNatNatOfNatHAdd, tsum_zero_pnat_eq_tsum_nat, PNat.natPred_monotone, tsum_pow_div_one_sub_eq_tsum_sigma, PNat.add_sub, PNat.ofNat_lt_ofNat, tendsto_PNat_val_atTop_atTop, tsum_pnat_eq_tsum_succ, ppow_mul_comm, PNat.one_coprime, PNat.dvd_one_iff, Mathlib.Tactic.Ring.instCSLiftValPNatNatSuccPNatHAddOfNat, Mathlib.Tactic.Ring.instCSLiftValPNatNatHAdd, tprod_zero_pnat_eq_tprod_nat, PNat.coe_le_coe, PNat.gcd_eq_right_iff_dvd, Nat.succPNat_injective, Equiv.pnatEquivNat_symm_apply, PNat.find_le_iff, PNat.count_factorMultiset, PNat.Coprime.gcd_mul_right_cancel_right, EisensteinSeries.hasSum_e2Summand_symmetricIco, PNat.card_fintype_uIcc, EisensteinSeries.q_expansion_riemannZeta, PNat.map_subtype_embedding_Icc, PNat.Coprime.gcd_mul_left_cancel, summable_prod_mul_pow, PNat.not_prime_one, PNat.uIcc_eq_finset_subtype, PNat.ofNat_le_ofNat, PNat.equivNonZeroDivisorsNat_symm_apply_coe, Nat.succPNat_lt_succPNat, instCountablePNat, PNat.gcd_rel_left', PNat.dist_coe, PNat.factorMultiset_le_iff', tsum_int_eq_zero_add_two_mul_tsum_pnat, summable_pnat_iff_summable_succ, Nat.succPNat_strictMono, Nat.toPNat'_zero, PNat.one_coe, PNat.fact_prime_two, PNat.add_coe, PNat.add_one_le_iff, PrimeMultiset.toPNatMultiset_ofPNatList, PNat.card_Ico, PNat.map_subtype_embedding_Ioo, PNat.one_gcd, cot_series_rep, PNat.prime_five, PNat.recOn_succ, PNat.dvd_iff, PNat.Ioc_eq_finset_subtype, PNat.find_lt_iff, divisorsAntidiagonalFactors_one, ppow_one, EisensteinSeries.qExpansion_identity_pnat, PNat.exists_prime_and_dvd, PNat.prime_two, PrimeMultiset.prod_dvd_iff, Complex.UnitDisc.pow_eq_zero, ppow_eq_pow, PNat.succ_eq_add_one, PNat.map_subtype_embedding_uIcc, LucasLehmer.two_lt_q, PNat.addLeftReflectLE, PrimeMultiset.coe_coePNatMonoidHom, Pi.instPNatPowAssoc, PNat.card_fintype_Ioo, PNat.mk_ofNat, PrimeMultiset.mem_ofNatMultiset, PNat.gcd_mul_lcm, PNat.Prime.one_lt, ppow_mul', PNat.Coprime.gcd_mul, PNat.dvd_lcm_left, PNat.card_uIcc, OrderIso.pnatIsoNat_apply, PrimeMultiset.prod_ofPNatMultiset, ADEInequality.admissible_E'4, PrimeMultiset.coePNat_nat, EisensteinSeries.q_expansion_bernoulli, tsum_prod_pow_eq_tsum_sigma, PNat.gcd_dvd_left, PNat.instWellFoundedLT, PNat.fact_prime_five, PNat.lt_add_left, PNat.dvd_prime, PNat.coprime_one, PNat.sub_le, sigmaAntidiagonalEquivProd_symm_apply_fst, pnat_multipliable_iff_multipliable_succ, PNat.factorMultiset_pow, PNat.card_Ioo, PNat.gcd_one, PNat.equivNonZeroDivisorsNat_apply_coe, PNat.find_eq_one, PNat.Coprime.mul, DivisibleHull.mk_add_mk, PNat.factorMultiset_one, PNat.card_fintype_Ioc, DivisibleHull.qsmul_mk, PNat.card_fintype_Ico, zero_mem_lowerBounds_smoothingSeminormSeq_range, PNat.mul_coe, PNat.add_one, PNat.find_min', smoothingSeminormSeq_bddBelow, PNat.pow_coe, Complex.UnitDisc.tendsto_pow_atTop_nhds_zero, ADEInequality.admissible_E'5, ppow_mul, PNat.natPred_strictMono, PrimeMultiset.prod_ofPNatList, PNat.gcd_rel_right', tprod_int_eq_zero_mul_tprod_pnat, EisensteinSeries.G2_eq_tsum_cexp, PNat.dvd_iff', PNatPowAssoc.ppow_add, Nat.factorizationEquiv_inv_apply, tsum_eisSummand_eq_tsum_sigma_mul_cexp_pow, PNat.fact_prime_three, PNat.natPred_lt_natPred, PrimeMultiset.prod_zero, PNat.instNoMaxOrder, PNat.lt_add_one_iff, PNat.card_Ioc, PNat.natPred_le_natPred, PrimeMultiset.coePNat_ofPrime, EisensteinSeries.tendsto_tsum_one_div_linear_sub_succ_eq, PNat.lt_find_iff, Mathlib.Tactic.Ring.instCSLiftValPNatNatHPow, PNat.Coprime.gcd_mul_left_cancel_right, PNat.instNoncompactSpace, ONote.scale_eq_mul, PNat.mem_factorMultiset, Mathlib.Tactic.PNatToNat.coe_le_coe, PNat.le_one_iff, ppow_mul_assoc, Mathlib.Tactic.Ring.instCSLiftValPNatNatToPNat'HAddPredOfNat, PrimeMultiset.prod_smul, PNat.coe_lt_coe, Mathlib.Tactic.PNatToNat.coe_lt_coe, Finset.PNat.coe_prod, PNat.map_subtype_embedding_Ioc, ppow_add, PrimeMultiset.coePNat_injective, PNat.instDiscreteTopology, PNat.one_le, PNat.gcd_a_eq, divisorsAntidiagonalFactors_eq, PNat.card_fintype_Icc, PNat.Coprime.mul_right, PNat.isCoprime_iff, PrimeMultiset.mem_ofNatList, PNat.one_le_find, ONote.oadd_mul, PNat.mod_le, Cardinal.mk_pnat, Rat.pnatDen_zero, PNatPowAssoc.ppow_one, DivisibleHull.nnqsmul_mk, ADEInequality.classification, ADEInequality.admissible_E'3, PNat.isUniformEmbedding_coe, Complex.UnitDisc.continuous_pow, PNat.addLeftStrictMono, PNat.prime_three, multipliable_pnat_iff_multipliable_nat, PNat.recOn_one, PNat.le_find_iff, PNat.exists_eq_succ_of_ne_one, EqualCharZero.pnatCast_one, PNat.lt_succ_self, tendsto_zero_geometric_tsum_pnat, PNat.gcd_eq_left_iff_dvd, summable_pnat_iff_summable_nat, PNat.coe_coeMonoidHom
|